

MB507

1.6GHz TWO MODULUS PRESCALER

1.6GHz TWO MODULUS PRESCALER

The Fujitsu MB507 is a 1.6GHz two modulus prescaler used with a frequency synthesizer to form a Phase Locked Loop (PLL). It will divide the input frequency by the modulus of 128/129 or 256/257 and has an output level of 1.6V peak to peak on ECL level.

FEATURES

• High Frequency Operation 1.6GHz max.

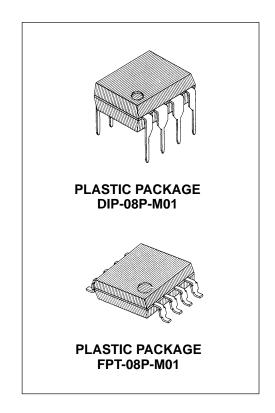
Power Dissipation 90mW typ.

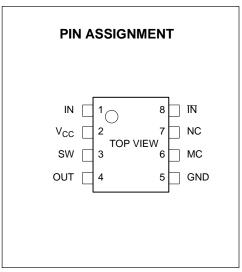
· Pulse Swallow Function

Wide Operation Temperature -40°C to +85°C

Stable Output Amplitude V_{OUT} = 1.6V_{p-p}

 Complete PLL synthesizer circuit with the Fujitsu MB87001A, PLL synthesizer IC


Package


Standard 8-pin Dual-In-Line Package (Suffix: -P) Standard 8-pin Flat Package (Suffix: -PF)

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	-0.5 to +7.0	٧
Input Voltage	V _{IN}	-0.5 to V _{CC}	V
Output Current	Io	10	mA
Storage Temperature	T _{STG}	-55 to +125	°C

Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

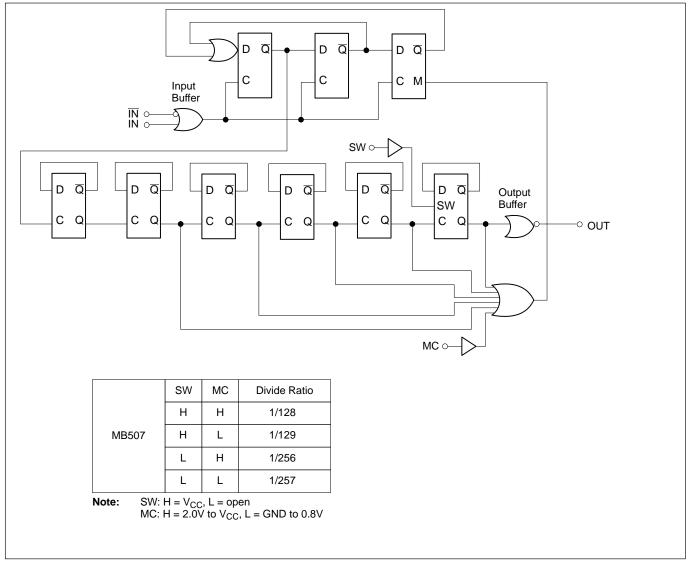


Figure 1. MB507 Block Diagram

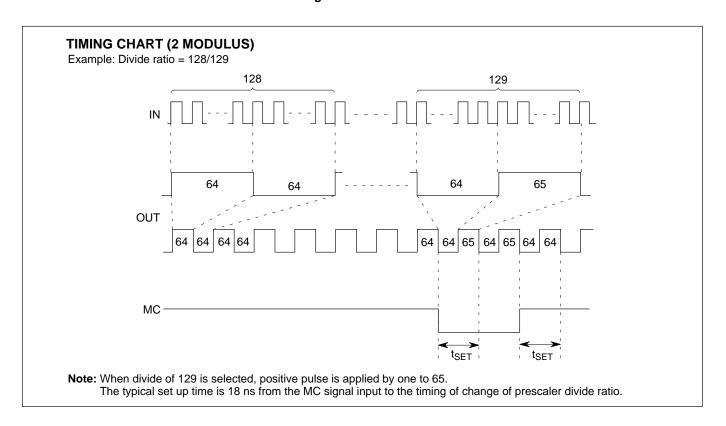
PIN DESCRIPTION

Pin Number	Symbol	Function
1	IN	Input
2	V _{CC}	DC Supply Voltage
3	SW	Divide Ratio Control Input Selecting Divide Ratio (See Divide Ratio Table)
4	OUT	Output
5	GND	Ground
6	MC	Modulus Control Input (See Divide Ratio Table)
7	NC	No Connection
8	ĪN	Complementary Input

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Тур.	Max.	Unit
Supply Voltage	V _{CC}	4.5	5.0	5.5	V
Output Current	Io		1.2		mA
Ambient Temperature	T _A	-40		+85	°C
Load Capacitance	C _L			12	pF

ELECTRICAL CHARACTERISTICS


(Recommended Operating Conditions unless otherwise noted.)

Parameter	Symbol	Conditions	Value			
			Min.	Тур.	Max.	Unit
Supply Curent	Icc			18		mA
Output Amplitude	Vo		1.0	1.6		V _{p-p}
Input Frequency	f _{IN}	with input coupling capacitor 1000pF	100		1600	MHz
Input Signal Amplitude	P _{IN}		-4		10	dBm
High Level Input Voltage for MC Input	V _{IHM}		2.0			V
Low Level Input Voltage for MC Input	V _{ILM}					V
High Level Input Voltage for SW Input	V _{IHS} *		V _{CC} -0.1	V _{CC}	V _{CC} +0.1	V
Low Level Input Voltage for SW Input	V _{ILS}			Open		V
High Level Input Current for MC Input	I _{IHM}	V _{IH} = 2.0V			0.4	mA
Low Level Input Current for MC Input	I _{ILM}	V _{IL} = 0.8V	-0.2			mA
Modulus Set-up Time MC to OUT	t _{SET}	1.6GHz Operation		18	28	ns

Note: *Design Guarantee

Figure 2. Test Circuit

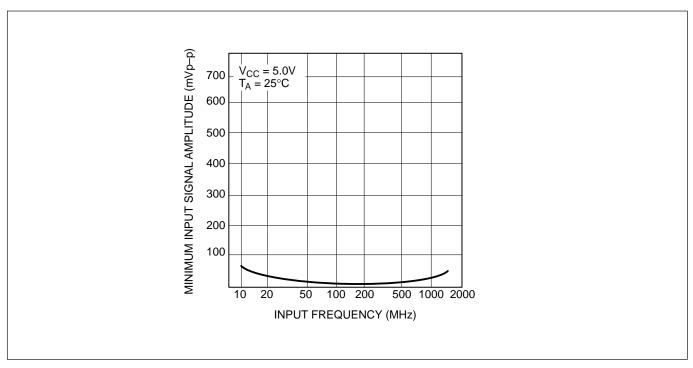


Figure 3. Input Signal Amplitude vs. Input Frequency

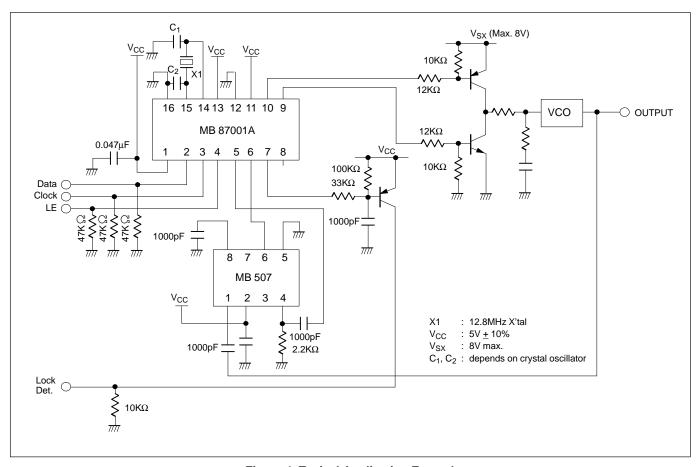
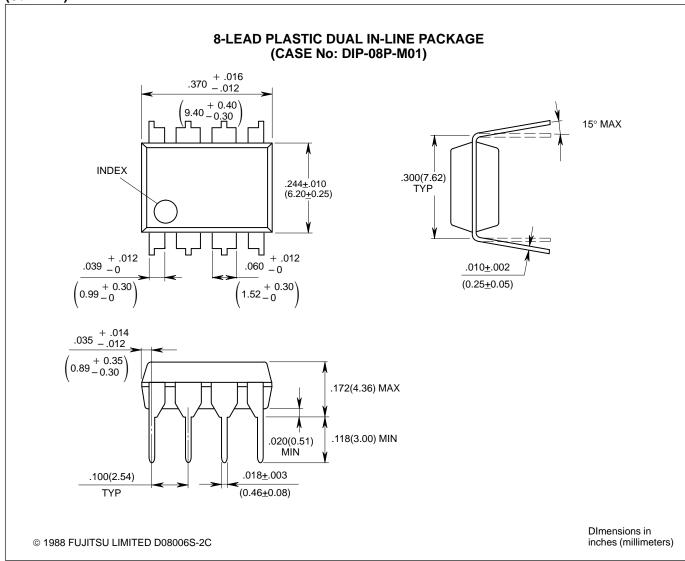
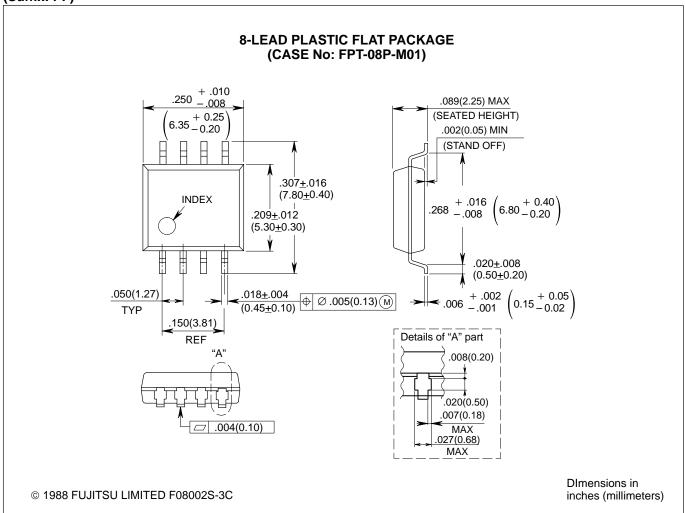



Figure 4. Typical Application Example


PACKAGE DIMENSIONS

(Suffix: P)

PACKAGE DIMENSIONS

(Suffix: PF)

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED International Marketing Div. Furukawa Sogo Bldg., 6-1, Marunouchi 2-chome Chiyoda-ku, Tokyo 100, Japan Tel: (03) 3216-3211 Telex: 781-2224361 FAX: (03) 3215-0662

North and South America

FUJITSU MICROELECTRONICS, INC. Integrated Circuits Division 3545 North First Street San Jose, CA 95134-1804, USA Tel: 408-922-9000 FAX: 408-432-9044

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10, 6072 Dreieich-Buchschlag, Germany Tel: (06103) 690-0

Telex: 411963 FAX: (06103) 690-122

Asia

FUJITSU MICROELECTRONICS ASIA PTE LIMITED 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 0719 Tel: 336-1600

Telex: 55573 FAX: 336-1609