March 2001 Revised January 2005

SEMICONDUCTORIM

TinyLogic® UHS Dual Inverting Buffer with 3-STATE Outputs

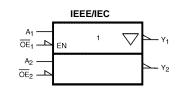
General Description

FAIRCHILD

The NC7WZ240 is a Dual Inverting Buffer with independent active LOW enables for the 3-STATE outputs. The Ultra High Speed device is fabricated with advanced CMOS technology to achieve superior switching performance with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 5.5V independent of V_{CC} operating range. Outputs tolerate voltages above V_{CC} when in the 3-STATE condition.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- \blacksquare Ultra High Speed; t_{PD} 2.3 ns typ into 50 pF at 5V V_{CC}
- High Output Drive; ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- \blacksquare Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Outputs are overvoltage tolerant in 3-STATE mode
- Patented noise/EMI reduction circuitry implemented


Ordering Code:

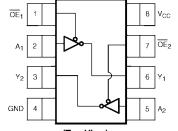
•				
Order	Deekere	Product	Deckore Decerimtics	Sumplied As
Order Number	Package Number	Code Top Mark	Package Description	Supplied As
NC7WZ240K8X		-	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Ree
NC7WZ240L8X	MAC08A	U7	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Ree
Pb-Free package pe	r JEDEC J-STI	D-020B.		

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

NC7WZ240

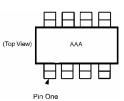
Logic Symbol

Pin Descriptions

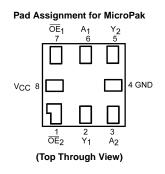

Pin Names	Description
OEn	Enable Inputs for 3-STATE Outputs
A _n	Inputs
Y _n	3-STATE Outputs

Function Table

Inp	Inputs					
OE	A _n	Υ _n				
L	L	Н				
L	Н	L				
Н	L	Z				
Н	н	Z				
H = HIGH Logic Level	L = LOW Logic Leve	Z = 3-STATE				


Connection Diagrams

Pin Assignments for US8



(Top View)

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V DC Input Voltage (V_{IN}) (Note 2) -0.5V to +7.0V DC Output Voltage (V_{OUT}) -0.5V to +7.0V DC Input Diode Current (I_{IK}) $@V_{IN} < 0V$ –50 mA DC Output Diode Current (I_{OK}) @V_{OUT} < 0V –50 mA DC Output Source/Sink Current (I_{OUT}) \pm 50 mA DC V_{CC}/Ground Current (I_{CC}/I_{GND}) \pm 100 mA Storage Temperature Range (T_{STG}) –65°C to +150°C

+150°C

+260°C

250 mW

Recommended Operating

Conditions (Note 3)	_
Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	
Active State	0V to V _{CC}
3-STATE	0V to 5.5V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V_{CC} @ 1.8V, 0.15V, 2.5V \pm 0.2V	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	250°C/W

NC7WZ240

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specific cations.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$ T_A		$T_A = -40^\circ C \text{ to } +85^\circ C$		Units	Conditions			
	Farameter	(V)	Min Typ		Max	Min	Max	Units	0	numons
VIH	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			$0.7 V_{CC}$		v		
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.2	2.3		2.2		V	$V_{IN}=V_{IH}$	$I_{OH} = -100 \ \mu A$
		3.0	2.9	3.0		2.9		v	or V _{IL}	
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9			$V_{IN}=V_{IH}$	$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V	or V _{IL}	$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.10		0.10			
		2.3		0.0	0.10		0.10	V	$V_{IN}=V_{IH}$	$I_{OL}{=}100~\mu A$
		3.0		0.0	0.10		0.10	v	or V _{IL}	
		4.5		0.0	0.10		0.10			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1	μΑ	V _{IN} = 5.5V	, GND
l _{oz}	3-STATE Output Leakage	1.65 to 5.5			±0.5		±5	μA	$V_{IN} = V_{IH}$	or V _{IL}
									$0 \le V_{OUT}$	≤5.5V
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V _{IN} or V _{OI}	_{JT} = 5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			1		10	μA	V _{IN} = 5.5V	, GND

DC Electrical Characteristics

Junction Lead Temperature under Bias (T_J)

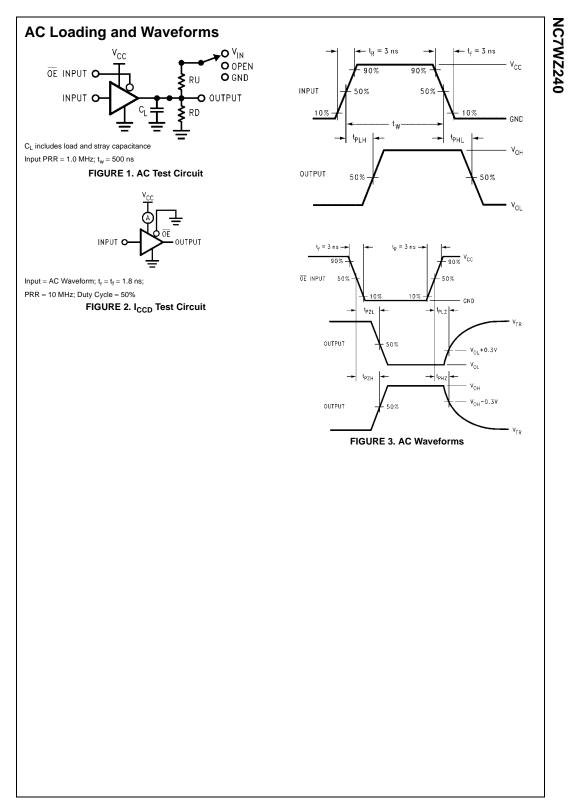
Junction Lead Temperature (T_L) (Soldering, 10 seconds)

Power Dissipation (P_D) @ +85°C

www.fairchildsemi.com

3

NC7WZ240


Noise Characteristics								
Symbol Parameter V _{CC} T _A = + 25°C Units Conditions								
Symbol	Farameter	(V)	Тур	Max	Units	Contractoris		
V _{OLP} (Note 4)	Quiet Output Maximum Dynamic V _{OL}	5.0		1.0	V	C _L = 50 pF		
V _{OLV} (Note 4)	Quiet Output Minimum Dynamic V _{OL}	5.0		1.0	V	C _L = 50 pF		
V _{OHV} (Note 4)	Quiet Output Minimum Dynamic V _{OH}	5.0		4.0	V	C _L = 50 pF		
V _{IHD} (Note 4)	Minimum HIGH Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF		
V _{ILD} (Note 4)	Maximum LOW Level Dynamic Input Voltage	5.0		1.5	V	C _L = 50 pF		
Note 4: Param	Note 4: Parameter guaranteed by design.							

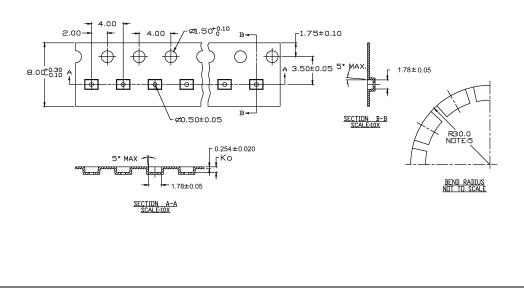
AC Electrical Characteristics

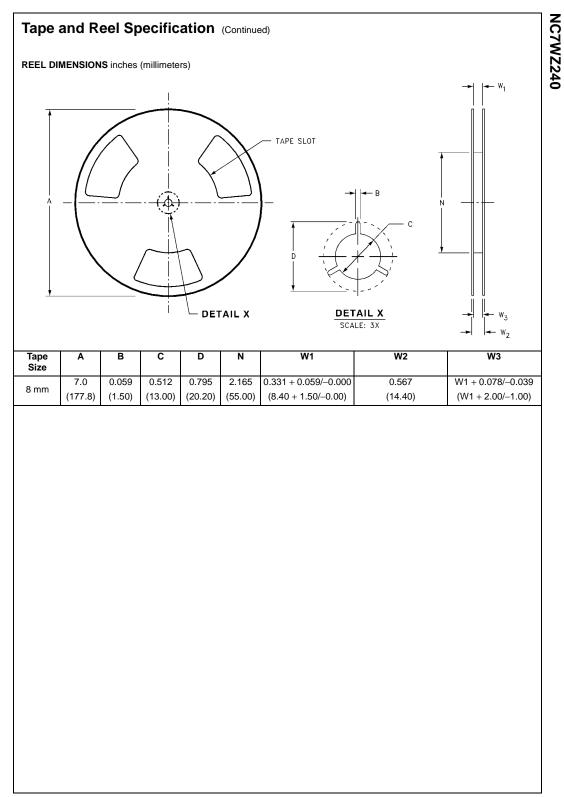
Symbol	Parameter	V _{cc}		T _A = +25°C	2	$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
Cymbol		(V)	Min	Тур	Max	Min	Max	Units		Number
t _{PLH} ,	Propagation Delay	1.8 ± 0.15	2.0		12.0	2.0	13.0		C _L = 15 pF	
t _{PHL}	A _n to Y _n	2.5 ± 0.2	1.0		7.5	1.0	8.0	ns	$R_D = 1 \ M\Omega$	Figures
		3.3 ± 0.3	0.8		5.2	0.8	5.5	115	S1= Open	1, 3
		5.0 ± 0.5	0.5		4.5	0.5	4.8			
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.2		5.7	1.2	6.0		$C_L = 50 \text{ pF}$	
t _{PHL}	A _n to Y _n	5.0 ± 0.5	0.8		5.0	0.8	5.3	ns	$R_D=500\Omega$	Figures 1, 3
									S1= Open	., 0
t _{OSLH} ,	Output to Output Skew	3.3 ± 0.3			1.0		1.0		$C_L = 50 \text{ pF}$	_ .
tOSHL	(Note 5)	5.0 ± 0.5			0.8		0.8	ns	$R_D=500\Omega$	Figures 1, 3
									S1= Open	., -
t _{PZL} ,	Output Enable Time	1.8 ± 0.15	3.0		14.0	3.0	15.0		$C_L = 50 \text{ pF}$	
t _{PZH}		2.5 ± 0.2	1.8		8.5	1.8	9.0		$R_D,R_U=500~\Omega$	
		3.3 ± 0.3	1.2		6.2	1.2	6.5	ns	$S1 = GND \text{ for } t_{PZH}$	Figures 1, 3
		5.5 ± 0.5	0.8		5.5	0.8	5.8		$S1 = V_I \text{ for } t_{PZL}$, -
									$V_I = 2 \times V_{CC}$	
t _{PLZ} ,	Output Disable Time	1.8 ± 0.15	2.5		12.0	2.5	13.0		$C_L = 50 \text{ pF}$	
t _{PHZ}		2.5 ± 0.2	1.5		8.0	1.5	8.5		$\text{R}_{\text{D}},\text{R}_{\text{U}}=500~\Omega$	-
		3.3 ± 0.3	0.8		5.7	0.8	6.0	ns	$\text{S1} = \text{GND} \text{ for } t_{\text{PZH}}$	Figures 1, 3
		5.0 ± 0.5	0.3		4.7	0.3	5.0		$S1 = V_I \text{ for } t_{PZL}$., •
									$V_I = 2 \times V_{CC}$	
CIN	Input Capacitance	0		2.5				pF		
C _{OUT}	Output Capacitance	5.0		4				р		
C _{PD}	Power Dissipation Capacitance	3.3		10				pF	(Note 6)	Figure 2
		5.0		12				Pi	(11010-0)	i igure z

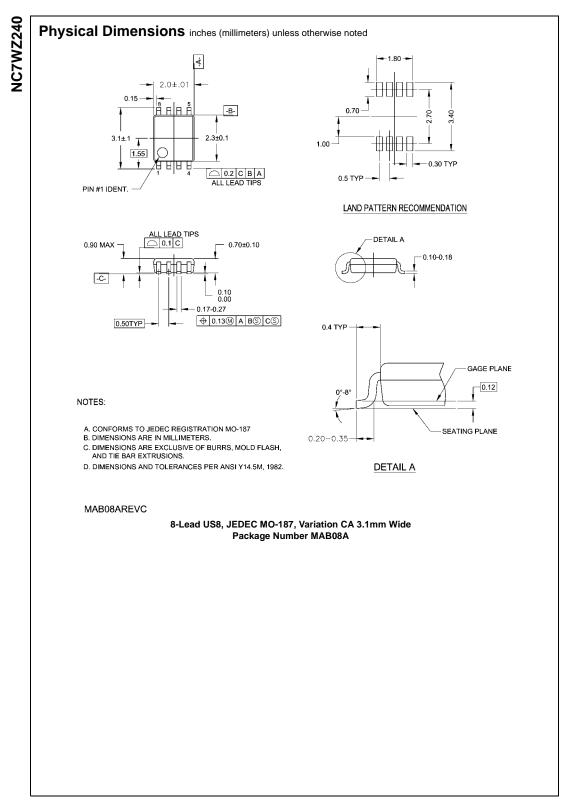
 $\textbf{Note 5:} \text{ Parameter guaranteed by design. } t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; \\ t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$

Note 6: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} \text{static}).$




Tape and Reel Specification


Tape Format for US8	3			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


TAPE DIMENSIONS inches (millimeters)

