ASSP for DTS BiCMOS 1.1 GHz/400 MHz PLL Frequency Synthesizer MB15B11

■ DESCRIPTION

The MB15B11 is a pulse swallow Phase Locked Loop (PLL) frequency synthesizer LSI. The MB15B11 has dual PLLs, for the 1.1 GHz and 400 MHz bands respectively, and is optimized for systems using IF modulation such as analog cellular communications equipment.
With a supply voltage of 3 V (Typ.) and supply current of 9.5 mA (Typ.), the device enables equipment to operate with low power consumption.

FEATURES

- Dual internal pulse swallow PLLs

PLL 1: 400 MHz band
PLL 2: 1.1 GHz band

- Division ratio set by serial input

Reference divider: \quad Binary 14-bit reference counter (divide ratio of 8 to 16,383)
Programmable divider: 1.1 GHz band prescaler ($64 / 65,128 / 129$), 400 MHz band prescaler ($32 / 33,64 / 65$)
Binary 7-bit swallow counter (divide ratio of 0 to 127)
Binary 11-bit programmable counter (divide ratio of 16 to 2,047)

* The programmable dividers for PLL1 and PLL2 can be set independently.
- Low voltage operation: 2.7 V to 3.5 V

The charge pump section uses a separate supply (up to 6.0 V).

- Low current consumption: 9.5 mA (Typ.)

PACKAGE

(FPT-20P-M03)

(Continued)

- Built-in power saving function

Power saving current: PLL1 $=100 \mu \mathrm{~A}$, PLL2 $=100 \mu \mathrm{~A}$

- Charge pump characteristics based on application

Separate internal charge pumps are provided for transmit and receive operations.
Transmit (PLL1): Low sensitivity charge pump (for ease of modulation)
Receive (PLL2): High sensitivity charge pump (for fast lockup time)

- Internal analog switch

An internal analog switch is provided to achieve a faster PLL lockup time.

- Phase comparator to support phase conversion
- Wide operating temperature range: $\mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

- PIN ASSIGNMENT

PIN DESCRIPTIONS

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	I/O	Function
1	GND	-	Ground.
2	OSCIn	1	Crystal oscillator connection pins and reference divider input pins (OSCIN =
3	OSCout	0	oscillator circuit input pin, OSCout = oscillator circuit output pin).
4	fin_{1}	I	PLL1 prescaler input pin. The input should be AC-coupled.
5	Vcc1	-	PLL1 supply pin. The PLL1 latch data is lost when the power is off.
6	$f r$	O	Output monitor pin for the reference divider.
7	LD1	O	Lock detect output pin for PLL1. LD = " H " when locked and " L " when unlocked.
8	$\mathrm{V}_{\mathrm{P} 1}$	-	Power supply pin for the PLL1 charge pump output and analog switch output.
9	Do1	O	PLL1 charge pump output pin. The FC bit in the data inverts the phase characteristics.
10	BS 1	O	PLL1 analog switch output pin. When the switch is on (when LE pin = " H "), this pin outputs the charge pump state. Otherwise, it stays at high impedance.
11	BS2	O	PLL2 analog switch output pin. When the switch is on (when LE pin = " H "), this pin outputs the charge pump state. Otherwise, it stays at high impedance.
12	Do2	O	PLL2 charge pump output pin. The FC bit in the data inverts the phase characteristics.
13	$\mathrm{V}_{\mathrm{P} 2}$	-	Power supply pin for the PLL2 charge pump output and analog switch output.
14	LD_{2}	O	Lock detect output pin for PLL2. LD = "H" when locked and "L" when unlocked.
15	fp	O	Comparative divider monitor output pin. The FP data bit setting selects between PLL1 and PLL2 division output. When the FP bit = "H", outputs for PLL1 (fp1). When the FP bit = "L", outputs for PLL2 (fp2).
16	Vcc2	-	Supply pin for PLL2, reference divider, shift register, and crystal oscillator circuit. The PLL2 and reference counter latch data is lost when the power is off.
17	fin_{2}	1	PLL2 prescaler input pin. The input should be AC-coupled.
18	LE	1	Input pin for the load enable signal (with schmitt trigger circuit). When LE = "H", the contents of the shift register are moved to the latches specified by the serial data control bit values. At the same time, the internal analog switch turns on, and the charge pump output signals are output from the BS pins.
19	Data	1	Serial data input pin (with schmitt trigger circuit). The data's control bit values selects the data move destination (reference divider, PLL1 programmable divider, or PLL2 programmable divider).
20	Clock	1	Clock input pin for the 23-bit shift register (with schmitt trigger circuit). Data is read on the rising edge of the clock.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Rating		Unit	Remarks
		Min.	Tax.		
Power supply voltage	V_{cc}	-0.5	+5.0	V	
	$\mathrm{~V}_{\mathrm{P}}$	V cc	7.0	V	
Output voltage	$\mathrm{V} \circ$	-0.5	$\mathrm{~V} \mathrm{cc}+0.5$	V	
Output current	$\mathrm{l} \circ$	-10	+10	mA	
Storage temperature	Tstg	-55	+125	${ }^{\circ} \mathrm{C}$	

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit	Remarks
		Min.	Typ.	Max.		
Power supply voltage	Vcc	2.7	3.0	3.5	V	V cc1 $=\mathrm{V}$ cc2
	V_{P}	Vcc	-	6.0	V	
Input voltage	V	GND	-	Vcc	V	
Operating temperature	Ta	-30	-	+80	${ }^{\circ} \mathrm{C}$	

Handling Precautions

- Transport and store this device in anti-static containers.
- As this is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

MB15B11

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{Vcc}=2.7 \mathrm{~V}\right.$ to 3.5 $\mathrm{V}, \mathrm{Ta}=-30^{\circ} \mathrm{C}$ to $\left.+80^{\circ} \mathrm{C}\right)$								
Parameter		Symbol	Value			Unit	Remarks	
		Min.	Typ.	Max.				
Power supply current			Icc1	-	$\begin{gathered} 3.5 \\ (0.1) \end{gathered}$	-	mA	PLL1, V $\mathrm{cc}=3.0 \mathrm{~V}$, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, PLL-locked. Figures in parentheses () are for the power saving mode.
		Icc2	-	$\begin{gathered} 6.0 \\ (0.1) \end{gathered}$	-	mA	PLL2, Vcc=3.0 V, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, PLL-locked. Figures in parentheses () are for the power saving mode.	
Operating frequency	fin1	fin1	100	-	400	MHz	PLL1, 1000 pF, AC-coupled	
	fin2	fin2	100	-	1100	MHz	PLL2, 1000 pF, AC-coupled	
	OSCIN	fosc	-	12.8	20.0	MHz		
Input sensitivity	fin1	$\mathrm{P}_{\text {fin1 }}$	-10	-	4	dBm	PLL1, 50Ω, AC-coupled	
	fin2	$\mathrm{P}_{\text {fin2 }}$	-10	-	4	dBm	PLL2, 50Ω, AC-coupled	
	OSCIN	Vosc	0.5	-	-	VP-P		
Input voltage	Excluding fin and OSCIN	V_{H}	$0.7 \times \mathrm{Vcc}+0.4$		-	V		
		VIL	-	-	$0.3 \times \mathrm{Vcc}-0.4$	V		
Input current	Data, Clock, LE	$\mathrm{IIH}^{\text {H }}$	-	1.0	-	$\mu \mathrm{A}$		
		IIL*	-	-1.0	-	$\mu \mathrm{A}$		
	OSCIn	losc	-	± 50	-	$\mu \mathrm{A}$		
Output voltage	Excluding Do and OSCout	V OH	2.2	-	-	V	$\mathrm{Vcc}=3.0 \mathrm{~V}$	
		Vol	-	-	0.4	V		
High impedance cutoff current	Do, BS	loff	-	-	1.1	$\mu \mathrm{A}$	$\begin{aligned} & V_{P}=V_{c c} \text { to } 6.0 \mathrm{~V} \\ & V_{\text {oop }}=G N D \text { to } 6.0 \mathrm{~V} \end{aligned}$	
Output current	Excluding Do and OSCout	Іон*	-1.0	-	-	mA		
		loL	1.0	-	-	mA		
	Do1	loh1*	-	-1	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=6.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\text {OH1 }}=5 \mathrm{~V} \end{aligned}$	
		lol1	-	12	-	mA	$\begin{aligned} & V_{\mathrm{cc}}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{LL} 1}=1 \mathrm{~V} \end{aligned}$	
	Do2	І-H2*	-	-3	-	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=6.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \\ & \mathrm{~V}_{\mathrm{OH} 2}=5 \mathrm{~V} \end{aligned}$	
		lol2	-	6	-	mA	$\begin{aligned} & \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}, \\ & \mathrm{VoL2}=1 \mathrm{~V} \end{aligned}$	
Analog switch on resistance		Ron	-	50	-	Ω		

*: The minus $(-)$ sign indicates that the current is flowing out of the device.

FUNCTIONAL DESCRIPTIONS

1. Pulse Swallow Function

Calculate the divide ratio using the following equation:

$$
f v c o=[(P \times N)+A] \times \text { fosc } \div R
$$

fvco	: Output frequency of external voltage controlled oscillator (VCO)
N	: Preset divide ratio of binary 11-bit programmable counter (16 to 2,047)
A	: Preset divide ratio of binary 7-bit swallow counter (0 to 127, and A < N)
fosc	: Reference oscillation frequency (OSCIN input frequency)
R	: Preset divide ratio of reference counter (8) to 16,383)
P	: Prescaler divide ratio of PLL1 (32 or 64) / PLL2 (64 or 128)

2. Serial Data Input

Serial data is entered using three pins (Data, Clock, and LE). The reference divider, PLL1 programmable divider, and PLL2 programmable divider are controlled separately.
Binary serial data is entered through the Data pin.
One bit of serial data is transferred into the shift register on the rising edge of the clock. When the load enable signal is high, the data stored in the shift register is transferred to the latch according to the control bit data setting.

Control data	Reference counter	PLL1 programmable counter	PLL2 programmable counter
CN 1	L	L	H
CN 2	L	H	H

(1) Shift register configuration

Programmable Reference Counter

R1 to R14 : Divide ratio setting bits for the programmable reference counter (8 to 16,383)
FP : Test purpose bit (selects fp1 or fp2 monitor output)
CN1, 2 : Control bits
Note: Start data input with MSB first.

(Continued)

- Programmable Counter

N1 to N11 : Divide ratio setting bits for the programmable counter (16 to 2,047)
A1 to A7 : Divide ratio setting bits for the swallow counter (0 to 127)
FC : Phase switching bit for the phase comparator
PRE : Divide ratio setting bit for the prescaler
PS : Power saving control bit
CN1, 2 : Control bits
Note: Start data input with MSB first.
(2) Data setting

- Binary 14-bit reference counter

Divide ratio (R)	$\begin{gathered} \mathrm{R} \\ 14 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 13 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 12 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 11 \end{aligned}$	$\begin{gathered} \hline R \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 9 \end{aligned}$	$\begin{aligned} & R \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & R \\ & 7 \end{aligned}$	6	5	$\begin{aligned} & R \\ & 4 \end{aligned}$	$\begin{aligned} & R \\ & 3 \end{aligned}$	R 2	R 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	\bullet	\bullet	-	-	-	-	-	-	-	\bullet

Note: A divide ratio less than 8 is prohibited. (Setting range $=8$ to 16,383)

- Binary 11-bit programmable counter

Divide ratio (N)	$\begin{aligned} & \hline N \\ & N \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{N} \\ 10 \end{gathered}$	$\begin{aligned} & \hline N \\ & 9 \end{aligned}$	$\begin{gathered} \hline N \\ \hline 8 \end{gathered}$	$\begin{aligned} & \mathrm{N} \\ & 7 \end{aligned}$	$\begin{gathered} \hline N \\ 6 \end{gathered}$	$\begin{gathered} \hline N \\ 5 \end{gathered}$	$\begin{gathered} \hline N \\ 4 \end{gathered}$	$\begin{aligned} & \hline \mathrm{N} \\ & 3 \end{aligned}$	$\begin{aligned} & \hline N \\ & 2 \end{aligned}$	N 1
16	0	0	0	0	0	0	1	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1
-	\bullet	\bullet	\bullet	-	-	\bullet	-	\bullet	\bullet	\bullet	-

Note: A divide ratio less than 16 is prohibited. (Setting range $=16$ to 2,047)

- Binary 7-bit swallow counter

Divide ratio (A)	A 7	A 6	A 5	A	A	A	A
2	A						
1							
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
\bullet							

(Setting range $=0$ to 127)

- PRE: Prescaler

	PRE $=$ "H"	PRE $=$ "L"
PLL1 prescaler divide ratio	Divide by $32 / 33$	Divide by $64 / 65$
PLL2 prescaler divide ratio	Divide by 64/65	Divide by $128 / 129$

Note: Set the programmable divide ratios for PLL1 and PLL2 from the serial data.

- PS: Power saving control

	PS $=$ "H"	PS $=$ " L ""
PLL1	On	Off
PLL2/Common circuits	On	Off

Notes: - Set the comparative divider values for PLL1 and PLL2 from the serial data.

- The common circuits are the crystal oscillator circuit and the reference counter.
- When turning on the power, always set PS to "L" once.

Intermittent operation reduces the overall circuit power consumption by only operating the internal circuit when required (the circuit halts when not required). However, simply switching the circuit from the halted to the operating state results in a large error signal output from the phase comparator. This is because the phase relationship between the reference frequency (fr) and the comparative frequency (fp) inputs to the phase comparator is undefined during such a start-up condition, even if the two frequencies are the same. As a result, the PLL loses its locked state. To prevent this problem, an intermittent operation control circuit is provided to forcibly align the phases on startup and therefore minimize the variation in the locked frequency.

- FC: Phase switching bit for the phase comparator

This bit sets the charge pump output polarity (Do) as follows.

	FC = "H"	FC = "L"
$\mathrm{fr}>\mathrm{fp}$	H	L
$\mathrm{fr}<\mathrm{fp}$	L	H
$\mathrm{fr}=\mathrm{fp}$	Z	Z
VCO polarity	(1)	(2)

Z: High impedance
Notes: - When designing the PLL frequency synthesizer, set the FC bit according to the VCO polarity.

- Set the comparative divider values for PLL1 and PLL2 from the serial data.
- Take note of the polarity when using an
 active lowpass filter.
(3) Serial data input timing
- $t_{1}>100 \mathrm{~ns}, t_{2}>1000 \mathrm{~ns}, t_{3}>300 \mathrm{~ns}, t_{4}>100 \mathrm{~ns}, t_{5}>800 \mathrm{~ns}$

Note: Data is loaded on the rising edge of the clock.

3. Phase Comparator Output Waveform

(When the FC bit $=$ " H ")

(When the FC bit = " \llcorner ")

Notes: - The phase detection range is -2π to $+2 \pi$.

- The LD output becomes "L" when the phase error is more than tw and " H " when the phase error is less than tw and continues to be so for three cycles or more. ($\mathrm{tw}=625 \mathrm{~ns}$ to 1250 ns for fosc $=12.8 \mathrm{MHz}$)

4. Analog Switch

The analog switch is set on or off by the control data and LE signal settings. When the switch is on, the BSC1 and BSC2 pins output the charge pump outputs (Do1 and Do2). (These pins take high impedance when the switch is off.)

	Setting the PLL1 programmable divider (CN1 = "L", CN2 = "H")		Setting the PLL2 programmable divider(CN1 = "H", CN2 = "H")	
	LE = "H"	LE = "L"	LE = "H"	LE = "L"
PLL1 analog switch	On	Off	Off	Off
PLL2 analog switch	Off	Off	On	Off

As shown in the following example, placing the analog switch midway through the LPF (LPF1 + LPF2) allows the LPF time constant to be reduced during PLL channel switching so as to reduce lock up time.

TEST CIRCUIT EXAMPLE (Prescaler Input Sensitivity Measurement)

TYPICAL CHARACTERISTIC CURVES

1. fin Input Sensitivity Characteristics

PLL1 Input Sensitivity vs. Input Frequency

PLL2 Input Sensitivity vs. Input Frequency

MB15B11
2. OSCIN Input Sensitivity Characteristics

3. Do Output Current Characteristics
" H " level output current vs. " H " level output voltage (PLL1)

" H " level output current vs. " H " level output voltage (PLL2)

IOH2 (mA)

MB15B11
(Continued)
"L" Level Output Current vs. "L" Level Output Voltage (PLL1)

"L" Level Output Current vs. "L"Level Output Voltage (PLL2)

4. Input Impedance Characteristics
fin Input Impedance Characteristics

OSCin Input Impedance Characteristics

APPLICATION EXAMPLE

(Continued)
(Continued)

MB15B11

APPLICATION INFORMATION (AMPS)

PLL Characteristics (Rx mode)

$$
\mathrm{fr}=30 \mathrm{kHz} / \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Vp}=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{vco}=5.0 \mathrm{~V}
$$

Parameter		Measured Value	Conditions
Hopping time	Lch $\rightarrow \mathrm{Hch}$	18.4 mS	$825.6 \mathrm{MHz} \rightarrow 850.5 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$
	Hch $\leftarrow \mathrm{Lch}$	16.4 mS	$850.5 \mathrm{MHz} \rightarrow 825.6 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$
Spurious level	79 dBc	$\pm 30 \mathrm{kHz}$ offset at 835.20 MHz	
Phase noise	$73 \mathrm{dBc} / \mathrm{Hz}$	$\pm 1 \mathrm{kHz}$ offset at 835.20 MHz	

Loop Filter Schematics (Rx mode)

PLL Hopping Time (Rx mode)

$825.60 \mathrm{MHz} \rightarrow 850.50 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$ Lch \rightarrow Hch 18.4 mS

$850.50 \mathrm{MHz} \rightarrow 825.60 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$ Hch \rightarrow Lch 16.4 mS

(Continued)

Spurious Level (Rx mode)

Phase Noise (Rx mode)

MB15B11

(Continued)

PLL Characteristics (Tx mode)

$$
\mathrm{fr}=30 \mathrm{kHz} / \mathrm{Vcc}=3.0 \mathrm{~V}, \mathrm{Vp}=5.0 \mathrm{~V}, \mathrm{~V} \mathrm{vco}=5.0 \mathrm{~V}
$$

Parameter		Measured Value	Conditions
Hopping time	Lch $\rightarrow \mathrm{Hch}$	17.5 mS	$376.8 \mathrm{MHz} \rightarrow 385.8 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$
	Hch $\leftarrow \mathrm{Lch}$	18.9 mS	$385.8 \mathrm{MHz} \rightarrow 376.8 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$
	87 dBc	$\pm 30 \mathrm{kHz}$ offset at 382.20 MHz	
Phase noise	$81 \mathrm{dBc} / \mathrm{Hz}$	$\pm 1 \mathrm{kHz}$ offset at 382.20 MHz	

Loop Filter Schematics (Tx mode)

PLL Hopping Time (Tx mode)

$376.80 \mathrm{MHz} \rightarrow 385.80 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$ Lch \rightarrow Hch 17.5 mS

$385.80 \mathrm{MHz} \rightarrow 376.80 \mathrm{MHz}$, within $\pm 800 \mathrm{~Hz}$ Hch \rightarrow Lch 18.9 mS

(Continued)

Spurious Level (Tx mode)

REF - 1.2 dBm
$10 \mathrm{~dB} /$

RBW
1 kHz SAMPLE VBW 30 Hz

SWP 30 s

Phase Noise (Tx mode)

Modulation Linearity (Tx mode)

MB15B11

- ORDERING INFORMATION

Part number	Package	Remarks
MB15B11PFV	20-pin, plastic SSOP (FPT-20P-M03)	

PACKAGE DIMENSIONS

MB15B11

Abstract

All Rights Reserved. Circuit diagrams using Fujitsu products are included to illustrate typical semiconductor applications. Information sufficient for construction purposes may not be shown.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu Microelectronics, Inc. assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights, or trademarks claimed and owned by Fujitsu Limited, its subsidiaries, or Fujitsu Microelectronics, Inc.

Fujitsu Microelectronics, Inc. reserves the right to change products or specifications without notice. No part of the publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu Microelectronics, Inc.Visit our web site for the latest information:

http://www.fujitsumicro.com

Customer Response Center:

For semiconductor products, flat panel displays, and PC cards in the U.S., Canada, and Mexico, please contact the Fujitsu Microelectronics Customer Response Center (CRC). The CRC provides a single point of contact for resolving customer issues and answering technical questions.

Web: Click on Tech Support in the FMI home page, then submit our form.
Tel: Telephone: 1-800-866-8608 Monday through Friday, 7 to 5 PST. Outside U.S., Canada, and Mexico, call: 010-1-408-922-9000 and ask for the Customer Response Center. (Note: Country code may vary.)

Fax: (408) 922-9179
E-Mail: fmicrc@fmi.fujitsu.com

