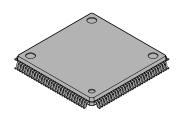
ASSP For Video Applications

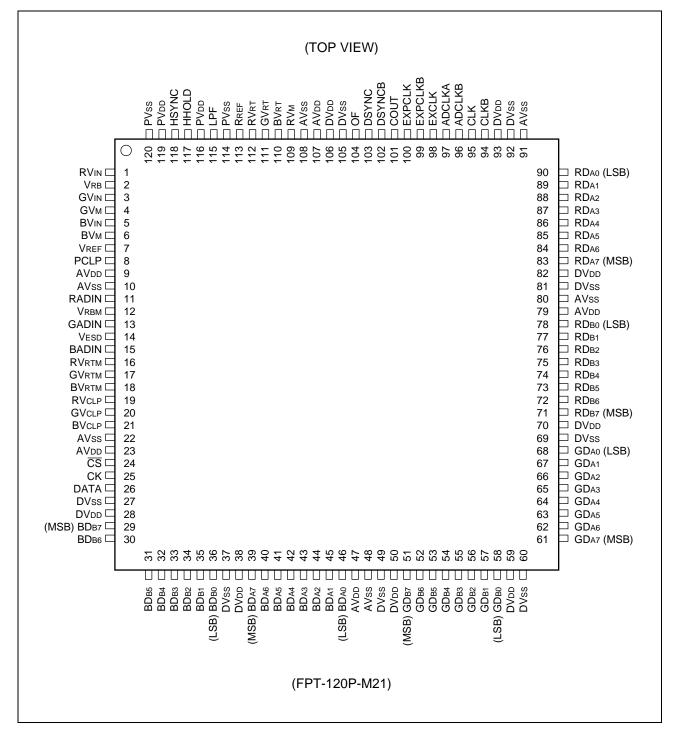
CMOS

3ch 8-bit 100 MSPS A/D Converter


MB40C348V

DESCRIPTION

MB40C348V is a high-speed 3ch A/D converter using a fast CMOS technology.


■ FEATURES

Resolution	: 8 bit
 No. of AD channels 	: 3 ch
 Linearity error 	: ±0.40 %(typical)
 Maximum conversion rate 	: 100 MSPS (minimum)
 Power supply voltage 	: 3.3 V (typical : internal circuit)
Digital input voltage range	: TTL level
 Digital output voltage range 	: 3.3 V CMOS level
Video Amp. input voltage range	: 0.7 V _{P-P} (typical)
Video Amp. gain	: 1.9 double fixed
A/D input capacity	: 15 pF (typical)
Power dissipation	: 880 mW (typical)
Additional features	: PLL circuit
	Video Amp. circuit (1.9 double fixed gain, OFF operation is possible)
	CLAMP circuit
	VRT Amp. circuit (RGB 3 ch separate)
	VRB Amp. circuit (RGB 3 ch common)
	Overflow output
	High impedance output, power down function
Package	: LQFP120 (16 mm \times 16 mm, lead pitch : 0.5 mm)
	120-pin plastic LQFP

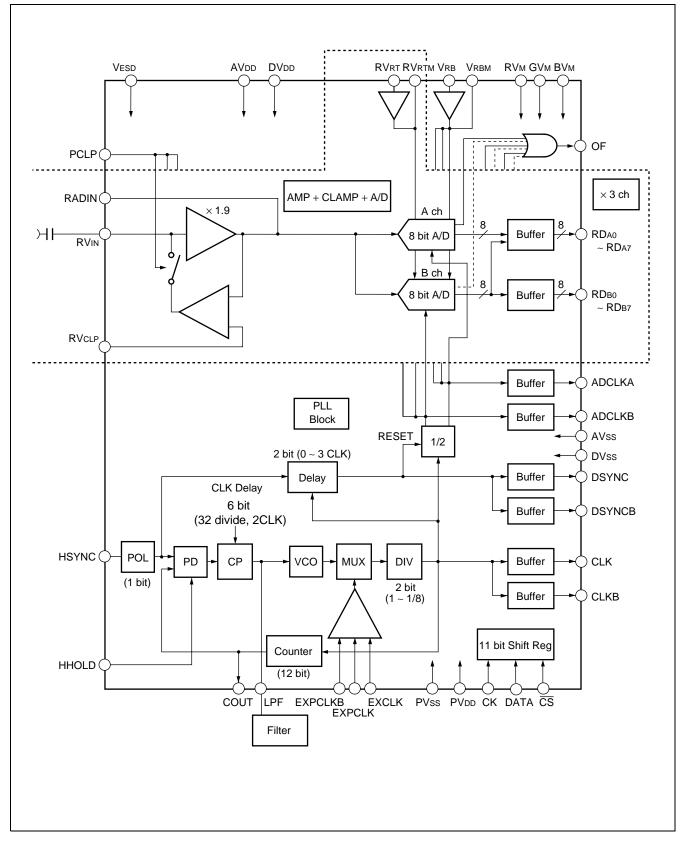
(FPT-120P-M21)

PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Symbol	Description
9, 23, 47, 79, 107	AVdd	Analog power supply (+3.3 V)
28, 38, 50, 59, 70, 82, 93, 106	DVdd	Digital power supply (+3.3 V)
116, 119	PVDD	PLL power supply pin (+3.3 V)
14	Vesd	Digital input power supply for protect device (+3.3 V or +5 V)
10, 22, 48, 80, 91, 108	AVss	Analog power supply ground pin (0 V)
27, 37, 49, 60, 69, 81, 92, 105	DVss	Digital power supply ground pin (0 V)
114, 120	PVss	PLL power supply ground pin (0 V)
1 3 5	RVin GVin BVin	1.9 double Amp. input pin
11 13 15	RADIN GADIN BADIN	A/D converter input pin This pin inputs directly is possible when 1.9 double Amp. OFF.
19 20 21	RVclp GVclp BVclp	Clamp voltage setting input pin
16 17 18	RVrtm GVrtm BVrtm	Reference voltage output pin on top side
112 111 110	RVrt GVrt BVrt	Reference voltage input pin on top side
12	Vrbm	Reference voltage output pin on bottom side (RGB 3 ch common)
2	Vrb	Reference voltage input pin on bottom side (RGB 3 ch common)
109 4 6	RVм GVм BVм	Reference 1/2 voltage output pin (Add 0.1 μ F for AVss)
25	СК	Serial data transfer clock input pin
26	DATA	Serial data input pin
24	CS	Chip select signal input pin It is possible to input to the shift register at \overline{CS} falling The content of the shift register is executed at \overline{CS} rising
98	EXCLK	Clock input pin for A/D converter (CMOS level) Fix to "L" level when unused.

Note: The values in parentheses are standard.


(Continued)

(Continued)

Pin No.	Symbol	Description	
99	EXPCLKB	Differential clock (negative-phase) input pin for A/D converter Fix to "H" level when unused.	PECL level
100	EXPCLK	Differential clock (positive-phase) input pin for A/D converter Fix to "L" level when unused.	FECL level
8	PCLP	Clamp pulse input pin	
113	Rref	Internal current setting pin (Add 12 k Ω for AVss)	
103	DSYNC	Delay sync signal output pin	
102	DSYNCB	Inverted delay sync signal output pin	
95	CLK		
94	CLKB	Clock output pin (See " ■ TIMING DIAGRAM ".)	
97	ADCLKA		
96	ADCLKB		
83 to 90 61 to 68 39 to 46	RDa7 to RDa0 GDa7 to GDa0 BDa7 to BDa0	Digital output pin (Port A) RDa7, GDa7, BDa7 : MSB RDa0, GDa0, BDa0 : LSB	
71 to 78 51 to 58 29 to 36	RD _{B7} to RD _{B0} GD _{B7} to GD _{B0} BD _{B7} to BD _{B0}	Digital output pin (Port B) RDb7, GDb7, BDb7 : MSB RDb0, GDb0, BDb0 : LSB	
101	COUT	PLL counter output pin	
115	LPF	External capacitor / resistor connection pin	
117	HHOLD	Phase detector operation is hold by input "H" level	
118	HSYNC	Horizontal sync signal input pin	
7	Vref	Internal voltage output pin (Add 3.3 μ F for AVss)	
104	OF	Overflow output pin ("H" level output at overflow)	

Note: The values in parentheses are standard.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	ating	Unit
Parameter	Symbol	Min.	Max.	Unit
Rower supply veltage	AVDD, DVDD, PVDD	-0.3	+4.0	V
Power supply voltage	Vesd	-0.3	+7.0	V
	RVin, GVin, BVin, RADIN, GADIN, BADIN, RVclp, GVclp, BVclp, RVrt, GVrt, BVrt, RVrtm, GVrtm, BVrtm, Vrb, Vrbm, RVm, GVm, BVm, Vref, Rref	-0.3	AV _{DD} +0.3 ^{*1}	V
Input/output voltage	RDA0 to RDA7, RDB0 to RDB7, GDA0 to GDA7, GDB0 to GDB7, BDA0 to BDA7, BDB0 to BDB7, DSYNC, DSYNCB, OF, COUT, CLK, CLKB, ADCLKA, ADCLKB	-0.3	DV _{DD} +0.3*1	V
	LPF	-0.3	PV _{DD} +0.3 ^{*1}	V
	CK, DATA, CS , EXPCLKB, EXPCLK, PCLP, EXCLK, HHOLD, HSYNC	VESD -0.3 $+7.0$ NGVIN, BVIN, ADIN, BADIN, SVCLP, BVCLP, SVRT, BVRT, SVRT, BVRT, SVRTM, BVRTM, B, VRBM, BVM, VREF, RREF -0.3 $AV_{DD}+0.3^{*1}$ NAV, DD+0.3*1N $AV_{DD}+0.3^{*1}$ NAT, RDB0 to RDB7, DSYNCB, OF, CLK, CLKB, A, ADCLKB -0.3 $DV_{DD}+0.3^{*1}$ NLPF -0.3 $PV_{DD}+0.3^{*1}$ NDATA, \overline{CS} , KB, EXPCLK, D, HSYNC -0.3 $V_{ESD}+0.3^{*2}$ N	V	
Storage temperature	Тятс	-55	+125	°C

*1 : Do not exceed +4.0 V.

*2 : Do not exceed +7.0 V.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Devementer	Cumhal		Value			
Parameter	Symbol	Min.	Тур.	Max.	Unit	
	AVdd, DVdd	3.00	3.30	3.60	V	
Power supply voltage	PVDD	3.00	3.30	3.60	V	
	Vesd	3.00		5.25	V	
A/D converter input voltage	Vadin	Vrb		Vrt	V	
Analog reference voltage : T	Vrt		2.2	AV _{DD} - 0.6	V	
Analog reference voltage : B	Vrb	0.6	0.7		V	
Analog reference voltage range	Vrt – Vrb	1.0	1.5	1.8	V	
Video Amp. input voltage	VIN (P-P)	0.5	_	0.9	VP-P	
Clamp input voltage	VCLP	0.6	Vrb	1.7	V	
Digital "H" level input voltage	Vihd	2.5		Vesd	V	
Digital "L" level input voltage	Vild	0		0.5	V	
Digital "H" level output current	Іонд	-400			μΑ	
Digital "L" level output current	OLD			1.6	mA	
PLL counter	Pc	100		4095		
HSYNC input frequency range	f HSYNC	10		100	kHz	
HHOLD set up time	tshhold	20			ns	
HHOLD hold time	t hHHOLD	20		—	ns	
Clamp pulse width	twclp	0.5			μs	
CK clock pulse width	twcк∟, twcкн	100			ns	
DATA set up time	t sdata	30			ns	
DATA hold time	t hDATA	30			ns	
CS set up time	t₅cs	50		_	ns	
CS hold time	thcs	50	— —	—	ns	
CS "H" level hold time	twcsн	100		_	ns	
Operating temperature range	Та	-20	—	70	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

ELECTRICAL CHARACTERISTICS

1. DC Characteristics in Analog Section

• Power supply current $(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{ESD} = 3.0 \text{ V to } 5.25 \text{ V}, \text{ Ta} = -20 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Value			Unit
	Symbol	Min.	Тур.	Max.	Unit
Analog power supply current	Aldd	—	170	290	mA
Digital power supply current	DIDD	_	80	90	mA
Power supply current PLL section $(@f_{VCOH} = 162 \text{ MHz}, \text{ Icp} = 0.5 \text{ mA}, \text{DIV} = 1/1)$	Plod	_	16	20	mA
Standby current	lsв		10		mA

A/D Block $(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{ESD} = 3.0 \text{ V to } 5.25 \text{ V}, \text{ Ta} = -20 ^{\circ}\text{C to } +70 ^{\circ}\text{C})$						
Parameter	Symbol			11		
Farameter	Symbol	Min.	Тур.	Max.	Unit	
Resolution			8		bit	
Linearity error (DC Accuracy)	LE	-0.8	±0.4	+0.8	%	
Differential linearity error (DC Accuracy)	DLE	-0.36	±0.2	+0.65	%	
Analog reference voltage input current	Irt, Irb		5	20	μA	
ADIN input capacity		—	15		pF	

Video Amp. Block $(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{ESD} = 3.0 \text{ V to } 5.25 \text{ V}, \text{ Ta} = -20 ^{\circ}\text{C to } +70 ^{\circ}\text{C})$						
Parameter	Symbol		Value			
Falameter	Symbol	Min.	Тур.	Max.	Unit	
Video Amp. gain	Gamp	1.8	1.9	2.0		
Video Amp. output voltage range	Vampout	0.5		$AV_{DD} - 0.6$	V	
Video Amp. frequency width	BW	—	170		MHz	
Video Amp. input capacity	CVIN		5	—	pF	

CLAMP Block	$(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{ESD} = 3.0 \text{ V to } 5.25 \text{ V}, \text{ Ta} = -20 ^{\circ}\text{C} \text{ to } +70 ^{\circ}\text{C})$
-------------	---

Parameter	Symbol		Unit		
Falameter	Symbol	Min.	Тур.	Max.	Onit
VcLP input current	CLP	—	5	20	μΑ
Clamp voltage	Vclamp	Vclp - 0.1	Vclp	Vclp + 0.1	V

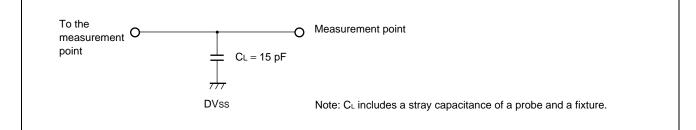
PLL Block

(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 V to 3.6 V, Vesd = 3.0 V to 5.25 V, Ta = -20 °C to +70 °C)

Parameter	Symbol		Value		Unit
Falanielei	Symbol	Min.	Тур.	Max.	Onit
CLK jitter (@f _{HSYNC} = 68.68 kHz, fcLk = 94.5 MHz)	Ptj	—	1.0	1.5	ns

2. DC Characteristics in Digital Section

 $(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{ESD} = 3.0 \text{ V to } 5.25 \text{ V}, \text{ Ta} = -20 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$


Parameter	Symbol		Unit		
Falameter	Symbol	Min.	Тур.	Max.	Unit
Digital input current	lid	-20		5	μA
Digital "H" level output voltage	Vонd	DV _{DD} - 0.4			V
Digital "L" level output voltage	Vold	—		0.4	V

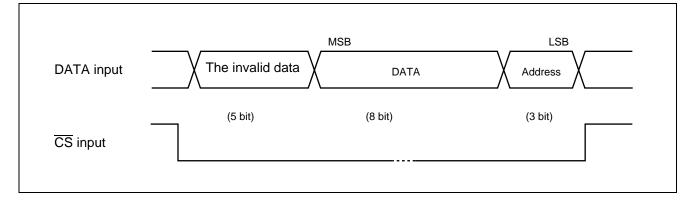
3. Switching Characteristics

 $(AV_{DD} = DV_{DD} = PV_{DD} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{ESD} = 3.0 \text{ V to } 5.25 \text{ V}, \text{ Ta} = -20 \text{ }^{\circ}\text{C} \text{ to } +70 \text{ }^{\circ}\text{C})$

Parameter		Symbol		Unit		
		Symbol	Min.	Тур.	Max.	Unit
A/D maximum conver	sion rate	fs	100			MSPS
Aperture time		tad	—	1.5	_	ns
VCO oscillation frequency	VCOL	fvco∟	75	—	140	MHz
	VCOH	fvcoн	85	—	162	MHz
CLK output delay time	9	\mathbf{t}_{pd} (HSYNC-CLK)	1.0	2.0	4.0	ns
	Timing	tpd (CLK-ADCLK1)	0.0	1.0	2.0	ns
Digital output delay time	diagram 1	t pd (CLK-DATA1)	2.5	4.0	6.0	ns
	Timing	\mathbf{t}_{pd} (CLK-ADCLK2)	0.0	1.0	2.0	ns
	diagram 2	t pd (CLK-DATA2)	2.5	4.0	6.0	ns
DSYNC output delay	time	tpd (CLK-DSYNC)	0.5	1.5	2.0	ns

■ DIGITAL OUTPUT BUFFER LOAD CIRCUIT

■ SERIAL DATA SETTING (MSB Fast)


	(A LSB	ddres	ss)	(Data) ► MSB								
RES	D0	■ D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	·
	0	0	0	0	0	0	X	X	X	X	X	\overline{CE} : 0 = operation mode, 1 = all function power off
0	0	0	0	0	0	0	х	х	Х	Х	х	DSEL : 0 = demultiplex output, 1 = straight output
	0	0	0	0	0	0	Х	Х	Х	Х	Х	Video Amp. : 0 = operation, 1 = off
1	1	0	0	0	0	0	0	0	0	1	0	Counter low ranking 8 bit
2	0	1	0	0	0	0	0	Х	Х	Х	Х	Counter high ranking 4 bit
	1	1	0	0	0	0	0	0	0	1	0	CLK delay adjust ^{*1} : $t_d = N/(32 \times f_{CLK})$
3	1	1	0	0	0	0	0	0	0	1	0	HSYNC polarity : 0 = through, 1 = inversion
	1	1	0	0	0	0	0	0	0	1	0	A/D Converter output : 0 = operation, 1 = high impedance
	0	0	1	0	0	0	0	0	0	1	0	CLK output : $0 = on, 1 = "L"$
	0	0	1	0	0	0	0	0	0	1	0	CLKB output : 0 = on, 1 = "L"
	0	0	1	0	0	0	0	0	0	1	0	DSYNC output : 0 = on, 1 = "L"
4	0	0	1	0	0	0	0	0	0	1	0	DSYNCB output : 0 = on, 1 = "L"
	0	0	1	0	0	0	0	0	0	1	0	ADCLKA output : 0 = on, 1 = "L"
	0	0	1	0	0	0	0	0	0	1	0	ADCLKB output : 0 = on, 1 = "L"
	0	0	1	0	0	0	0	0	0	1	0	DSYNC delay ^{* 2} : 0, 1, 2, 3
	1	0	1	0	0	0	0	0	0	1	0	CLK change : 0 = VCO, 1 = External clock
	1	0	1	0	0	0	0	0	0	1	0	External clock input : 0 = CMOS, 1 = PECL
5	1	0	1	0	0	0	0	0	0	1	0	Counter operation : $0 = on, 1 = off$
5	1	0	1	0	0	0	0	0	0	1	0	Charge pump current ^{* 3} : 0.1 mA, 0.5 mA, 1 mA
	1	0	1	0	0	0	0	0	0	1	0	VCO select : 0 = VCOL, 1 = VCOH
	1	0	1	0	0	0	0	0	0	1	0	Divider setting [*] ⁴ : 1, 1/2, 1/4, 1/8

*1 : Setting at 6bit, Resolution : 1/32 \times CLK, Setting range : 0 to 63/32 \times CLK

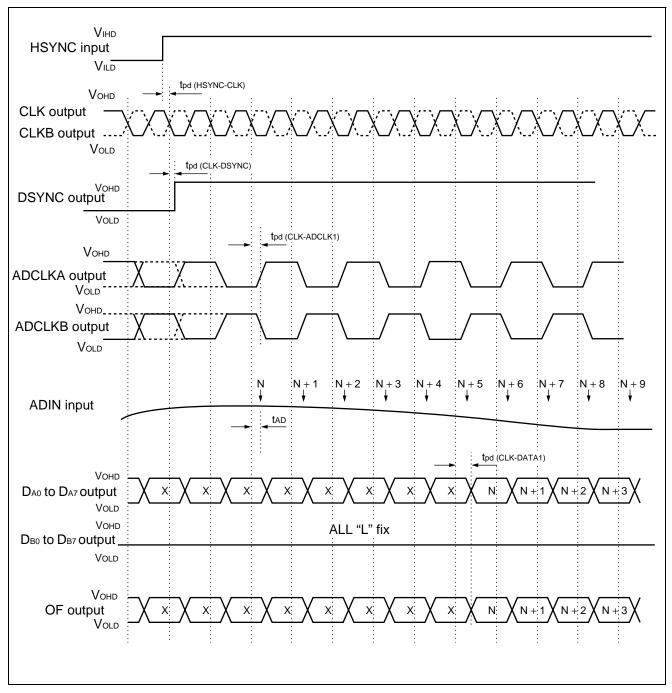
*2, *3, *4 : See under table

Setting	0 (0, 0)	1 (1, 0)	2 (0, 1)	3 (1, 1)
DSYNC delay*2	0 CLK	1 CLK	2 CLK	3 CLK
Charge pump current*3	0.1 mA	0.5 mA	1.0 mA	_
Divider setting*4	1/1	1/2	1/4	1/8

Example: input at 16 bit

■ RECOMMENDED VALUE OF SERIAL DATA SETTING

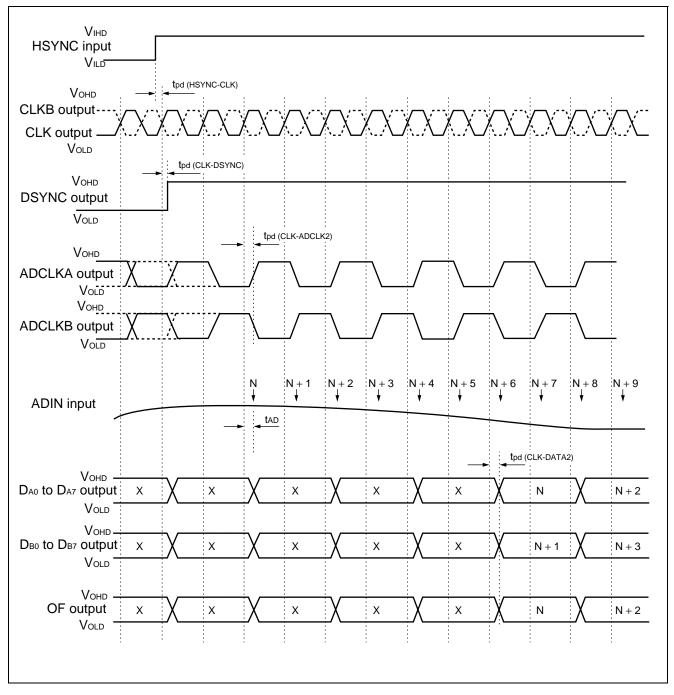
	fс∟к (MHz)	fнsync (kHz)	Counter	lcp (mA)	VCO select	Divider	fvco (MHz)
	94.500	68.677	1376	0.5	VCOH or VCOL	1/1	94.500
XGA	78.750	60.023	1312	0.5	VCOL	1/1	78.750
AGA	75.000	56.476	1328	0.5	VCOH	1/2	150.000
	65.000	48.363	1344	0.5	VCOH or VCOL	1/2	130.000
	56.250	53.674	1048	0.5	VCOH or VCOL	1/2	112.500
SVGA	50.000	48.077	1040	0.5	VCOH or VCOL	1/2	100.000
SVGA	49.500	46.875	1056	0.5	VCOH or VCOL	1/2	99.000
	40.000	37.879	1056	0.5	VCOL	1/2	80.000
	36.000	43.269	832	0.5	VCOH	1/4	144.000
	31.500	37.861	832	0.5	VCOH or VCOL	1/4	126.000
VGA	25.175	31.469	800	0.5	VCOH or VCOL	1/4	100.700
	25.149	31.436	800	0.5	VCOH or VCOL	1/4	100.596
	29.375	15.625	1880	0.5	VCOH or VCOL	1/4	117.500
PAL	22.031	15.625	1410	0.5	VCOH or VCOL	1/4	88.125
	14.688	15.625	940	0.5	VCOH or VCOL	1/8	117.500
NTSC	24.545	15.734	1560	0.5	VCOH or VCOL	1/4	98.180
	18.409	15.734	1170	0.5	VCOH	1/8	147.270
	12.273	15.734	780	0.5	VCOH or VCOL	1/8	98.180


VCO select : VCOH (fvco = 85 MHz to 162 MHz) VCOL (fvco = 75 MHz to 140 MHz)

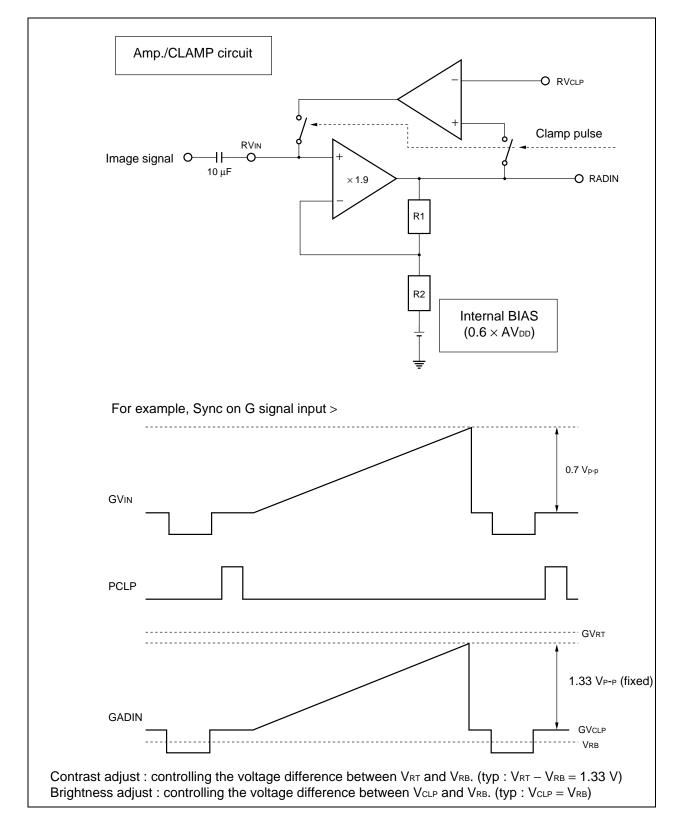
 $f_{\text{CLK}} = f_{\text{HSYNC}} \times Counter$

 $f_{VCO} = f_{HSYNC} \times Counter/Divider$

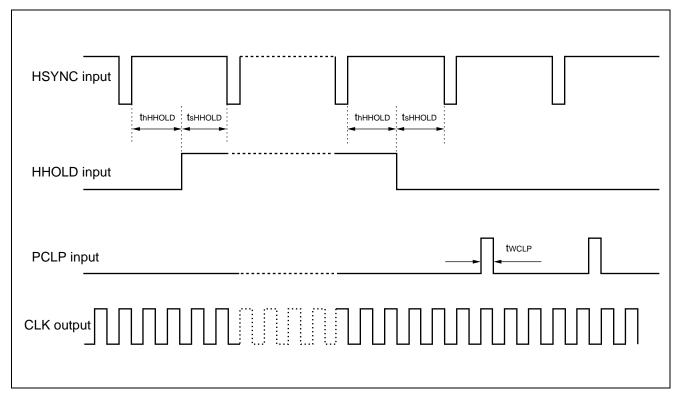
■ TIMING DIAGRAM


• Straight Output Mode (Timing Diagram 1)

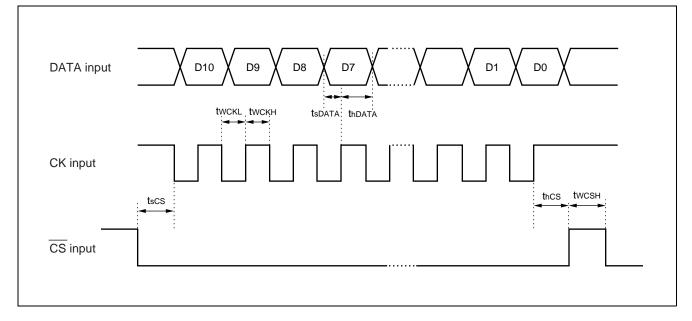
• ADIN input : Sampling at CLK rising (at CLKB falling)

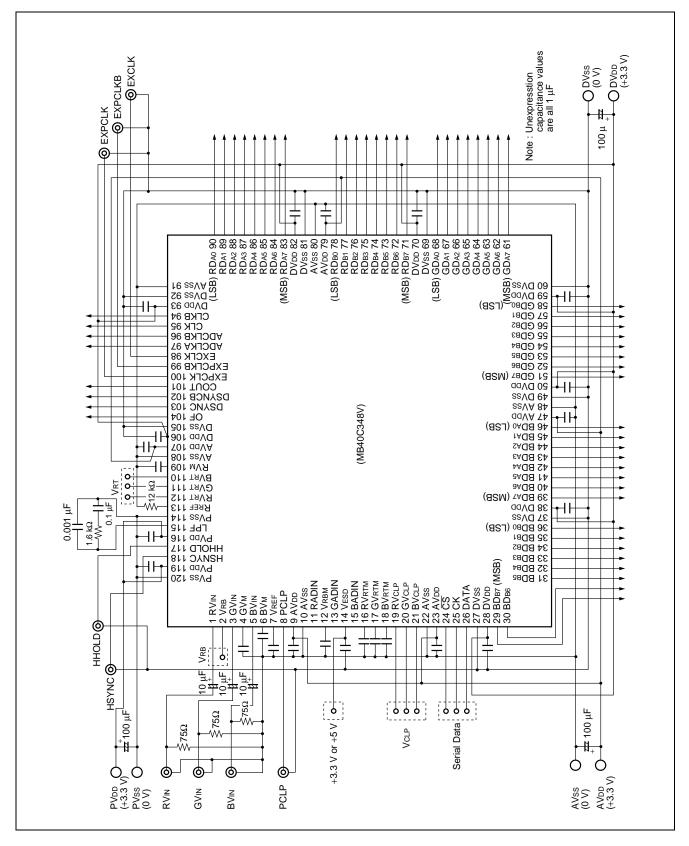

• DA0 to DA7 : Output (after 5CLK + tpd(CLK-DATA1) from sampling) at CLK rising (at CLKB falling)

• Demultiplex Output (In-phase) Mode (Timing Diagram 2)



- ADIN input : Sampling at CLK rising (at CLKB falling)
- D_{A0} to D_{A7} : Output (after 6CLK + $t_{pd(CLK-DATA2)}$ from sampling) at CLK rising (at CLKB falling)
- DB0 to DB7 : Output (after 5CLK + $t_{pd(CLK-DATA2)}$ from sampling) at CLK rising (at CLKB falling)

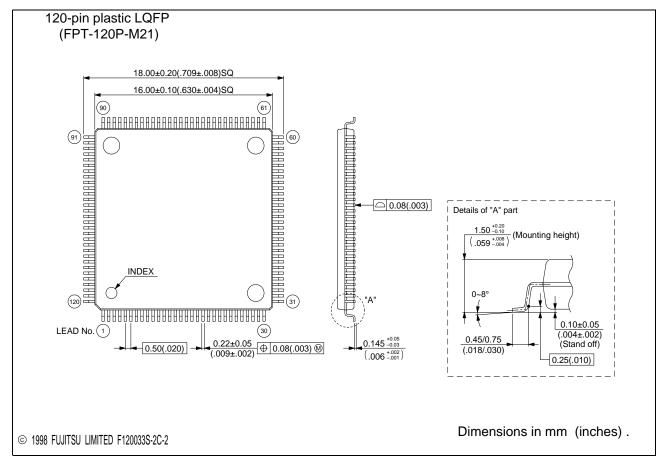

■ CLAMP and Amp. OPERATION


■ CLAMP SIGNAL and HOLD SIGNAL

SERIAL DATA TRASFER TIMING

■ TYPICAL APPLICATION

■ USAGE PRECAUTIONS


Be sure to ground the pins of AV_{DD}, DV_{DD}, PV_{DD}, V_{ESD}, RV_{RTM}, GV_{RTM}, BV_{RTM}, V_{RBM}, RV_M, GV_M, BV_M, and V_{REF} via high-frequency capacitor.

Place the high-frequency capacitor as close as possible to the pin.

ORDERING INFORMATION

Part number	Package	Remark
MB40C348VPFV	120-pin plastic LQFP (FPT-120P-M21)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3386

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0009 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.