GTLP1B153 1-Bit LVTTL/GTLP Driver/Receiver Pair

GTLP1B153

1-Bit LVTTL/GTLP Driver/Receiver Pair

General Description

FAIRCHILD

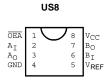
SEMICONDUCTOR

The GTLP1B153 is a 1-bit bus buffer pair with separate bit paths, that provide LVTTL-to-GTLP and GTLP-to-LVTTL signal level translation. High speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control. The edge rate control minimizes bus settling time. GTLP is a Fairchild Semiconductor derivative of the Gunning Transistor logic (GTL) JEDEC standard JESD8-3.

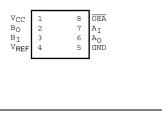
Fairchild's GTLP has internal edge-rate control and is process, voltage and temperature compensated. GTLP's I/O structure is similar to GTL and BTL but offers different output levels and receiver threshold. Typical GTLP output voltage levels are: $V_{OL} = 0.5V$, $V_{OH} = 1.5V$, and $V_{REF} = 1V$.

Features

- Interface between LVTTL and GTLP logic levels
- Designed with edge rate control circuitry to reduce output noise in the GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustability
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible driver and control inputs
- Designed using Fairchild advanced BiCMOS technology
 Bushold data inputs on A Port to eliminate the need for
- external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- Open drain on GTLP to support wired-or connection
- Flow through pinout optimizes PCB layout
- A Port source/sink –24mA/+24mA
- B Port sink +50mA


Ordering Code:

Order Number	Package Number	Package Description
GTLP1B153M	M08A	8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow [TUBE]
GTLP1B153MX		8-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow [TAPE and REEL]
GTLP1B153K8X		8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide [TAPE and REEL]


Pin Descriptions

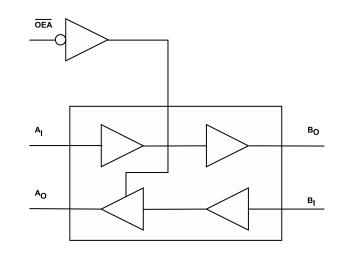
	-			
Pin Names	Description			
OEA	LVTTL Bit Level Output Enable (Active LOW for Receive)			
V_{CC} , GND, V_{REF}	Device Supplies			
Β _Ο , Β _Ι	B Port GTLP Outputs/ Inputs			
A _O / A _I	A Port LVTTL Outputs/ Inputs			

Connection Diagrams

SOIC

www.fairchildsemi.com

Functional Description


The GTLP1B153 is a 2-bit transceiver that supports GTLP and LVTTL signal levels. Data polarity is non-inverting and the data flow in the B-to-A direction is controlled by the OEA pin.

Functional Table

Inp	uts	Outputs	Description			
OEA	BI	A _O	Description			
L	L	L	A Output Data Bit Enabled			
L	н	н	A Output Data Bit Enabled			
Н	х	Z	A Output Data Bit High Impedance			
OEA A _I B _O		Bo				
Х	L	L	B Output Data Bit Enabled			
Х	Н	H (Note 1)	B Output Data Bit Enabled			

Note 1: Denotes that the bit would be in high impedance mode if there was no pull-up circuit due to open drain nature of the GTLP output.

Logic Diagram

Absolute	Maximum	Ratings(Note 2)
----------	---------	-----------------

Recommended Operating

GTLP1B153

Supply Voltage (V _{CC})	-0.5V to +4.6V	Conditions	
DC Input Voltage (VI)	-0.5V to +4.6V	Supply Voltage V _{CC}	3.15V to 3.45V
DC Output Voltage (V _O)		Bus Termination Voltage (V _{TT})	
Outputs 3-STATE	-0.5V to +4.6V	GTLP	1.47V to 1.53V
Outputs Active (Note 3)	-0.5V to +4.6V	V _{REF}	0.98V to 1.02V
DC Output Sink Current into		Input Voltage (V _I)	
A Port I _{OL}	48 mA	on A Port and Control Pins	0.0V to V _{CC}
DC Output Source Current from		HIGH Level Output Current (I _{OH})	
A Port I _{OH}	–48 mA	A Port	–24 mA
DC Output Sink Current into		LOW Level Output Current (I _{OL})	
B Port in the LOW State, I _{OL}	100 mA	A Port	+24 mA
DC Input Diode Current (I _{IK})		B Port	+50 mA
V ₁ < 0V	–50 mA	Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
DC Output Diode Current (I _{OK})		Note 2: Absolute Maximum Ratings are those w	
V _O < 0V	–50 mA	safety of the device cannot be guaranteed. The de ated at these limits. The parametric values define	
ESD Rating	>2000V	acteristics" table are not guaranteed at the absol	
Storage Temperature (T _{STG})	-65°C to +150°C	"Recommended Operating Conditions" table will actual device operation.	define the conditions for
		Note 3: I_O Absolute Maximum Rating must be obs	erved.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, V_{REF} = 1.0V (unless otherwise noted).

Symbol		Test Conditions		Min	Typ (Note 4)	Мах	Units
V _{IH}	B Port			V _{REF} + 0.05		V _{TT}	V
	Others			2.0			v
/ _{IL}	B Port			0.0		V _{REF} - 0.05	V
	Others					0.8	v
/ _{REF}	B Port			0.7V	1.0	1.3V	V
V _{TT}	B Port			V_{REF} + 50 mV	1.5	V _{CC}	V
V _{IK}		V _{CC} = 3.15V	I _I = -18 mA			-1.2	V
V _{он}	A Port	V _{CC} = Min to Max (Note 5)	I _{OH} = -100 μA	V _{CC} - 0.2			
		V _{CC} = 3.15V	I _{OH} = -8 mA	2.4			V
			I _{OH} = -24 mA	2.2			
/ _{OL}	A Port	V _{CC} = Min to Max (Note 5)	I _{OL} = 100 μA			0.2	
		V _{CC} = 3.15V	I _{OL} = 8 mA			0.4	V
		V _{CC} = 3.15V	I _{OL} = 24 mA			0.5	
	B Port	V _{CC} = 3.15V	I _{OL} = 40 mA			0.4	V
			I _{OL} = 50 mA			0.55	v
I	Control Pins	$V_{CC} = 3.45V$	$V_{I} = 3.45V$			5	μA
			$V_I = 0V$			-5	μΑ
	A Port	V _{CC} = 3.45V	$V_{I} = 3.45V$			10	μA
			$V_I = 0V$			-10	μΑ
	B Port	V _{CC} = 3.45V	V _I = 3.45V			5	
			$V_I = 0$			-5	μA
OFF	A Port,	$V_{CC} = 0$	V_{I} or $V_{O} = 0$ to 3.45V			30	μΑ
	Control Pins						
	B Port	$V_{CC} = 0$	$V_1 \text{ or } V_0 = 0 \text{ to } 3.45 \text{V}$			30	μΑ
I (HOLD)	A Port	V _{CC} = 3.15V	V ₁ = 0.8V	75			μA
			$V_I = 2.0V$			-75	μΑ
OZH	A Port	V _{CC} = 3.45V	$V_0 = 3.45V$			10	
	B Port	1	V _O = 3.45V			5	μA

www.fairchildsemi.com

GTLP1B153

DC Electrical Characteristics (Continued)

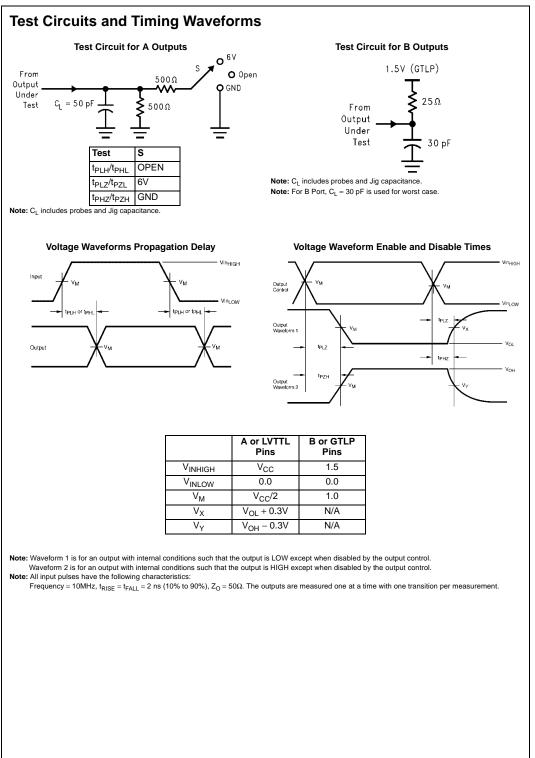
Symbol		Test Conditions		Min	Typ (Note 4)	Max	Units
l _{ozl}	A Port	$V_{CC} = 3.45V$	$V_0 = 0V$			-10	
	B Port		$V_0 = 0V$			-5	μA
I _{PU/PD}	All Ports	V _{CC} = 0 to 1.5V	V _I = 0 to 3.45V			30	μΑ
I _{CC}	A Port	$V_{CC} = 3.45V$	Outputs HIGH			11	
	or B Port	$I_{O} = 0$	Outputs LOW			11	mA
		$V_I = V_{CC}/V_{TT}$ or GND	Outputs Disabled			11	
Δl _{CC}	A Port and	V _{CC} = 3.45V,	One Input at V _{CC}			2	mA
(Note 6)	Control Pins	A or Control Inputs at $V_{CC} \mbox{ or GND}$	–0.6V				
Ci	Control Pins		$V_I = V_{CC},$		1	3	pF
	A and B Port		V _{TT} or 0				
с _о	A Port		$V_I = V_{CC}$ or 0			5	pF
	B Port		$V_I = V_{TT}$ or 0			5	pF

Note 4: All typical values are at V_{CC} = 3.3V and T_A = 25^{\circ}C.

Note 5: For conditions shown as Min, use the appropriate value specified under recommended operating conditions.

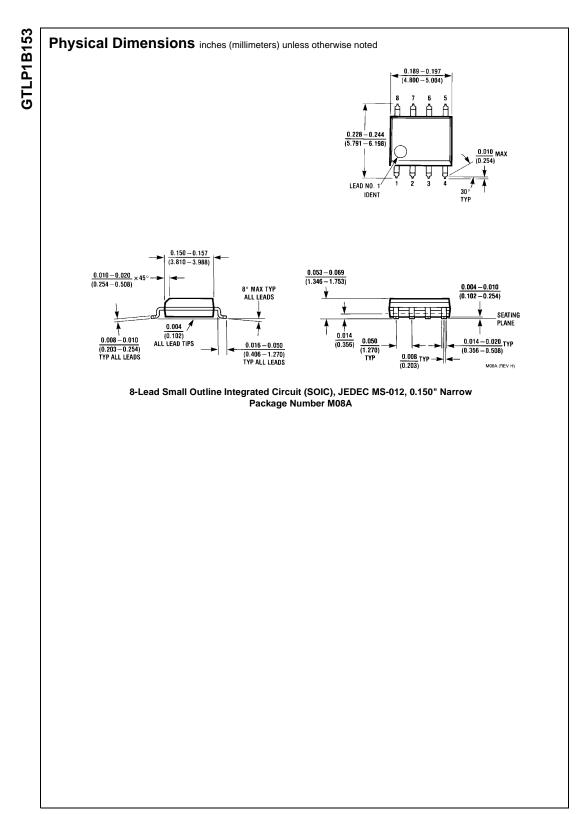
Note 6: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

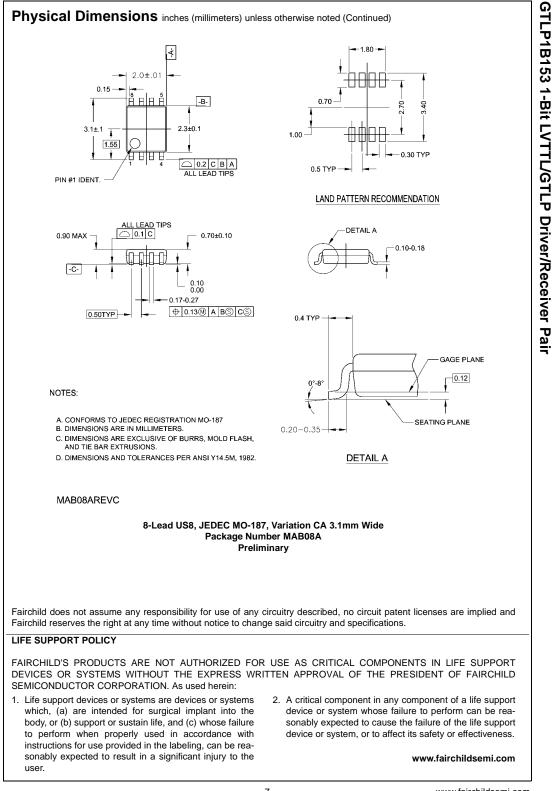
Note: GTLP V_{REF} and V_{TT} are specified to 2% tolerance since signal integrity and noise margin can be significantly degraded if these supplies are noisy. In addition, V_{TT} and R_{TERM} can be adjusted beyond the recommended operating to accommodate backplane impedances other than 50 Ω , but must remain within the boundaries of the DC Absolute Maximum Ratings. Similarly, V_{REF} can be adjusted to optimize noise margin.


AC Electrical Characteristics

Over recommended range of supply voltage and operating free-air temperature, V_{REF} = 1.0V (unless otherwise noted).

 $C_L = 30 \text{ pF}$ for B Port and $C_L = 50 \text{ pF}$ for A Port.


Symbol	From	То	Min	Тур	Max	11-14
	(Input)	(Output)		(Note 7)		Unit
t _{PLH}	А	В	1.2	2.9	7.3	
t _{PHL}	A	D	0.8	2.0	4.5	ns
t _{PLH}	В	А	1.4	2.5	4.4	ns
t _{PHL}	В	~	1.6	2.7	5.0	115
t _{RISE}	Transition Time, B C	Transition Time, B Outputs (20% to 80%)				ns
t _{FALL}	Transition Time, B C	Transition Time, B Outputs (80% to 20%)				ns
t _{RISE}	Transition Time, C C	Transition Time, C Outputs (10% to 90%)				ns
t _{FALL}	Transition Time, C C		2.2		ns	
t _{PZH} , t _{PZL}			1.2	2.7	5.3	
t _{PHZ} , t _{PLZ}	OEA	A	1.4	2.8	4.9	ns


Note 7: All typical values are at V_{CC} = 3.3V, and T_A = 25^{\circ}C.

GTLP1B153

www.fairchildsemi.com

7