Jun. 2001 Edition 0.2

ASSP

Dual Serial Input
 PLL Frequency Synthesizer

MB15F76UL

■ DESCRIPTION

The Fujitsu MB15F76UL is a serial input Phase Locked Loop (PLL) frequency synthesizer with a 6000 MHz and a 1500 MHz prescalers. Both IF and RF PLL section have a $1 / 4$ divider. And a $16 / 17$ or a $32 / 33$ for the 6000 MHz prescaler, and a $4 / 5$ or a $8 / 9$ for the 1500 MHz prescaler can be selected for the prescaler that enables pulse swallow operation.
The latest BiCMOS process is used, as a result, a supply current is typically 9.0 mA typ. at 3.0 V . The supply voltage range is from 2.7 V to 3.6 V . A refined charge pump supplies well-balanced output current with 1.5 mA and 6 mA selectable by serial data. Fast locking is acheived for adopting the new circuit.
The new package (BCC20) decreases a mount area of MB15F76UL more than 30% comparing with the former BCC16(for dual PLL).
MB15F76UL is ideally suited for wireless communications, such as W-LAN.

- FEATURES

- High frequency operation: RF synthesizer : $6000 \mathrm{MHz} \max$

IF synthesizer: : 1500 MHz max

- Low power supply voltage: $\mathrm{Vcc}=2.7$ to 3.6 V
- Ultra Low power supply current : Icc $=9.0 \mathrm{~mA}$ typ. ($\mathrm{V} \mathrm{cc}=\mathrm{Vp}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{SW}=0 \mathrm{in} \mathrm{RF}$, IF locking state)
- Direct power saving function : Power supply current in power saving mode

Typ. $0.1 \mu \mathrm{~A}\left(\mathrm{Vcc}=\mathrm{Vp}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right)$, Max. $10 \mu \mathrm{~A}(\mathrm{Vcc}=\mathrm{V} \mathrm{n}=\sqrt{0} \mathrm{OV}$

- Dual modulus prescaler : 6000MHz prescaler(16/17 or $32 / 33$, and $1 / 4$ divider

1500 MHz prescaler($4 / 5$ or $8 / 9$, and $1 / 4$ divider)

- Serial input 14-bit programmable reference divider: $\mathrm{R}=3$ to 16,383
- Serial input programmable divider consisting of:
- Binary 5-bit swallow counter: 0 to 31
- Binary 13-bit programmable counter: 3 to 8191
- On-chip phase comparator for fast lock and low
- On-chip phase control for phase comparator
- Operating temperature: $\mathrm{Ta}=-40$ to $85^{\circ} \mathrm{C}$

(LCC-20P-M05)

- PIN ASSIGNMENT

LCC-20P-M05

- PIN DESCRIPTIONS

Pin No.	Pin name	I/O	Descriptions
1	fin $_{\text {IF }}$	I	Prescaler input pin for the IF-PLL section. Connection to an external VCO should be AC coupling.
2	Xfin $_{\text {IF }}$	I	Prescaler complimentary input for the IF-PLL section. This pin should be grounded via a capacitor.
3	GNDIF 2	-	Ground for the IF-PLL section.

BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit	Remark
Power supply voltage	V_{cc}	-0.5 to +4.0	V	
	$\mathrm{~V}_{\mathrm{p}}$	$\mathrm{V}_{c \mathrm{c}}$ to +4.0	V	
Input voltage	V_{1}	-0.5 to $\mathrm{V}_{\mathrm{cc}}+0.5$	V	
Output voltage	V_{o}	GND to V_{cc}	V	LD/fout
	V_{Do}	GND to Vp_{p}	V	Do
Storage temperature	$\mathrm{T}_{\mathrm{stg}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remark
		Min.	Typ.	Max.		
Power supply voltage	V_{cc}	2.7	3.0	3.6	V	$\mathrm{~V}_{\mathrm{CCRF}}=\mathrm{V}_{\mathrm{CCII}}$
	V_{p}	V_{cc}	3.0	3.6	V	
Input voltage	V_{l}	GND	-	V_{cc}	V	
Operating temperature	Ta	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Handling Precautions

(1) Vccrf, Vprf,Vccif and Vpif must supply equal voltage. Even if either RF-PLL or IF-PLL is not used, power must be supplied to both Vccrf,VprF,Vccif and Vpif to keep them equal. It is recommended that the non-use PLL is controlled by power saving function.
(2) To protect against damage by electrostatic discharge, note the following handling precautions:
-Store and transport devices in conductive containers.
-Use properly grounded workstations, tools, and equipment.
-Turn off power before inserting or removing this device into or from a socket.
-Protect leads with conductive sheet, when transporting a board mounted device.

- ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Value			Unit	
		Min.		Typ.	Max.			
Power supply current ${ }^{* 1}$			Icalf	$\begin{aligned} & \mathrm{fin}_{1 \mathrm{~F}}=570 \mathrm{MHz} \\ & \mathrm{VCC}_{\mathrm{C}}^{\mathrm{F}}=\mathrm{V}=\mathrm{V}=3.0 \mathrm{~V} \end{aligned}$	-	2.0	-	mA
		Iccrf	$\begin{aligned} & \mathrm{fin}_{\mathrm{RF}}=4750 \mathrm{MHz} \\ & \mathrm{VCC}_{R F}=\mathrm{Vp}_{\mathrm{RF}}=3.0 \mathrm{~V} \end{aligned}$	-	7.0	-	mA	
Power saving current ${ }^{\text {9 }}$		Ipsif	$P S_{\text {IF }}=P S_{\text {RFF }}=$ "L"	-	0.1^{2}	10	$\mu \mathrm{A}$	
		IPsfF	PSIF=PS ${ }_{\text {RF }}=$ "L"	-	0.1^{2}	10	$\mu \mathrm{A}$	
Operating frequency	fint F^{-3}	$\mathrm{fin}_{1 /}$	IF PLL	100	-	1500	MHz	
	$\mathrm{fin}_{\text {RFF }}{ }^{\text {3 }}$	$\mathrm{fin}_{\mathrm{PF}}$	RF PLL	2000	-	6000	MHz	
	OSCin	fosc	-	3	-	40	MHz	
Input sensitivity	finlif	PfiniF	IF PLL, 50Ω system	-15	-	+2	dBm	
	$\mathrm{fin}_{\text {PF }}$	PfinfF	RF PLL, 50Ω system	-10	-	+2	dBm	
	OSC ${ }_{\text {n }}$	Vosc	-	0.5	-	Voc	Vp-p	
"H" level Input voltage	Data, Clock, LE	V_{H}	Schmitt trigger input	$\begin{gathered} \hline \operatorname{Vcc} \times \\ 0.7+0.4 \end{gathered}$	-	-	V	
"L" level Input voltage		VII	Schmitt trigger input	-	-	$\begin{gathered} \mathrm{Vcc} \times \\ 0.3-0.4 \end{gathered}$		
"H" level Input voltage	PS	V_{H}	-	$\begin{gathered} \hline \mathrm{Vccx} \\ 0.7 \end{gathered}$	-	-	V	
"L" level Input voltage		VIL	-	-	-	$\begin{gathered} \hline \operatorname{Vcc} x \\ 0.3 \end{gathered}$		
"H" level Input current	Data, Clock, LE, PS	$11 H^{4}$	-	-1.0	-	+1.0	$\mu \mathrm{A}$	
"L" level Input current		11.4	-	-1.0	-	+1.0		
"H" level Input current	OSCin	IH	-	0	-	+100	$\mu \mathrm{A}$	
"L" level Input current		$1 L^{4}$	-	-100	-	0		
"H" level output voltage	LD/fout	Vон	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=3.0 \mathrm{~V}$, $\mathrm{I}_{\text {о }}=-1 \mathrm{~mA}$	$\begin{gathered} \hline \text { Vcc- } \\ 0.4 \end{gathered}$	-	-	V	
"L" level output voltage		Voı	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=3.0 \mathrm{~V}$, loc $=1 \mathrm{~mA}$	-	-	0.4		
"H" level output voltage	$\begin{aligned} & \text { Doif }_{1 F} \\ & \text { Dorf }^{2} \end{aligned}$	Vоон	$\mathrm{V}_{\text {c }}=\mathrm{V}_{\mathrm{p}}=3.0 \mathrm{~V}$, ІІон $=-0.5 \mathrm{~mA}$	$\begin{gathered} \mathrm{Vp}- \\ 0.4 \end{gathered}$	-	-	V	
"L" level output voltage		Voot	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=3.0 \mathrm{~V}$, lool $=0.5 \mathrm{~mA}$	-	-	0.4		
High impedance cutoff current	$\begin{aligned} & \mathrm{Doif}_{1} \\ & \mathrm{DORF}^{2} \end{aligned}$	loff	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}=3.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ofF}}=0.5 \mathrm{~V} \text { to } \mathrm{V}-0.5 \mathrm{~V} \end{aligned}$	-	-	2.5	nA	
"H"level Output current	LD/fout	Іон ${ }^{4}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Vp}=3.0 \mathrm{~V}$	-	-	-1.0	mA	
"L" level Output current		Io	$\mathrm{V}_{\mathrm{cc}}=\mathrm{Vp}=3.0 \mathrm{~V}$	1.0	-	-		

(Continued)
(Continued)
$\mathrm{Ta}=\left(\mathrm{V} \mathrm{cc}=2.7\right.$ to $3.6 \mathrm{~V}, \mathrm{Ta}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Condition		Value			Unit	
		Min.			Typ.	Max.			
"H"level Output current	$\begin{aligned} & \text { Dotx" } \\ & \text { Dorx } \end{aligned}$		IDor ${ }^{\text {+4 }}$	$\mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}}$	CS bit ="1"	-8.2	-6.0	-4.1	mA
		$\begin{aligned} & =3.0 \\ & V_{\text {Dон }}=V_{\mathrm{p}} / 2 \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$		CS bit = "0"	-2.2	-1.5	-0.8		
"L" level Output current		Iool	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{V}_{\mathrm{p}} \\ & =3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{doL}}=\mathrm{V}_{\mathrm{p}} / 2 \\ & \mathrm{Ta}=25^{\circ} \mathrm{C} \end{aligned}$	CS bit = "1"	4.1	6.0	8.2		
				CS bit = "0"	0.8	1.5	2.2		
Charge pump current rate	Idol/looh	İомт ${ }^{\text { }}$	$\mathrm{V}_{\mathrm{DO}}=\mathrm{V}_{\mathrm{p}} / 2$		-	3	-	\%	
	vs V_{Do}	Idovd *6	$0.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DO}} \leq \mathrm{V}_{\mathrm{p}}-0.5 \mathrm{~V}$		-	10	-	\%	
	vs Ta	loota ${ }^{\text {a }}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{DO}}=\mathrm{V} / 2 \end{aligned}$		-	5	-	\%	

*1: Conditions; fosc=10MHz, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{SW}=\mathrm{CL}$ " in locking state.
*2: $V C C_{I F}=V p_{\text {IF }}=V C C_{R F}=V p_{R F}=3.0 \mathrm{~V}$, fosc $=10 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, in power saving mode.
*3: AC coupling. 1000 pF capacitor is connected under the condition of min. operating frequency.
*4: The symbol "-"(minus) means direction of current flow.
*5: $\quad \mathrm{Vcc}=\mathrm{Vp}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \quad\left(\left.| |\right|_{3}\left|-\left|\left.\right|_{4}\right|\right|\right) /\left[\left(\left|I_{3}\right|+\left|\left.\right|_{4}\right|\right) / 2\right] \times 100(\%)$
*6: $\quad \mathrm{Vcc}=\mathrm{Vp}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C} \quad\left[\left(| | I_{2}\left|-\left|\left.\right|_{1}\right|\right|\right) / 2\right] /\left[\left(\left|\left.\right|_{1}\right|+|k|\right) / 2\right] \times 100(\%)$ (Applied to each Iool, looн)

*8: When Charge pump current is measured, set LDS="0", T1="0" and T2="1".
*9: $\mathrm{PS}_{\mathrm{IF}}=\mathrm{PS} \mathrm{SF}_{\mathrm{R}}=\mathrm{GND}$ (VIL=GND and VIH=Vcc for Clock, Data, LE)

FUNCTIONAL DESCRIPTIONS

The divide ratio can be calculated using the following equation:
fvco $=\{(P \times N)+A\} \times 4 \times$ fosc $\div R$
fvco: Output frequency of external voltage controlled oscillator (VCO)
P: \quad Preset divide ratio of dual modulus prescaler (4 or 8 for IF-PLL, 16 or 32 for RF-PLL)
$\mathrm{N}: \quad$ Preset divide ratio of binary 13-bit programmable counter (3 to 8,191)
A: Preset divide ratio of binary 5 -bit swallow counter ($0 \leq \mathrm{A} \leq 31$, condition; $\mathrm{A}<\mathrm{N}$)
fosc: Reference oscillation frequency
R: Preset divide ratio of binary 14-bit programmable reference counter (3 to 16,383)

Serial Data Input

Serial data is entered using three pins, Data pin, Clock pin, and LE pin. Programmable dividers of IF/RF-PLL sections, programmable reference dividers of IF/RF-PLL sections are controlled individually.
Serial data of binary data is entered through Data pin.
On a rising edge of clock, one bit of serial data is transferred into the shift register. On a rising edge of load enable signal , the data stored in the shift register is transferred to one of latch of them depending upon the control bit data setting.

Table1. Control Bit

Control bit		Destination of serial data
CN1	CN2	
0	0	The programmable reference counter for the IF-PLL.
1	0	The programmable reference counter for the RF-PLL.
0	1	The programmable counter and the swallow counter for the IF-PLL
1	1	The programmable counter and the swallow counter for the RF-PLL

Shift Register Configuration

Programmable Reference Counter

CN1, 2 : Control bit
[Table. 1]
R1 to R14 : Divide ratio setting bits for the programmable reference counter (3 to 16,383)
T1, 2 : LD/fout output setting bit
[Table. 2]

CS : Charge pump current select bit
X : Dummy bits(Set "0" or "1")
NOTE: Data input with MSB first.

Programmable Counter

CN1, 2 : Control bit
N1 to N13 : Divide ratio setting bits for the programmable counter (3 to 8,191)
A1 to A5 : Divide ratio setting bits for the swallow counter (0 to 31)
SWIF/RF : Divide ratio setting bit for the prescaler ($4 / 5$ or $8 / 9$ for the SWIF, $16 / 17$ or $32 / 33$ for the SWRF)
FCIF/RF : Phase control bit for the phase detector(IF : FCIF, RF : FCRF)
LDS : LD/fout signal select bit
[Table. 1]
[Table. 4]
[Table. 5]
[Table. 6]
[Table. 7]
[Table. 3]

NOTE: Data input with MSB first.

Table2. Binary 14-bit Programmable Reference Counter Data Setting

Divide ratio $\mathbf{(R)}$	\mathbf{R} $\mathbf{1 4}$	\mathbf{R} $\mathbf{1 3}$	\mathbf{R} $\mathbf{1 2}$	\mathbf{R} $\mathbf{1 1}$	\mathbf{R} $\mathbf{1 0}$	\mathbf{R} $\mathbf{9}$	\mathbf{R} $\mathbf{8}$	\mathbf{R} $\mathbf{7}$	\mathbf{R} $\mathbf{6}$	\mathbf{R} $\mathbf{5}$	\mathbf{R} $\mathbf{4}$	\mathbf{R} $\mathbf{3}$	\mathbf{R} $\mathbf{2}$	\mathbf{R} $\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.
Table. 3 LD/fout output Selectable Bit Setting

LD/fout pin state		LDS	T1	T2
LD output		0	0	0
		0	1	0
		0	1	1
fout output	frif	1	0	0
	frrf	1	1	0
	fpif	1	0	1
	fprf	1	1	1

Table. 4 Binary 13-bit Programmable Counter Data Setting

Divide ratio (N)	\mathbf{N} $\mathbf{1 3}$	\mathbf{N} $\mathbf{1 2}$	\mathbf{N} $\mathbf{1 1}$	\mathbf{N} $\mathbf{1 0}$	\mathbf{N} $\mathbf{9}$	\mathbf{N} $\mathbf{8}$	\mathbf{N} $\mathbf{7}$	\mathbf{N} $\mathbf{6}$	\mathbf{N} $\mathbf{5}$	\mathbf{N} $\mathbf{4}$	\mathbf{N} $\mathbf{3}$	\mathbf{N} $\mathbf{2}$	\mathbf{N} $\mathbf{1}$
3	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	1	0	0
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
8191	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: • Divide ratio less than 3 is prohibited.
Table. 5 Binary 5-bit Swallow Counter Data Setting

Divide ratio (N)	\mathbf{A} $\mathbf{5}$	\mathbf{A} $\mathbf{4}$	\mathbf{A} $\mathbf{3}$	\mathbf{A} $\mathbf{2}$	\mathbf{A} $\mathbf{1}$
0	0	0	0	0	0
1	0	0	0	0	1
\cdot	\cdot	\cdot	\cdot	\cdot	\cdot
31	1	1	1	1	1

Note: • Divide ratio (A) range $=0$ to 31
Table. 6 Prescaler Data Setting

		SW = "1"	SW = "0"
Prescaler divide ratio	IF-PLL	$4 / 5$	$8 / 9$
	RF-PLL	$16 / 17$	$32 / 33$

Table. 7 Phase Comparator Phase Switching Data Setting

	FCIF,RF $=1$	FCIF,RF=0
	Dof,RF	
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}=\mathrm{fp}$	Z	Z
$\mathrm{fr}<\mathrm{fp}$	L	H
VCO polarity	1	2

Note: - Z = High-impedance

- Depending upon the VCO and LPF polarity, FC bit should be set.

Table. 8 Charge Pump Current Setting

CS	Current value
1	$\pm 6.0 \mathrm{~mA}$
0	$\pm 1.5 \mathrm{~mA}$

4. Power Saving Mode (Intermittent Mode Control Circuit)

Table 9. PS Pin Setting

PS pin	Status
H	Normal mode
L	Power saving mode

The intermittent mode control circuit reduces the PLL power consumption.
By setting the PS pin low, the device enters into the power saving mode, reducing the current consumption. See the Electrical Characteristics chart for the specific value.
The phase detector output, Do, becomes high impedance.
For the single PLL, the lock detector, LD, remains high, indicating a locked condition.
For the dual PLL, the lock detector, LD, is as shown in the LD Output Logic table.
Setting the PS pin high, releases the power saving mode, and the device works normally.
The intermittent mode control circuit also ensures a smooth startup when the device returns to normal operation. When the PLL is returned to normal operation, the phase comparator output signal is unpredictable. This is because of the unknown relationship between the comparison frequency (fp) and the reference frequency (fr) which can cause a major change in the comparator output, resulting in a VCO frequency jump and an increase in lockup time.
To prevent a major VCO frequency jump, the intermittent mode control circuit limits the magnitude of the error signal from the phase detector when it returns to normal operation.
Note: When power $\left(\mathrm{V}_{\mathrm{cc}}\right)$ is first applied, the device must be in standby mode, PS=Low, for at least $1 \mu \mathrm{~s}$.

Note: • PS pin must be set at "L" for Power ON.

■ SERIAL DATA INPUT TIMING

On the rising edge of the clock, one bit of data is transferred into the shift register.

Parameter	Min.	Typ.	Max.	Unit	Parameter	Min.	Typ.	Max.	Unit
t1	20	-	-	ns	t5	100	-	-	ns
t2	20	-	-	ns	t6	20	-	-	ns
t3	30	-	-	ns	t7	100	-	-	ns
t4	30	-	-	ns					

Note: LE should be "L" when the data is transferred into the shift register.

PHASE DETECTOR OUTPUT WAVEFORM

Note: - Phase error detection range $=-2 \pi$ to $+2 \pi$

- Pulses on Doif/rf signals are output to prevent dead zone.
- LD output becomes low when phase error is twu or more.
- LD output becomes high when phase error is twl or less and continues to be so for three cycles or more.
- twu and twl depend on OSCin input frequency as follows.
twu ≥ 2 /fosc: i.e. twu $\geq 200 \mathrm{~ns}$ when foscin $=10 \mathrm{MHz}$
$\mathrm{t}_{\mathrm{w}} \leq 4 / \mathrm{fosc}$: i.e. $\mathrm{twL} \leq 400 \mathrm{~ns}$ when foscin $=10 \mathrm{MHz}$
- TEST CIRCUIT(Prescaler input/Programmable reference divider input sensitivity test)

- APPLICATION EXAMPLE

Clock, Data, LE: Schmitt trigger circuit is provided (insert a pull-down or pull-up resistor to prevent oscillation when open-circuited in the input).

- PACKAGE DIMENSION

