MB1508

SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SERIAL INPUT PLL
 FREQUENCY SYNTHESIZER ON CHIP 2.5 GHz PRESCALER

DESCRIPTION

The Fujitsu MB1508 with an on chip 2.5 GHz dual modulus prescaler is a serial input PLL (Phase Locked Loop) frequency synthesizer with pulse swallow function. It is well suited for BS tuner, CATV system, and TV tuner applications.

It operates with a supply voltage of 5.0 V typ. and dissipates 16 mA typ. of current realized through the use of Fujitsu's unique U-ESBIC Bi-CMOS technology.

FEATURES

- Power supply voltage: $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V
- High operating frequency: $\mathrm{f}_{\mathrm{IN}}=2.5 \mathrm{GHz}\left(\mathrm{P}_{\mathrm{IN}}=-4 \mathrm{dBm}\right)$
- 2.5 GHz dual modulus prescaler: $\mathrm{P}=256 / 272,512 / 528$
- Low supply current: $I_{C C}=16 \mathrm{~mA}$ typ.
- Programmable reference divider consisting of: Binary 2-bit programmable reference counter $(R=256,512,1024,2048)$
- Programmable divider consisting of:

Binary 5-bit swallow counter ($\mathrm{A}=0$ to 31)
Binary 12-bit programmable counter ($\mathrm{N}=32$ to 4095)

- Wide operating temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Plastic 20-pin Flat Package (Suffix: —PF)

ABSOLUTE MAXIMUM RATINGS (See NOTE)

RatIng	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +7.0	V
Output Voltage	V_{O}	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
Output Current	I_{O}	± 10	mA
Storage Temperature	$\mathrm{T}_{\mathrm{STG}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

NOTE: Permanent device damage may occur if the above Absolute Maximum RatIngs are exceeded.Functional operation should be restricted to the condltions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Pin Assignment

(TOP VIEW)

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

PIN DESCRIPTION

Pin No.	Pin Name	I/O	Description
1	FC	1	Phase select input pin of the phase detector. This pin involves an internal pull up resistor. When this pin is low, characteristics of the charge pump and phase detector can be reversed. This input also selects fout pin output level, either f_{r} or f_{p}. Please see page 6.
2	LE	1	Load enable input pin. This pin involves a schmitt trigger circuit. When this pin is high, the data stored in the shift register is transferred into the latch.
3	Data	1	Serial data of binary code input pin. This pin involves a schmitt trigger circuit.
4	Clock	1	Clock input for 24-bit shift register. This pin involves a schmitt trigger circuit. On rising edge of the clock shifts one bit of data into the shift registers.
5	$\mathrm{V}_{\mathrm{CC} 1}$	-	PLL power supply voltage input pin.
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \text { OSC }_{\text {IN }} \\ & \text { OSCOUT }^{2} \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	Oscillator input pin. Oscillator output pin. A crystal is connected between $\mathrm{OSC}_{\mathbb{I N}}$ pin and OSC ${ }_{\text {OUt }}$ pin.
8	GND1	-	PLL ground pin.
$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{D}_{\mathrm{O} 1} \\ & \mathrm{D}_{\mathrm{O} 2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	Charge pump output pins. Phase characteristics can be reversed depending upon FC pin input level.
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	$\begin{aligned} & \mathrm{BC} 4 \\ & \mathrm{BC3} \\ & \mathrm{BC2} \\ & \mathrm{BC} 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	Band switching output pins. (Open-collector output) Output is controlled by a band bit data, individually. BCX—bit $=\mathrm{H}$: BCX output transistor is ON. $B C X-$ bit $=L: B C X$ output transistor is OFF. ($\mathrm{X}=1$ to 4)
15	fin	1	Complementary input pin of $\mathrm{f}_{\text {in }}$. Please connect to GND through a capacitor.
16	GND2	-	Prescaler ground pin.
17	$\mathrm{f}_{\text {in }}$	1	Prescaler input pin. This signal is AC coupled.
18	$\mathrm{V}_{\mathrm{CC} 2}$	-	Prescaler power supply voltage input pin.
19	fout	0	Monitor pin of the phase detector input. $f_{\text {fout }}$ pin outputs either of the programmable reference divider output frequency f_{r} or programmable divider output frequency f_{p} depending upon the FC pin input level.
20	LD	0	Phase detector output pin. Normally this pin outputs high. While the phase difference between f_{r} and f_{p} exists, this pin outputs low.

FUNCTIONAL DESCRIPTIONS

DIVIDE RATIO SETTING

Divide ratio can be set using the following equation:
$f_{\text {vco }}=\left[(P \times N)+(16 \times A] \times f_{\text {osc }} \div R\right.$
$\mathrm{f}_{\mathrm{vco}}$: Output frequency of external voltage controlled oscillator (VCO)
P: \quad Preset divide ratio of an internal dual modulus prescaler (256 or 512)
N: Preset divide ratio of binary 12-bit programmable counter (32 to 4095)
A: Preset divide ratio of binary 5 -bit swallow counter (0 to 31)
$\mathrm{f}_{\mathrm{osc}}$: Reference oscillator frequency
R: Preset divide ratio of reference counter ($256,512,1024,2048$)

SERIAL DATA INPUT

On rising edge of clock shifts one bit of the data into the shift register.
When the load enable is high, the data stored in the shift register is transferred to the latch.
24 bit of serial data format is shown below.

5-BIT SWALLOW COUNTER DIVIDE RATIO (A1 to A5)

Divide Ratio A	A	A	A	A	A
5	4	3	2	1	
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
Σ	Σ	Σ	Σ	Σ	Σ
31	1	1	1	1	1

12-BIT PROGRAMMABLE COUNTER DIVIDE RATIO (N1 to N12)

Divide	N	N	N	N	N	N	N	N	N	N	N	N
Ratio	12	11	10	9	8	7	6	5	4	3	2	1
32	0	0	0	0	0	0	1	0	0	0	0	0
33	0	0	0	0	0	0	1	0	0	0	0	1
34	0	0	0	0	0	0	1	0	0	0	1	0
Σ												
4095	1	1	1	1	1	1	1	1	1	1	1	1

FUNCTIONAL DESCRIPTIONS

REFERENCE COUNTER DIVIDE RATIO (R1 to R2)

Divide Ratio R	R 2	R 1
256	0	0
512	0	1
1024	1	0
2048	1	1

Prescaler divide ratio (SW)

When divide ratio of prescaler setting bit is high, divide ratio of $256 / 272$ is selected. When divide ratio of prescaler setting bit is low, divide ratio of $512 / 528$ is selected.

Band Switch Setting (BC1 to BC4)

When band switch setting bit is high, output is ON.
When band switch setting bit is low, output is OFF.

Serial Data Input Timing

*1: Bits enclosed in parentheses are used when the divide ratio of the programmable reference divider is selected.
Note: One bit of data is shifted into the shift register on the rising edge of the clock.
NOTES: On rising edge of the clock shifts one bit of data into the shift register.
When LE is high, the data stored in the shift register is transferred into the latch.

PHASE DETECTOR CHARACTERISTICS

FC pin selects the phase of the phase detector. Phase characteristics (charge pump output) can be reversed depending upon the FC pin input level. Monitor pin (fout) output level is selected by FC pin input level as well

	FC=H or open		FC=L	
	$\mathrm{D}_{\text {o1, }}, \mathrm{D}_{\text {o2 }}$	fout	$\mathrm{D}_{\mathrm{o}}, \mathrm{D}_{02}$	fout
$\mathrm{f}_{\mathrm{r}}>\mathrm{f}_{\mathrm{p}}$	H	Outputs programmable reference divider output frequency f_{r}.	L	Outputs programmable divider output frequency f_{p}.
$\mathrm{f}_{\mathrm{r}}=\mathrm{f}_{\mathrm{p}}$	L		Z	
$\mathrm{f}_{\mathrm{r}}<\mathrm{f}_{\mathrm{p}}$	Z		H	

Note: $\quad Z=$ (High impedance)

VCO CHARACTERISTICS
Depending upon VCO polarity,
FC pin should be set accordingly:

- When VCO polarity are like 1 FC should be set High or open.
— When VCO polarity are like 2 FC should be set Low.

PHASE DETECTOR WAVEFORM

NOTES: Phase difference detection range: -2π to $+2 \pi$
Spike shape depends on charge pump characteristics.
The spike is output to diminish dead band.

RECOMMENDED OPERATING CONDITIONS

Parameter		Symbol	Value			
			Min	Typ	Max	
Power Supply Voltage	V_{CC}	4.5	5.0	5.5	V	
Input Voltage	V_{I}	GND	-	V_{CC}	V	
Operating Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$	

Handling Precautions

- This device should be transported and stored in anti-static containers.
- This is a static-sensitive device; take proper anti-ESD precautions. Ensure that personnel and equipment are properly grounded. Cover workbenches with grounded conductive mats.
- Always turn the power supply off before inserting or removing the device from its socket.
- Protect leads with a conductive sheet when handling or transporting PC boards with devices.

ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Condition	Min	Typ	Max	Unit
Power Supply Current		$l_{\text {cc }}$	Note 1	-	16.0	-	mA
Operating Frequency	$\mathrm{f}_{\text {in }}$	$\mathrm{f}_{\text {in }}$	Note2	10	-	2500	MHz
	$\mathrm{OSC}_{\text {IN }}$	fosc	-	-	4	10	
Input Sensitivity	$f_{\text {in }}$	$P_{\text {fin }}$	2300 to 2500 MHz	-4	-	6	dBm
			1900 to 2300 MHz	-7	-	6	
			10 to 1900 MHz	-10	-	6	
	$\mathrm{OSC}_{\text {IN }}$	Vosc	-	0.5	-	-	V_{PP}
High-level Input Voltage	Except $f_{\text {in }}$ and $\mathrm{OSC}_{\mathrm{IN}}$	V_{IH}	-	$\mathrm{V}_{\mathrm{CC}} \times 0.7+0.4$	-	-	V
Low-level Input Voltage		V_{IL}	-	-	-	$\mathrm{V}_{C C} \times 0.3-0.4$	
High-level Input Current	Data Clock LE	1 IH	-	-	1.0	-	$\mu \mathrm{A}$
Low-level Input Current		ILL	-	-	-1.0	-	
	FC	IILFC	-	-	-60	-	
Input Current	$\mathrm{OSC}_{\text {IN }}$	Iosc	-	-	+50	-	
High-level Output Voltage	$\begin{aligned} & \text { Except } \mathrm{D}_{\mathrm{O}} \\ & \text { and } \\ & \mathrm{BC} 1 \text { to } \mathrm{BC} 4 \end{aligned}$	V_{OH}	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	4.4	-	-	V
Low-level Output Voltage		$\mathrm{V}_{\text {OL }}$		-	-	0.4	
High Impedance Cutoff Current	$\begin{aligned} & \mathrm{D}_{\mathrm{O} 1}, \mathrm{D}_{02} \\ & \mathrm{BC1} \text { to } \mathrm{BC} 4 \end{aligned}$	loff	-	-	-	1.1	$\mu \mathrm{A}$
High-level Output Current	$\begin{aligned} & \text { Except } D_{0} \\ & \text { and } \\ & B C 1 \text { to } B C 4 \end{aligned}$	$\mathrm{IOH}^{\text {l }}$	-	-1.0	-	-	mA
Low-level Output Current		lOL	-	1.0	-	-	
Withstand Output Voltage	$B C 1$ to BC4	V_{B}	-	-	-	12	V

 2: AC coupling. Minimum operating frequency is measured with a capacitor 1000 pF .

TEST CIRCUIT

Prescaler Input Sensitivity

MB1508 APPLICATION CIRCUIT

PACKAGE DIMENSIONS

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.
The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.
The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.
Fujitsu reserves the right to change products or specifications without notice.
No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

FUJITSU LIMITED

For further information, please contact:
Japan
FUJITSU LIMITED
Semiconductor Marketing
Furukawa Sogo Bldg.
6-1, Marunouchi 2-chome
Chiyoda-ku, Tokyo 100
Japan
Tel: (03) 3216-3211
Telex: 781-2224361
FAX: (03) 3216-9771
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804 USA
Tel: (408) 922-9000
FAX: (408) 432-9044

Europe

FUJITSU MIKROELEKTRONIK GmbH
Arabella Centre 9.OG
Lyoner Strasse 44-48
D-6000 Frankfurt 71
F.R. Germany

Tel: (069) 66320
Telex: 411963
FAX: (069) 6632122

Asia

FUJITSU MICROELECTRONICS ASIA PTE LIMITED
51 Bras Basah Road
Plaza by the Park
\#06-04/07
Singapore 0718
Tel: 336-1600
Telex: 55373
FAX: 336-1609

