ASSP For Power Supply Applications (Secondary battery)

DC/DC Converter IC for Charging

MB3878

DESCRIPTION

The MB3878 is a DC/DC converter IC suitable for down-conversion, using pulse-width (PWM) charging and enabling output voltage to be set to any desired level from one cell to four cells.

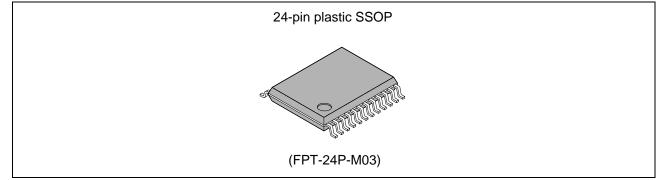
These ICs can dynamically control the secondary battery's charge current by detecting a voltage drop in an AC adaptor in order to keep its power constant (dynamically-controlled charging).

The charging method enables quick charging, for example, with the AC adaptor during operation of a notebook PC.

The MB3878 provides a broad power supply voltage range and low standby current as well as high efficiency, making it ideal for use as a built-in charging device in products such as notebook PC.

:94 %

: 7 V to 25 V

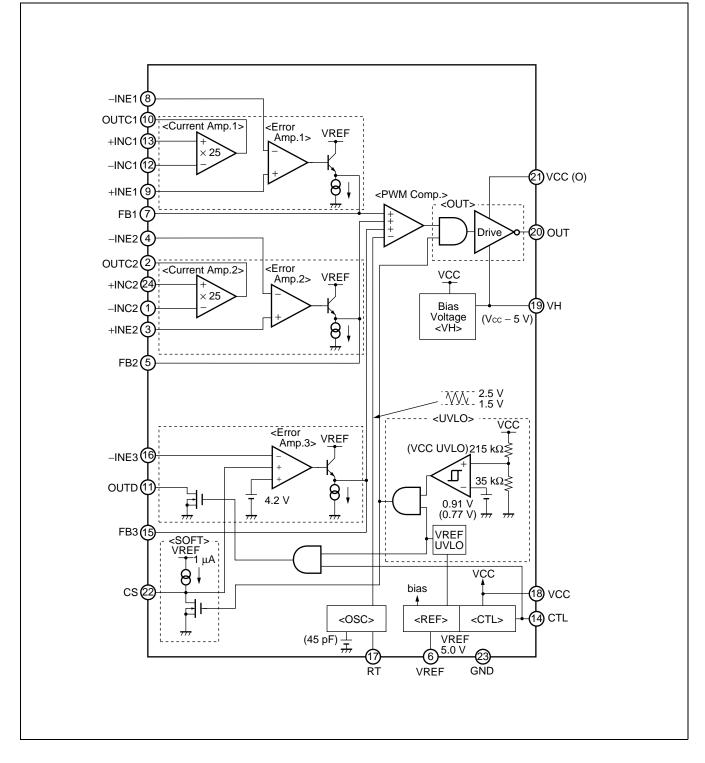

 $: 4.2V \pm 0.8\%$ (per cell)

: 100kHz to 500kHz

FEATURES

- Detecting a voltage drop in the AC adaptor and dynamically controlling the charge current (Dynamically-controlled charging)
- Output voltage setting using external resistor : 1 cell to 4 cells
- High efficiency
- Wide range of operating supply voltages
- Output voltage setting accuracy
- · Built-in frequency setting capacitor enables frequency setting using external resistor only
- Oscillator frequency range
- Built-in current detector amplifier with wide in-phase input voltage range : 0 V to Vcc
- In standby mode, leave output voltage setting resistor open to prevent inefficient current loss
- Built-in standby current function : 0 µA (standard)
- Built-in soft start function
- Built-in totem-pole output stage supporting P-channel MOS FETs devices

PACKAGE


■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Symbol	I/O	Descriptions	
1	-INC2	Ι	Current detection amplifier (Current Amp. 2) input pin.	
2	OUTC2	0	Current detection amplifier (Current Amp. 2) output pin.	
3	+INE2	Ι	Error amplifier (Error Amp. 2) non-inverted input pin.	
4	–INE2	Ι	Error amplifier (Error Amp. 2) inverted input pin.	
5	FB2	0	Error amplifier (Error Amp. 2) output pin.	
6	VREF	0	Reference voltage output pin.	
7	FB1	0	Error amplifier (Error Amp. 1) output pin.	
8	–INE1	Ι	Error amplifier (Error Amp. 1) inverted input pin	
9	+INE1	Ι	Error amplifier (Error Amp. 3) non-inverted input pin.	
10	OUTC1	0	Current detection amplifier (Current Amp. 1) output pin.	
11	OUTD	0	With IC in standby mode, this pin is left open to prevent loss of current through output voltage setting resistance. Set CTL pin to "H" level and OUTD pin to "L" level.	
12	-INC1	I	Current detector amplifier (Current Amp. 1) input pin.	
13	+INC1	Ι	Current detector amplifier (Current Amp. 1) input pin.	
14	CTL	I	Power supply control pin. Setting the CTL pin low places the IC in the standby mode.	
15	FB3	0	Error amplifier (Error Amp. 3) output pin.	
16	–INE3	Ι	Error amplifier (Error Amp. 3) inverted input pin.	
17	RT	_	Triangular-wave oscillation frequency setting resistor connection pin.	
18	VCC		Power supply pin for reference power supply and control circuit.	
19	VH	0	Power supply pin for FET drive circuit (VH = Vcc -5 V).	
20	OUT	0	High-side FET gate drive pin.	
21	VCC (O)		Output circuit power supply pin.	
22	CS	_	Soft-start capacitor connection pin.	
23	GND		Ground pin.	
24	+INC2	Ι	Current detection amplifier (Current Amp. 2) input pin.	

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RAGINGS

Parameter	Symbol	Conditions	Rat	Unit	
Farameter	Symbol		Min.	Max.	Onit
Power supply voltage	Vcc	VCC, VCC (O)		28	V
Output current	Іоит			60	mA
Peak output current	Ιουτ	Duty \leq 5 % (t = 1 / fosc × Duty)		500	mA
Power dissipation	PD	Ta ≤ +25 °C		740*	mW
Storage temperature	Tstg		-55	+125	°C

* : The package is mounted on the dual-sided epoxy board (10 cm \times 10 cm).

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Cumhal	Conditions	Value		Unit	
Parameter	Symbol			Тур.	Max.	Unit
Power supply voltage	Vcc	VCC, VCC (O)	7	_	25	V
Reference voltage output current	IREF		-1		0	mA
VH pin output current	І∨н		0		30	mA
Input voltago	VINE	-INE1 to -INE3, +INE1, +INE2	0		Vcc-1.8	V
Input voltage	VINC	+INC1, +INC2, -INC1, -INC2	0		Vcc	V
OUTD pin output voltage	Voutd		0		17	V
OUTD pin output current	Ιουτρ	—	0		2	mA
CTL pin input voltage	Vctl	—	0		25	V
output current	Ιουτ	—	-45		45	mA
Peak output current	Ιουτ	Duty \leq 5 % (t = 1 / fosc × Duty)	-450		450	mA
Oscillator frequency	fosc		100	290	500	kHz
Timing resistor	R⊤	—	33	47	130	kΩ
Soft-start capacitor	Cs			2200	100000	pF
VH pin capacitor	Сун	—		0.1	1.0	μF
Reference voltage output capacitor	CREF			0.1	1.0	μF
Operating ambient temperature	Та	—	-30	+25	+85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

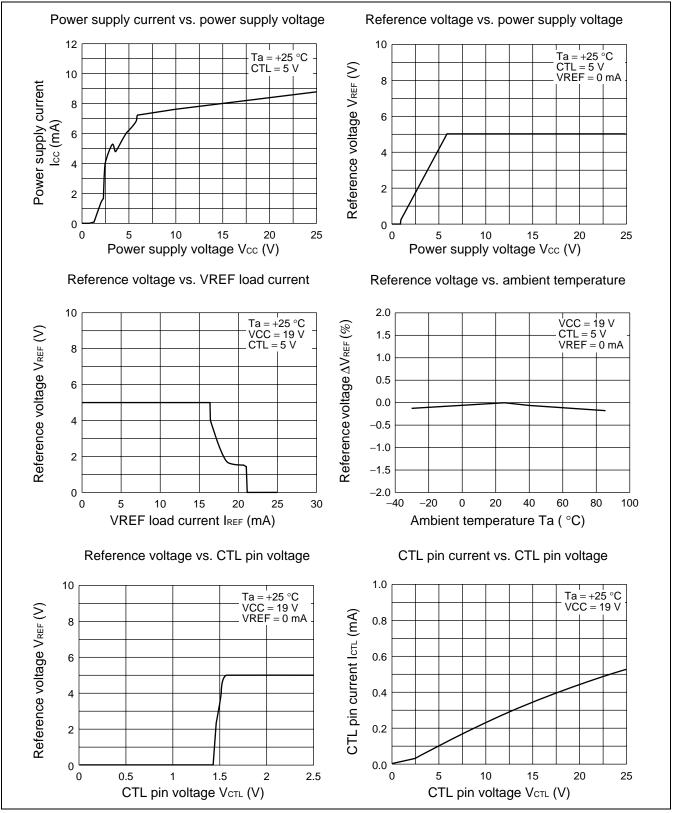
			(Ta = +25 °C, VCC = 19 V	/, VCC (C	0) = 19 V	, VREF =	0 mA)
Bara	meter	Symbol	Pin	Conditions	Value			Unit
Fala	meter	Symbol	No.	Conditions	Min.	Тур.	Max.	Unit
	Output valtage	M	6	Ta = +25 °C	4.995	5.000	5.045	V
Reference voltage block	Output voltage	Vref	0	Ta = $-30 \degree C$ to $+85 \degree C$	4.945	5.000	5.055	V
	Input stability	Line	6	VCC = 7 V to 25 V		3	10	mV
(Ref)	Load stability	Load	6	VREF = 0 mA to -1 mA		1	10	mV
	Short-circuit output current	los	6	VREF = 1 V	-25	-15	-5	mA
	Threshold voltage	Vtlh	18	VCC = VCC (O) , VCC = _√	6.1	6.4	6.7	V
Under voltage lockout protection	Theshold voltage	VTHL	18	VCC = VCC (O) , VCC = ↓	5.1	5.4	5.7	V
circuit block	Hysteresis width	Vн	18	VCC = VCC (O)	0.7	1.0	1.3	V
(UVLO)	Threshold voltage	Vtlh	6	VREF = _	2.6	2.8	3.0	V
	Threshold voltage	Vthl	6	VREF = Ţ	2.4	2.6	2.8	V
	Hysteresis width	Vн	6	$V_{\text{H}} = V_{\text{TLH}} - V_{\text{THL}}$	0.05	0.20	0.35	V
Soft-start block (SOFT)	Charge current	lcs	22		-1.3	-0.8	-0.5	μΑ
Triangular waveform	Oscillation frequency	fosc	20	RT = 47 kΩ	260	290	320	kHz
oscillator circuit block (OSC)	Frequency temperature stability	∆f/fdt	20	Ta = $-30 \degree$ C to $+85 \degree$ C	_	1*	_	%
	Input offset voltage	Vio	3,4, 8,9	FB1 = FB2 = 2 V		1	5	mV
	Input bias current	lв	3,4, 8,9	—	-100	-30	_	nA
F	Common mode input voltage range	Vсм	3,4, 8,9	—	0		Vcc – 1.8	v
Error amplifier block	Voltage gain	Av	5, 7	DC		100*		dB
(Error Amp.1, Error Amp.2)	Frequency bandwidth	Bw	5, 7	$A_V = 0 \ dB$	_	2.0*		MHz
	Output valtage	Vfbh	5, 7	—	4.7	4.9		V
	Output voltage	Vfbl	5, 7	—	_	20	200	mV
	Output source current	ISOURCE	5, 7	FB1 = FB2 = 2 V	_	-2.0	-0.6	mA
	Output sink current	Isink	5, 7	FB1 = FB2 = 2 V	150	300		μΑ

* : Standard design value.

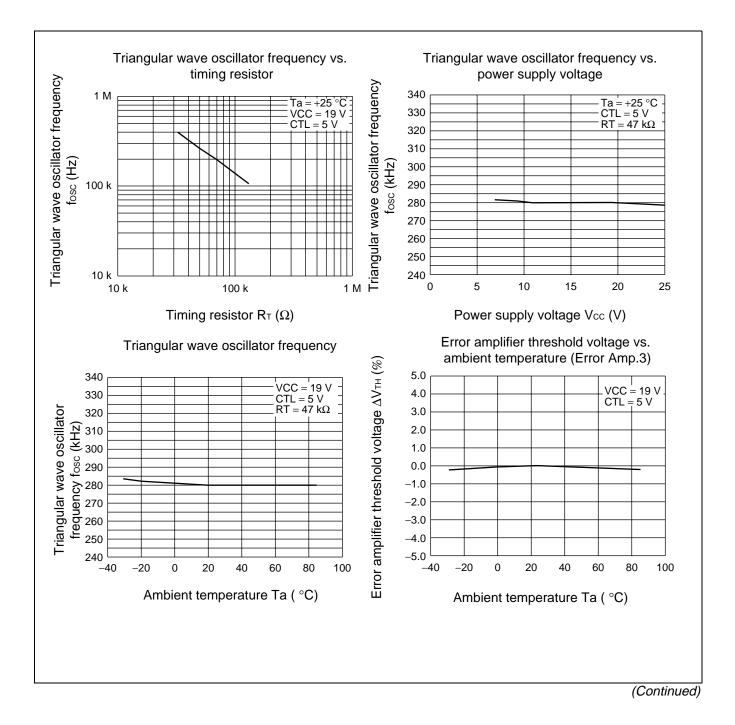
Parameter			Pin	(1a - +25 °C, VCC - 19	, (Value	,	
Para	ameter	Symbol	No.	Conditions	Min.	Тур.	Max.	Unit
		Vth1	16	FB3 = 2 V, Ta = +25 °C	4.167	4.200	4.233	V
	Threshold voltage	V _{TH2}	16	FB3 = 2 V, Ta = -30 °C to +85 °C	4.158	4.200	4.242	V
	Input current	INE3	16	-INE3 = 0 V	-100	-30	_	nA
	Voltage gain	Av	15	DC		100*		dB
	Frequency bandwidth	Bw	15	Av = 0 dB		2.0*		MHz
Error amplifier block	Output voltage	Vfbh	15	—	4.7	4.9		V
(Error Amp.3)		Vfbl	15	—		20	200	mV
	Output source current	ISOURCE	15	FB3 = 2 V		-2.0	-0.6	mA
	Output sink current	Isink	15	FB3 = 2 V	150	300		μΑ
	OUTD pin output leak current	ILEAK	11	OUTD = 16.8 V		0	1	μA
	OUTD pin output ON resistor	Ron	11	OUTD = 1 mA		70	100	Ω
	Input current	I+INCH	13, 24	+INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V		10	20	μΑ
		I-inch	1, 12	+INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V		0.1	0.2	μΑ
		I+INCL	13, 24	+INC1 = +INC2 = 0.1 V, -INC1 = -INC2 = 0 V	-130	-65	_	μA
		I-incl	1, 12	+INC1 = +INC2 = 0.1 V, -INC1 = -INC2 = 0 V	-140	-70	_	μA
	Current detection voltage	Voutc1	2, 10	+INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V	2.25	2.5	2.75	V
Current detection amplifier block		Voutc2	2, 10	+INC1 = +INC2 = 12.63 V, -INC1 = -INC2 = 12.6 V	0.50	0.75	1.00	V
(Current Amp.1, Current Amp.2)		Vоитсз	2, 10	+INC1 = +INC2 = 0.1 V, -INC1 = -INC2 = 0 V	1.25	2.50	3.75	V
		Voutc4	2, 10	+INC1 = +INC2 = 0.03 V, -INC1 = -INC2 = 0 V	0.125	0.750	1.375	V
	Common mode input voltage range	Vсм	1, 12, 13, 24	—	0		Vcc	V
	Voltage gain	Av	2, 10	+INC1 = +INC2 = 12.7 V, -INC1 = -INC2 = 12.6 V	22.5	25	27.5	V/V
	Frequency bandwidth	Bw	2, 10	$A_V = 0 \ dB$		2.0*		MHz

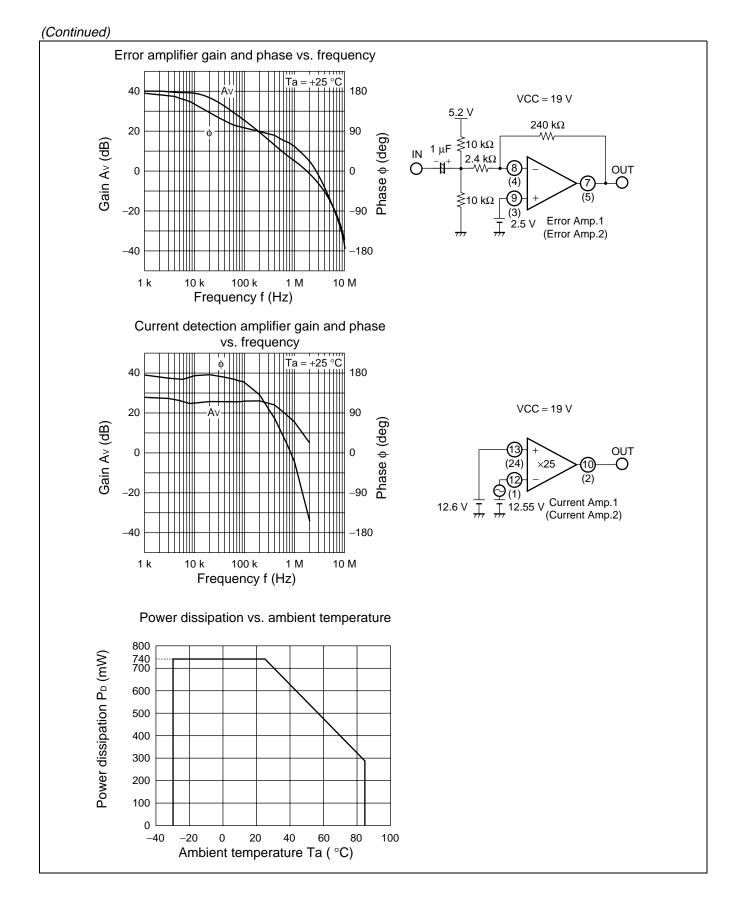
 $(Ta = +25 \circ C, VCC = 19 V, VCC (O) = 19 V, VREF = 0 mA)$

* : Standard design value.


(Continued)

(Continued)


		_	Pin	Ta = +25 °C, VCC = 19 V	•	Value		
Parameter		Symbol	No.	Conditions	Min.	Тур.	Max.	Unit
	Output wells as	Vоитсн	2, 10		4.7	4.9		V
Current detection	Output voltage	VOUTCL	2, 10	—		20	200	mV
amplifier block (Current Amp.1,	Output source current	ISOURCE	2, 10	OUTC1 = OUTC2 = 2 V		-2.0	-0.6	mA
Current Amp.2)	Output sink current	Isink	2, 10	OUTC1 = OUTC2 = 2 V	150	300	_	μA
PWM comparator block	Threshold voltage	Vtl	5, 7, 15	Duty cycle = 0 %	1.4	1.5	_	V
(PWM Comp.)	Theshold voltage	Vтн	5, 7, 15	Duty cycle = 100 %	—	2.5	2.6	V
	Output source current	ISOURCE	20	$\begin{array}{l} OUT = 11 \text{ V, } Duty \leq 5 \% \\ (t = 1 / \text{ fosc} \times \text{Duty}) \end{array}$		-200*		mA
	Output sink current	Isink	$\begin{array}{c} \text{OUT} = 16 \text{ V, Duty} \leq 5 \% \\ \text{(t} = 1 \ / \ \text{fosc} \times \text{Duty)} \end{array}$			200*	_	mA
Output block	Output ON	Rон	20	OUT = -45 mA		8.0	12.0	Ω
(OUT)	resistor	Rol	20	OUT = 45 mA	— 6.5	9.7	Ω	
	Rise time	tr1	20	OUT = 3300 pF (equivalent to Si4435 \times 1)		70*	_	ns
	Fall time	tf1	20	OUT = 3300 pF (equivalent to Si4435 \times 1)		60*	_	ns
	CTL input voltage	Von	14	Active mode	2		25	V
Control block		Voff	14	Standby mode	0		0.8	V
(CTL)	Input current	Істін	14	CTL = 5 V		100	200	μA
	input current	ICTLL	14	CTL = 0 V		0	1	μΑ
Bias voltage block (VH)			Vcc – 5.5	Vcc – 5.0	Vcc – 4.5	v		
General	Standby current	Iccs	18, 19	VCC = VCC (O), CTL = 0 V		0	10	μA
	Power supply current	Icc	18, 19	VCC = VCC (O) , CTL = 5 V		8.0	12.0	mA


* : Standard design value

■ TYPICAL CHARACTERISTICS

⁽Continued)

FUNCTIONAL DESCRIPTION

1. DC/DC Converter Unit

(1) Reference voltage block (Ref)

The reference voltage generator uses the voltage supplied from the VCC terminal (pin 18) to generate a temperature-compensated, stable voltage (5.0V typ.) used as the reference supply voltage for the IC's internal circuitry.

This pin can also be used to obtain a load current to a maximum of 1mA from the reference voltage VREF terminal (pin 6).

(2) Triangular wave oscillator block (OSC)

The triangular wave oscillator builds the capacitor for frequency setting into, and generates the triangular wave oscillator waveform by connecting the frequency setting resistor with the RT terminal (pin 17).

The triangular wave is input to the PWM comparator on the IC.

(3) Error amplifier block (Error Amp.1)

This amplifier detects the output signal from the current detector ampifier (Current amp .1), compares this to the +INE1 terminal (pin 9), and outputs a PWM control signal to be used in controlling the charging current.

In addition, an arbitrary loop gain can be set up by connecting a feedback resistor and capacitor between the FB1 terminal (pin 7) and -INE terminal (pin 8), providing stable phase compensation to the system.

(4) Error amplifier block (Error Amp.2)

This amplifier (Error Amp.2) detects voltage pendency of the AC adaptor and outputs a PWM control signal.

In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB2 terminal (pin 5) to the -INE2 terminal (pin 4) of the error amplifier, enabling stable phase compensation to the system.

(5) Error amplifier block (Error Amp.3)

This error amplifier (Error Amp. 3) detects the output voltage from the DC/DC converter and outputs the PWM control signal. External output voltage setting resistors can be connected to the error amplifier inverse input pin to set the desired level of output voltage from 1 cell to 4 cells.

In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB3 terminal (pin 15) to the –INE3 terminal (pin 16) of the error amplifier, enabling stable phase compensation to the system.

Connecting a soft-start capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an error amplifier for soft start detection makes the soft start time constant, independent of the output load.

(6) Current detector amplifier block (Current Amp.1)

The current detection amplifier (Current Amp.1) detects a voltage drop which occurs between both ends of the output sense resistor (R_s) due to the flow of the charge current, using the +INC1 terminal (pin 13) and -INC1 terminal (pin 12). Then it outputs the signal amplified by 25 times to the error amplifier (Error Amp.1) at the next stage.

(7) PWM comparator block (PWM Comp.)

The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error amplifiers (Error Amp. 1 to Error Amp. 3) depending on their output voltage.

The PWM comparator circuit compares the triangular wave generated by the triangular wave oscillator to the error amplifier output voltage and turns on the external output transistor during the interval in which the triangular wave voltage is lower than the error amplifier output voltage.

(8) Output block (OUT)

The output circuit uses a totem-pole configuration capable of driving an external P-channel MOS FET.

The output "L" level sets the output amplitude to 5 V (typ.) using the voltage generated by the bias voltage block (VH).

This results in increasing conversion efficiency and suppressing the withstand voltage of the connected external transistor in a wide range of input voltages.

(9) Control block (CTL)

Setting the CTL terminal (pin 14) low places the IC in the standby mode. (The supply current is $10 \,\mu$ A at maximum in the standby mode.)

(10) Bias voltage block (VH)

The bias voltage circuit outputs Vcc - 5 V (typ.) as the minimum potential of the output circuit. In the standby mode, this circuit outputs the potential equal to Vcc.

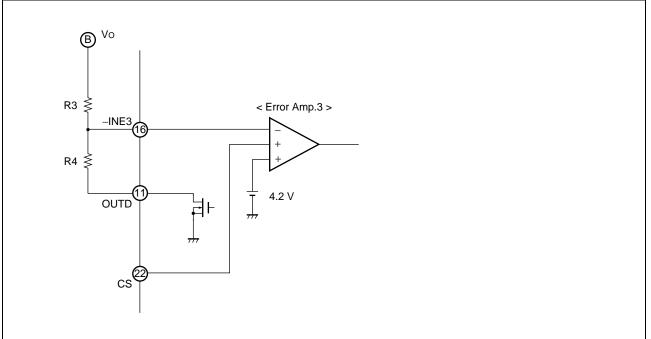
2. Protection Functions

Under voltage lockout protection circuit (UVLO)

The transient state or a momentary decrease in supply voltage or internal reference voltage (VREF), which occurs when the power supply is turned on, may cause malfunctions in the control IC, resulting in breakdown or degradation of the system. To prevent such malfunction, the under voltage lockout protection circuit detects a supply voltage or internal reference voltage drop and fixes the OUT terminal (pin 20) to the "H" level. The system restores voltage supply when the supply voltage or internal reference voltage the threshold voltage of the under voltage lockout protection circuit.

3. Soft Start Function

Soft start block (SOFT)


Connecting a capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an error amplifier for soft start detection makes the soft start time constant, independent of the output load of the DC/DC converter.

SETTING THE CHARGING VOLTAGE

The charging voltage (DC/DC output voltage) can be set by connecting external voltage setting resistors (R3, R4) to the -INE3 terminal. Be sure to select a resistor value that allows you to ignore the on resistor (70 Ω , 1mA) of the internal FET connected to the OUTD terminal (pin 11).

Battery charging voltage: Vo

 $V_0(V) = (R3 + R4) / R4 \times 4.2 (V)$

■ METHOD OF SETTING THE CHARGING CURRENT

The charge current (output control current) value can be set with the voltage at the +INE1 terminal (pin 9).

If a current exceeding the set value attempts to flow, the charge voltage drops according to the set current value.

Battery charge current setting voltage : +INE1

+INE1 (V) = $25 \times I1$ (A) $\times Rs$ (Ω)

METHOD OF SETTING THE SOFT START TIME

Upon activation, the IC starts charging the capacitor (Cs) connected to the CS terminal (pin 22).

The error amplifier causes soft start operation to be performed with the output voltage in proportion to the CS terminal voltage regardless of the load current of the DC/DC converter.

Soft start time: ts (Time taken for the output voltage to reach 100 %)

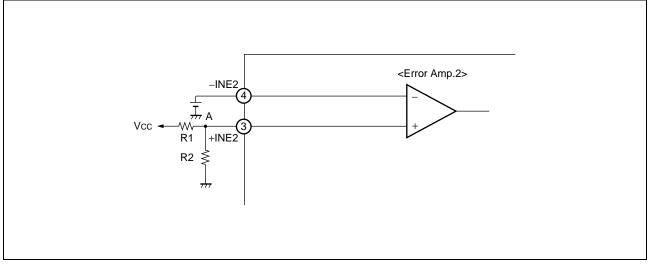
ts (s) \Rightarrow 4.2 × Cs (μ F)

METHOD OF SETTING THE TRIANGULAR WAVE OSCILLATOR FREQUENCY

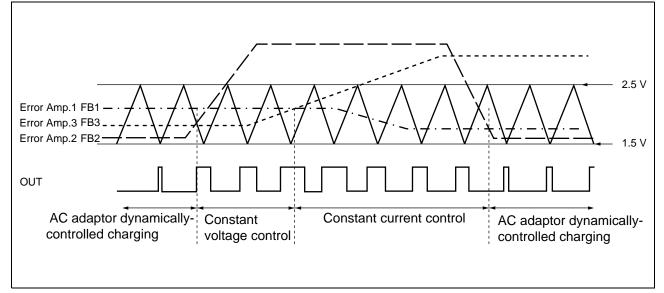
The trianguar wave oscillator frequency can be set by the timing resistor (R_T) connected the RT terminal (pin 17). Triangular wave oscillator frequency: fosc

mangular wave oscillator frequency.

fosc (kHz) \Rightarrow 13630 / RT (k Ω)

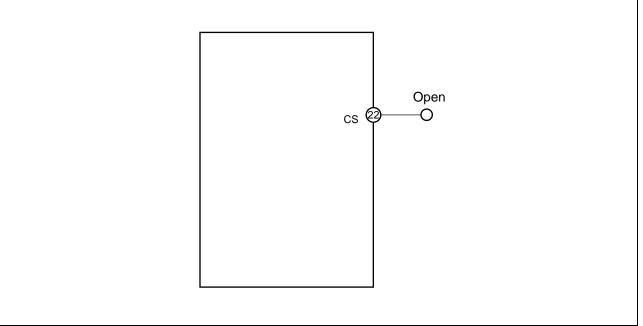

AC ADAPTOR VOLTAGE DETECTION

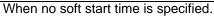
With an external resistor connected to the +INE2 terminal(pin 3), the IC enters the dynamically-controlled charging mode to reduce the charge current to keep AC adaptor power constant when the partial potential point A of the AC adaptor voltage (Vcc) becomes lower than the voltage at the -INE2 terminal.


AC adaptor detected voltage setting: Vth

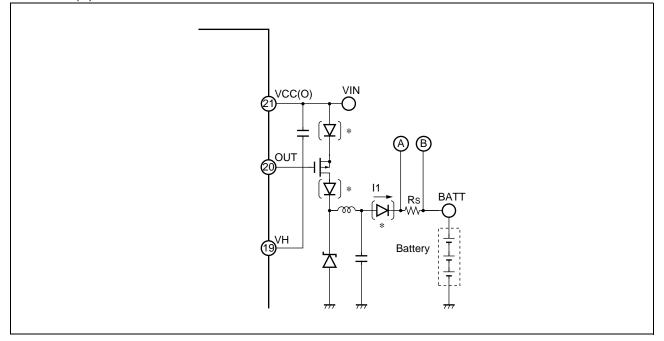
Vth (V) = (R1 + R2) / R2 \times -INE2

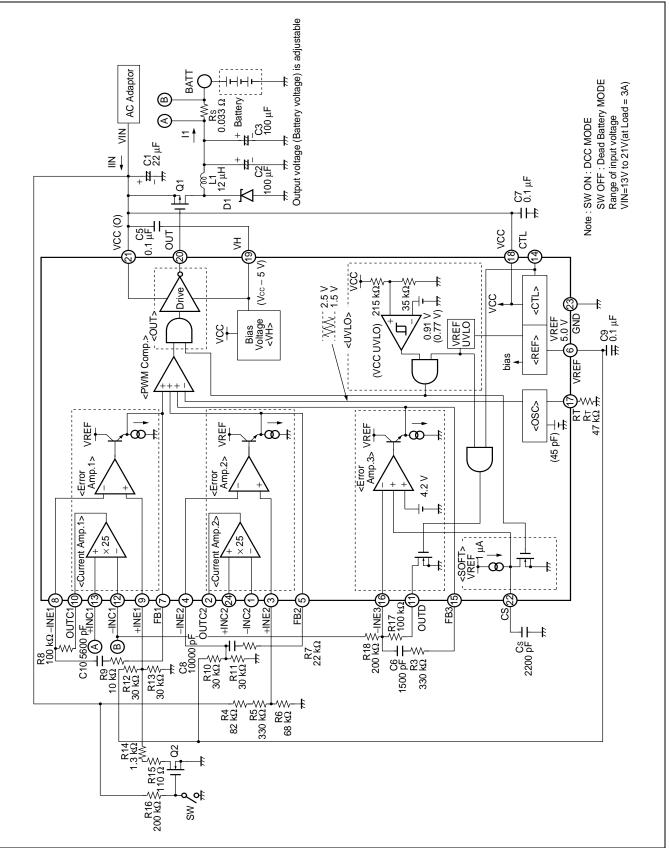
-INE2 setting voltage range : 1.176 V to 4.2 V (equivalent to 7 V to 25 V for Vcc)




OPERATION TIMING DIAGRAM

PROCESSING WITHOUT USE OF THE CS PIN

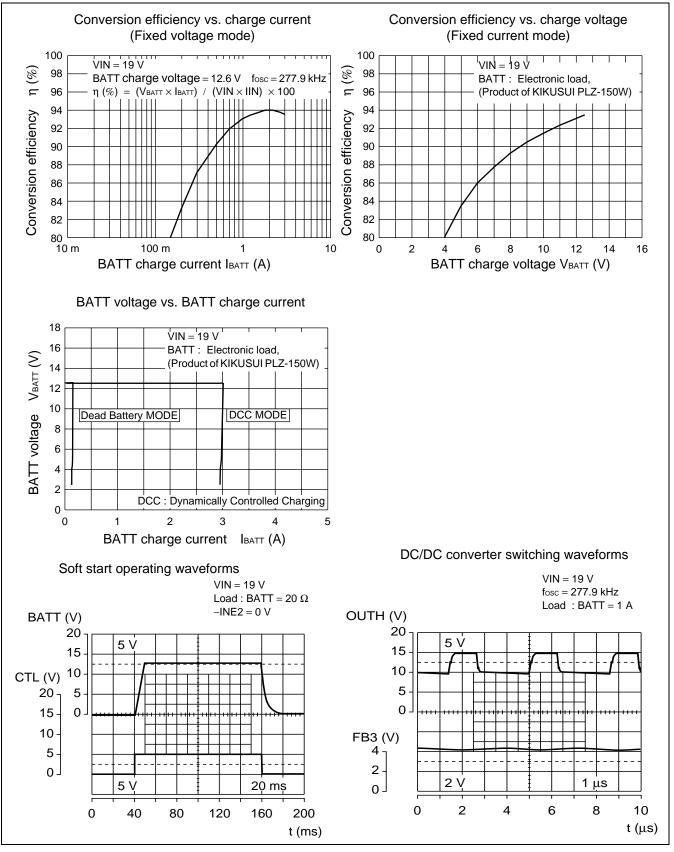

If the soft start function is not used, the CS terminal (pin 22) should be left open.



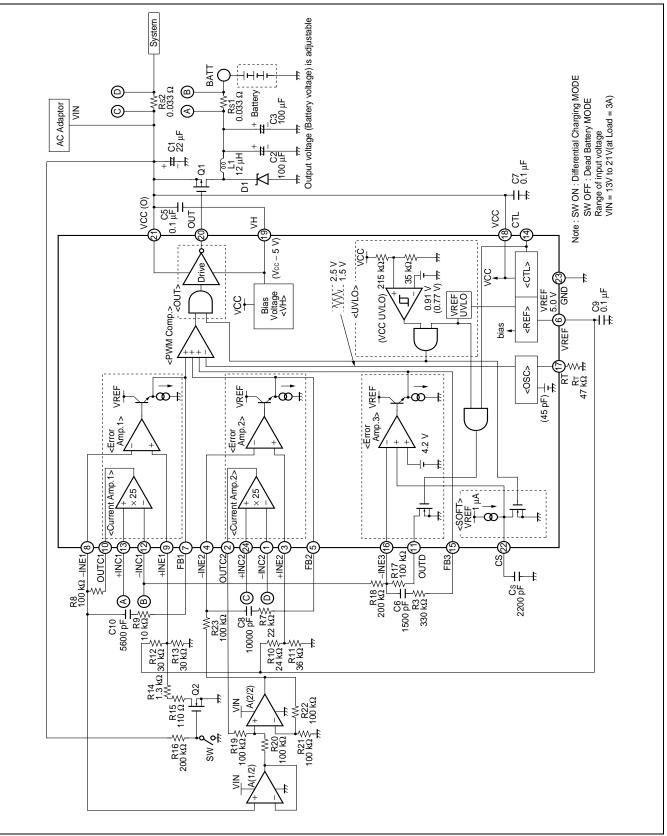
■ NOTE ON AN EXTERNAL REVERSE-CURRENT PREVENTIVE DIODE

- Insert a reverse-current preventive diode at one of the three locations marked * to prevent reverse current from the battery.
- When selecting the reverse current prevention diode, be sure to consider the reverse voltage (V_R) and reverse current (I_R) of the diode.

APPLICATION EXAMPLE 1



■ PARTS LIST (for APPLICATION EXAMPLE 1)


COMPONENT	ITEM	SPECIFICATION		VENDOR	PARTS No.
Q1 Q2	FET FET	Si4435DY 2N7002		VISHAY SILICONIX VISHAY SILICONIX	Si4435DY 2N7002
D1	Diode	MBRS	130LT3	MOTOROLA	MBRS130LT3
L1	Coil	12 μH	$4.0 \text{ A}, 38 \text{ m}\Omega$	SUMIDA	CDRH124-12 μH
C1 C2, C3 Cs C5 C6 C7 C8 C9 C10	OS Condenser OS Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser Ceramics Condenser	22 μF 100 μF 2200 pF 0.1 μF 1500 pF 0.1 μF 10000 pF 0.1 μF 5600 pF	25 V (10 %) 25 V (10 %) 10 % 16 V 10 % 25 V 10 % 16 V 10 %		
Rs R⊤ R3 R4 R5 R6 R7 R8 R9 R10 to R13 R14 R15 R16 R17 R18	Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor Resistor	0.033 Ω 47 kΩ 330 kΩ 82 kΩ 330 kΩ 68 kΩ 22 kΩ 100 kΩ 10 kΩ 30 kΩ 1.3 kΩ 110 Ω 200 kΩ 200 kΩ	$\begin{array}{c} 1.0 \ \% \\ 1.0 \ \% \\ 1.0 \ \% \\ 0.5 \ \% \\ 0.5 \ \% \\ 0.5 \ \% \\ 1.0 \ \% \\ 1.0 \ \% \\ 1.0 \ \% \\ 0.5 \ \% \\$		

Note VISHAY SILICONIX : VISHAY Intertechnology, Inc. MOTOROLA : Motorola Japan Ltd. SUMIDA : SUMIDA ELECTRIC CO., Ltd.

REFERENCE DATA

■ APPLICATION EXAMPLE 2

■ PARTS LIST (for APPLICATION EXAMPLE 2)

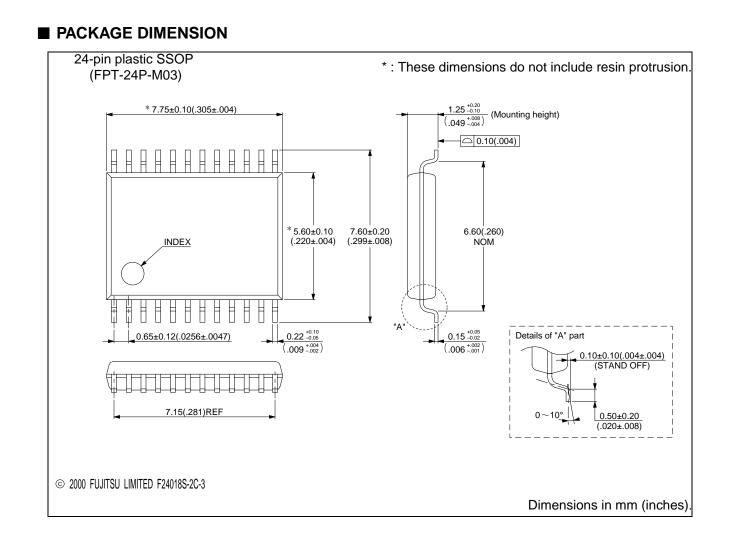
COMPONENT	ITEM	SPECIF	ICATION	VENDOR	PARTS No.
Q1	FET	Si44	35DY	VISHAY SILICONIX	Si4435DY
Q2	FET	2N7002		VISHAY SILICONIX	2N7002
D1	Diode	MBRS130LT3		MOTOROLA	MBRS130LT3
A	Dual Op-amp	MB4	7358	Our Company	MB47358
L1	Coil	12 μH	4.0 A, 38 mΩ	SUMIDA	CDRH124-12 μH
C1	OS Condenser	22 μF	25 V (10 %)		
C2, C3	OS Condenser	100 μF	25 V (10 %)		
Cs	Ceramics Condenser	2200 pF	10 %		
C5	Ceramics Condenser	0.1 μF	16 V		
C6	Ceramics Condenser	1500 pF	10 %		
C7	Ceramics Condenser	0.1 μF	25 V		
C8	Ceramics Condenser	10000 pF	10 %		
C9	Ceramics Condenser	0.1 μF	16 V		
C10	Ceramics Condenser	5600 pF	10 %		
Rs1, Rs2	Resistor	0.033 Ω	1.0 %		
R⊤	Resistor	47 kΩ	1.0 %		
R3	Resistor	330 kΩ	1.0 %		
R7	Resistor	22 kΩ	1.0 %		
R8	Resistor	100 kΩ	1.0 %		
R9	Resistor	10 kΩ	1.0 %		
R10	Resistor	36 kΩ	0.5 %		
R11	Resistor	27 kΩ	0.5 %		
R12, R13	Resistor	30 kΩ	0.5 %		_
R14	Resistor	1.3 kΩ	0.5 %		
R15	Resistor	110 Ω	0.5 %		
R16	Resistor	200 kΩ	5 %		
R17	Resistor	100 kΩ	1.0 %		
R18	Resistor	200 kΩ	0.5 %		
R19, R20	Resistor	100 kΩ	1.0 %		
R21, R22	Resistor	100 kΩ	0.5 %		
R23	Resistor	100 kΩ	1.0 %		

Note VISHAY SILICONIX : VISHAY Intertechnology, Inc. MOTOROLA : Motorola Japan Ltd. SUMIDA : SUMIDA ELECTRIC CO., Ltd.

■ USAGE PRECAUTIONS

• Printed circuit board ground lines should be set up with consideration for common impedance.

• Take appropriate static electricity measures.


- Containers for semiconductor materials should have anti-static protection or be made of conductive material.
- After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
- Work platforms, tools, and instruments should be properly grounded.
- Working personnel should be grounded with resistance of 250 k Ω to 1 M Ω between body and ground.

• Do not apply negative voltages.

The use of negative voltages below -0.3 V may create parasitic transistors on LSI lines, which can cause abnormal operation

ORDERING INFORMATION

Part number	Package	Remarks
MB3878PFV	24-pin plastic SSOP (FPT-24P-M03)	

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan Tel: +81-44-754-3763 Fax: +81-44-754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A. Tel: +1-408-922-9000 Fax: +1-408-922-9179

Customer Response Center *Mon. - Fri.: 7 am - 5 pm (PST)* Tel: +1-800-866-8608 Fax: +1-408-922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10, D-63303 Dreieich-Buchschlag, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122

http://www.fujitsu-fme.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. #05-08, 151 Lorong Chuan, New Tech Park, Singapore 556741 Tel: +65-281-0770 Fax: +65-281-0220

http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111

F0008 © FUJITSU LIMITED Printed in Japan All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.