February 1984 Revised February 2000

FAIRCHILD SEMICONDUCTOR

MM74HC4514 4-to-16 Line Decoder with Latch

General Description

The MM74HC4514 utilizes advanced silicon-gate CMOS technology, which is well suited to memory address decoding or data routing application. It possesses high noise immunity and low power dissipation usually associated with CMOS circuitry, yet speeds comparable to low power Schottky TTL circuits. It can drive up to 10 LS-TTL loads.

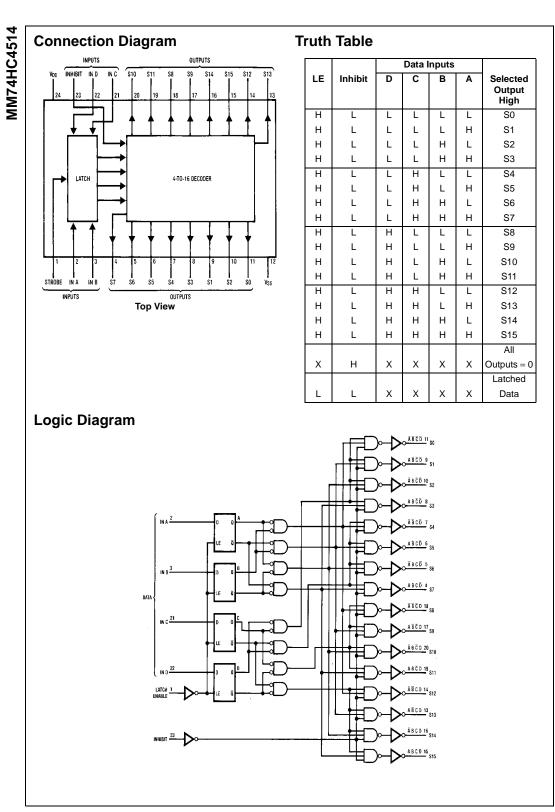
The MM74HC4514 contain a 4-to-16 line decoder and a 4bit latch. The latch can store the data on the select inputs, thus allowing a selected output to remain HIGH even though the select data has changed. When the LATCH ENABLE input to the latches is HIGH the outputs will change with the inputs. When LATCH ENABLE goes LOW the data on the select inputs is stored in the latches. The four select inputs determine which output will go HIGH provided the INHIBIT input is LOW. If the INHIBIT input is HIGH all outputs are held LOW thus disabling the decoder. The MM74HC4514 is functionally and pinout equivalent to

the CD4514BC and the MC1451BC. All inputs are protected against damage due to static discharge diodes from V_{CC} and ground.

Ordering Code:

Order Number	Package Number	Package Description
MM74HC4514WM	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-0013, 0.300" Wide
MM74HC4514MTC	MTC24	24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC4514N	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-100, 0.300" Wide
Devices also available i	n Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Features


■ Typical propagation delay: 18 ns

Low input current: 1 μA maximum

■ Fanout of 10 LS-TTL loads (74HC Series)

■ Low quiescent power: 80 µA maximum (74HC Series)

© 2000 Fairchild Semiconductor Corporation DS005215

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 1)

Recommended Operating Conditions

	0
(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}{+}1.5V$
DC Output Voltage (V _{OUT})	–0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (TL)	
(Soldering 10 seconds)	260°C

	Min	Max	Units	
Supply Voltage (V _{CC})	2	6	V	
DC Input or Output Voltage	0	V _{CC}	V	
(V _{IN} , V _{OUT})				
Operating Temperature Range (T_A)	-40	+85	°C	
Input Rise or Fall Times				
$(t_r, t_f) V_{CC} = 2.0 V$		1000	ns	
$V_{CC} = 4.5V$		500	ns	
$V_{CC} = 6.0V$		400	ns	
Note de Maximum Definies and these contrasts have adjusticate demonstration				

MM74HC4514

Note 1: Maximum Ratings are those values beyond which damage to the device may occur.

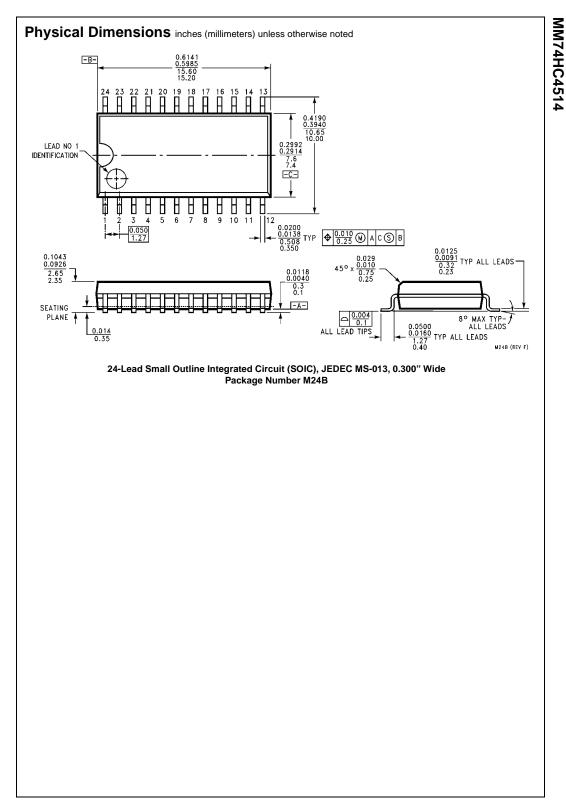
Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: –

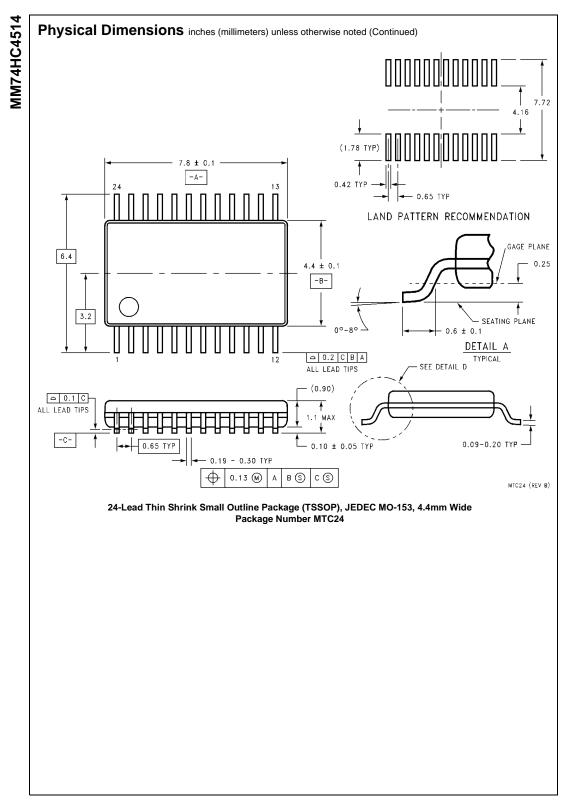
12 mW/°C from 65°C to 85°C.

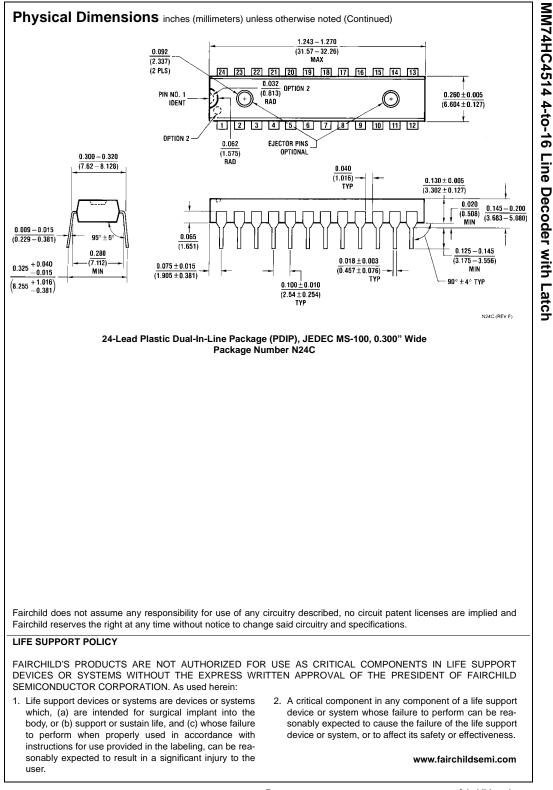
DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	v _{cc}	$T_A = 25^{\circ}C$		$T_A{=}{-}40$ to $85^\circ C$	$T_A = -55$ to $125^\circ C$	Units
Gymbol				Тур	Guaranteed Limits			Units
VIH	Minimum HIGH Level		2.0V		1.5	1.5	1.5	
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	
VIL	Maximum LOW Level		2.0V		0.5	0.5	0.5	
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	
011	Minimum HIGH Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V	2.0	1.9	1.9	1.9	
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	v
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	v
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH} \text{ or } V_{IL}$	2.0V	0	0.1	0.1	0.1	
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	
		$V_{IN} = V_{IH} \text{ or } V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	v
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	v
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \ \mu A$	6.0V		8.0	80	160	μΑ

Note 4: For a power supply of 5V $\pm 10^{\circ}$ (the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.


AC Electrical Characteristics


Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay Data to Output		18	30	ns
t _{PHL}	Maximum Propagation Delay LE to Output		18	30	ns
t _{PLH}	Maximum Propagation Delay LE to Output		24	40	ns
t _{PHL}	Maximum Propagation Delay Inhibit to Output		16	30	ns
t _{PLH}	Maximum Propagation Delay Inhibit to Output		24	40	ns
t _s	Minimum Setup Time, Date to LE			20	ns
t _H	Minimum Hold Time, LE to Data			5	ns
t _W	Minimum Pulse Width, Latch Enable			16	ns


AC Electrical Characteristics

 $V_{CC}\,{=}\,2.0V-6.0V,\,C_L\,{=}\,50$ pF, $t_r\,{=}\,t_f\,{=}\,6$ ns (unless otherwise specified) $T_A = 25^\circ C$ $T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$ v_{cc} Symbol Parameter Conditions Units Guaranteed Limits Тур t_{PHL}, t_{PLH} Maximum Propagation 2.0V 80 175 220 263 Delay Data to Output 4.5V 18 35 44 53 ns 6.0V 16 30 38 45 Maximum Propagation 2.0V 80 175 220 263 t_{PHL} Delay LE to Output 4.5V 19 35 44 53 ns 6.0V 38 17 30 45 120 290 343 Maximum Propagation 2.0V 230 t_{PLH} Delay LE to Output 4.5V 27 58 69 46 ns 6.0V 22 39 49 58 Maximum Propagation 2.0V 70 175 220 263 t_{PHL} Delay Inhibit to Output 4.5V 18 35 44 53 ns 6.0V 16 38 45 30 Maximum Propagation 2.0V 120 230 290 343 t_{PLH} Delay Inhibit to Output 4.5V 27 46 58 69 ns 6.0V 22 39 49 58 125 150 100 Minimum Setup Time, 2.0V ts Data to LE 4.5V 20 25 30 ns 6.0V 17 21 25 Minimum Hold Time, t_H 2.0V 5 5 5 LE to Data 5 4.5V 5 5 ns 6.0V 5 5 5 Minimum Pulse Width, 2.0V 80 100 120 \mathbf{t}_{W} Latch Enable 4.5V 16 20 24 ns 6.0V 14 17 20 Power Dissipation C_{PD} pF 290 Capacitance (Note 5) CIN Maximum Input 5 10 10 10 pF Capacitance

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

7