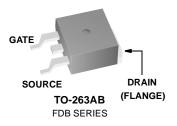
November 2004

FAIRCHILD

SEMICONDUCTOR®

FDB8874


N-Channel PowerTrench[®] MOSFET 30V, 121A, 4.7m Ω

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(ON)}$ and fast switching speed.

Applications

DC/DC converters

• High power and current handling capability

• $r_{DS(ON)} = 4.7 m\Omega$, $V_{GS} = 10V$, $I_D = 40A$

• $r_{DS(ON)} = 6.0 m\Omega$, $V_{GS} = 4.5 V$, $I_D = 40 A$

· High performance trench technology for extremely low

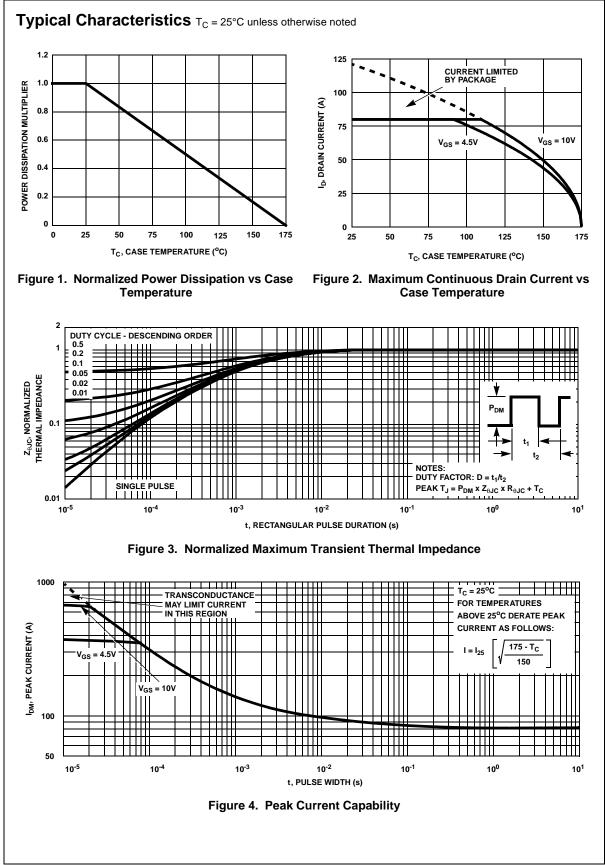
Features

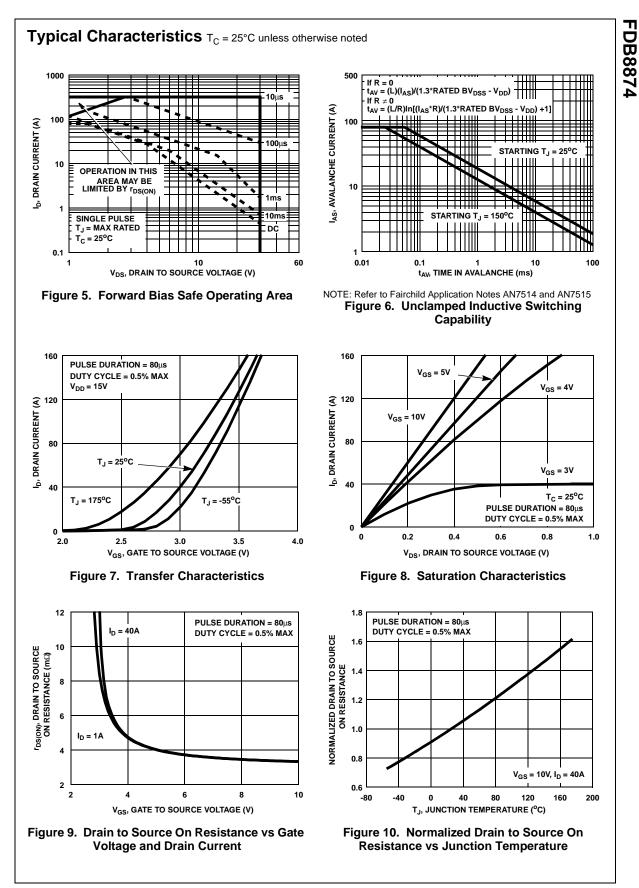
r_{DS(ON)}

· Low gate charge

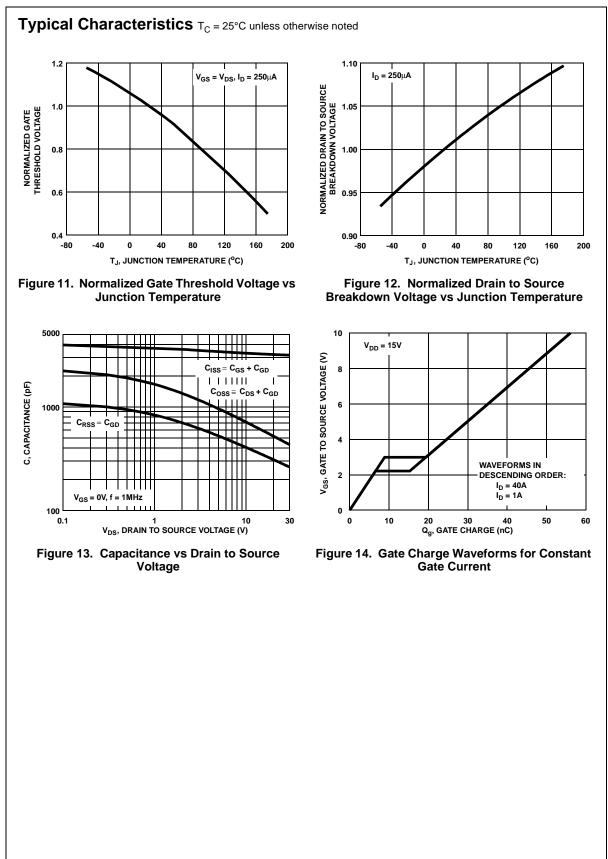
MOSFET Maximum Rating	S $T_{C} = 25^{\circ}C$ unless otherwise noted
------------------------------	---

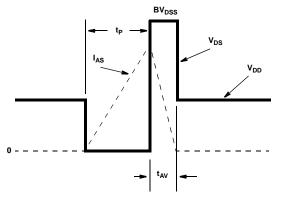
Symbol	Parameter	Ratings	Units
/ _{DSS}	Drain to Source Voltage	30	V
/ _{GS}	Gate to Source Voltage	±20	V
	Drain Current		
	Continuous ($T_c = 25^{\circ}C$, $V_{GS} = 10V$) (Note 1)	121	А
D	Continuous ($T_c = 25^{\circ}C$, $V_{GS} = 4.5V$) (Note 1)	107	Α
	Continuous ($T_{amb} = 25^{\circ}C$, $V_{GS} = 10V$, with $R_{\theta JA} = 43^{\circ}C/W$)	21	Α
	Pulsed	Figure 4	A
AS	Single Pulse Avalanche Energy (Note 2)	105	mJ
`	Power dissipation	110	W
D	Derate above 25°C	0.73	W/ºC
Г _Ј , Т _{STG}	Operating and Storage Temperature	-55 to 175	°C
	Characteristics	4.00	- <u>-</u>
R _{θJC}	Thermal Resistance Junction to Case TO-263	1.36	°C/W
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction to Ambient TO-263 (Note 3)	62	°C/V
R _{θJA}	Thermal Resistance Junction to Ambient TO-263, 1in ² copper pad area 43		°C/V


Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDB8874	FDB8874	TO-263AB	330mm	24mm	800 units
FDB8874	FDB8874_NL (Note 4)	TO-263AB	330mm	24mm	800 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	octeristics					
B _{VDSS}	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30	-	-	V
		$V_{\rm DS} = 24V$	-	-	1	
IDSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V \qquad T_C = 150^{\circ}C$	-	-	250	μA
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20V	-	-	±100	nA
	cteristics					
V _{GS(TH)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250µA	1.2	-	2.5	V
- 03(11)		$I_D = 40A, V_{GS} = 10V$	-	0.0033	0.0047	
r _{DS(ON)}		$I_{\rm D} = 40$ A, $V_{\rm GS} = 4.5$ V	-	0.0041	0.0060	~
	Drain to Source On Resistance	$I_{\rm D} = 40$ A, $V_{\rm GS} = 10$ V,	_	0.0062		Ω
		$T_J = 175^{\circ}C$	-	0.0062	0.0080	
Dvnamic	Characteristics					
C _{ISS}	Input Capacitance		-	3130	-	pF
C _{OSS}	Output Capacitance	$V_{DS} = 15V, V_{GS} = 0V,$	-	590	-	pF
C _{RSS}	Reverse Transfer Capacitance	f = 1MHz	-	345	-	pF
R _G	Gate Resistance	V _{GS} = 0.5V, f = 1MHz	-	1.9	-	Ω
Q _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0V$ to 10V	-	56	72	nC
$Q_{g(5)}$	Total Gate Charge at 5V	$V_{GS} = 0V \text{ to } 5V$ $V_{GS} = 0V \text{ to } 1V$ $V_{DD} = 15V$ $I_{D} = 40A$	-	30	38	nC
Q _{g(TH)}	Threshold Gate Charge		-	3.0	4.0	nC
Q _{gs}	Gate to Source Gate Charge		-	9.0	-	nC
Q _{gs2}	Gate Charge Threshold to Plateau	I _g = 1.0mA	-	6.0	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	_	-	11	-	nC
	g Characteristics (V _{GS} = 10V)	I	1		11	
t _{ON}	Turn-On Time		-	-	217	ns
	Turn-On Delay Time	-	-	10	-	ns
t _{d(ON)}	Rise Time	V _{DD} = 15V, I _D = 40A	-	135	-	ns
t _{d(OFF)}	Turn-Off Delay Time	$V_{GS} = 10V, R_{GS} = 4.7\Omega$	-	45	-	ns
t _f	Fall Time		-	34	-	ns
t _{OFF}	Turn-Off Time	_	-	-	118	ns
Jrain-Soi	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Voltage	$I_{SD} = 40A$	-	-	1.25	V
		$I_{SD} = 20A$	-	-	1.0	V
t _{rr}	Reverse Recovery Time	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	-	32	ns
Q _{RR}	Reverse Recovered Charge	$I_{SD} = 40A$, $dI_{SD}/dt = 100A/\mu s$	-	-	18	nC

Fackage current initiation is obs.
Starting T J = 25°C, L = 510H, I_{AS} = 64A, V_{DD} = 27V, V_{GS} = 10V.
Pulse width = 100s.
FDB8874_NL is lead free product. FDB8874_NL marking will appear on the reel label.


FDB8874



FDB8874 Rev. A2

VARY t_P TO OBTAIN REQUIRED PEAK I_{AS} V_{GS} UT UT V_D UT V_D V_D V_D V_D

Test Circuits and Waveforms

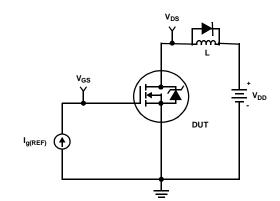


Figure 17. Gate Charge Test Circuit

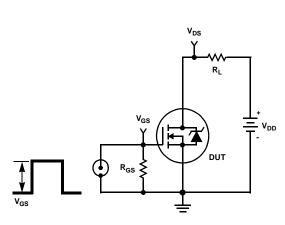


Figure 19. Switching Time Test Circuit

Figure 16. Unclamped Energy Waveforms

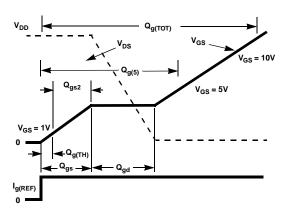
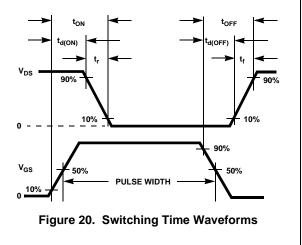



Figure 18. Gate Charge Waveforms

Thermal Resistance vs. Mounting Pad Area

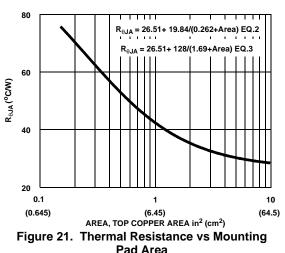
The maximum rated junction temperature, T_{JM} , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, P_{DM} , in an application. Therefore the application's ambient temperature, T_A (°C), and thermal resistance $R_{\theta JA}$ (°C/W) must be reviewed to ensure that T_{JM} is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part.

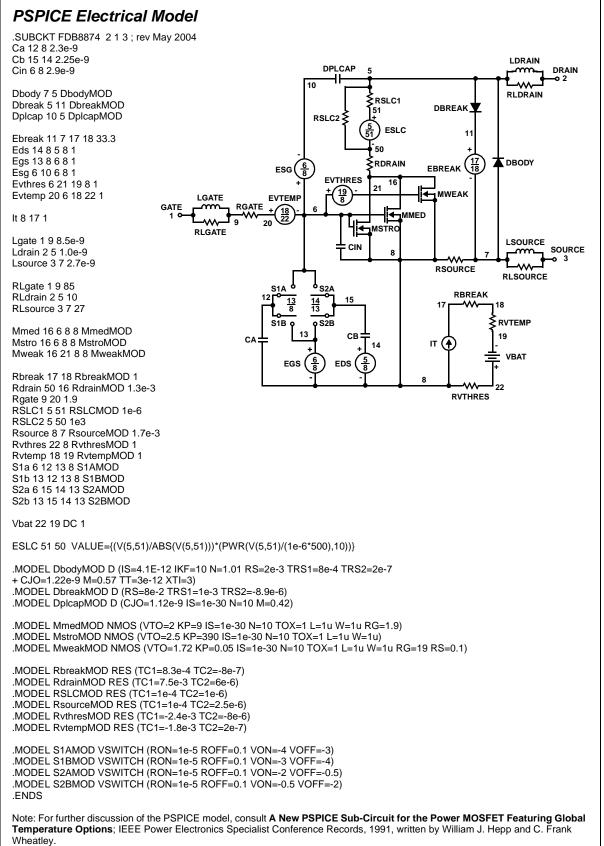
$$P_{DM} = \frac{(T_{JM} - T_A)}{R_{\theta JA}}$$
(EQ. 1)

In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part's current and maximum power dissipation ratings. Precise determination of P_{DM} is complex and influenced by many factors:

- 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board.
- 2. The number of copper layers and the thickness of the board.
- 3. The use of external heat sinks.
- 4. The use of thermal vias.
- 5. Air flow and board orientation.
- 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in.

Fairchild provides thermal information to assist the designer's preliminary application evaluation. Figure 21 defines the $R_{\theta,JA}$ for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve.

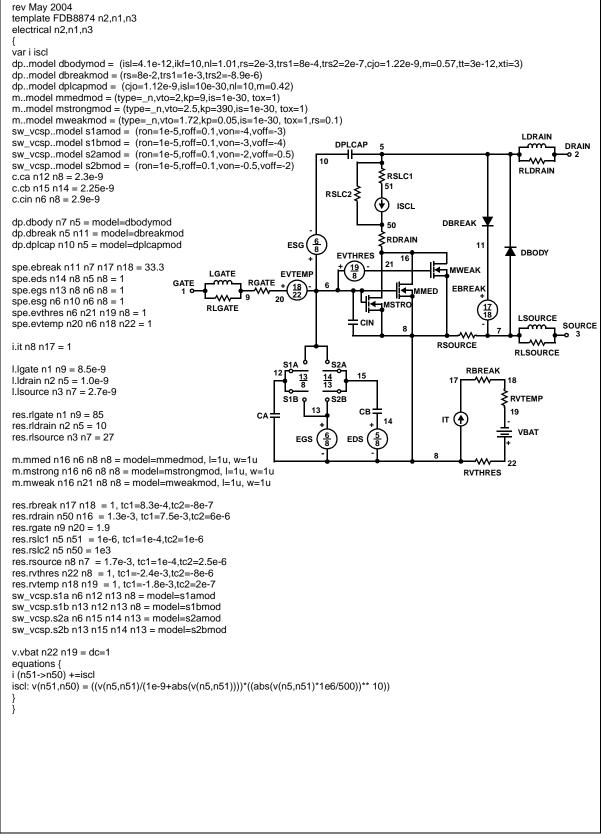

Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeters square. The area, in square inches or square centimeters is the top copper area including the gate and source pads.

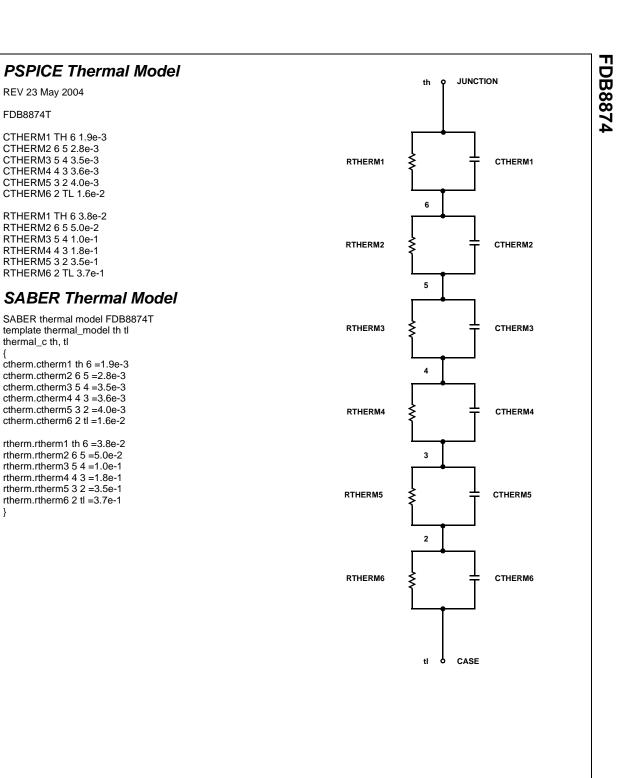

$$R_{\theta JA} = 26.51 + \frac{19.84}{(0.262 + Area)}$$
 (EQ. 2)

Area in Inches Squared

$$R_{\theta JA} = 26.51 + \frac{128}{(1.69 + Area)}$$
(EQ. 3)

Area in Centimeters Squared




FDB8874 Rev. A2

П

DB8874

SABER Electrical Model

FDB8874 Rev. A2

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	Stealth™
ActiveArray™	FASTr™	LittleFET™	PowerEdge™	SuperFET™
Bottomless™	FPS™	MICROCOUPLER™	PowerSaver™	SuperSOT™-3
CoolFET™	FRFET™	MicroFET™	PowerTrench [®]	SuperSOT™-6
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QFET [®]	SuperSOT™-8
DOME™	GTO™່	MICROWIRE™	QS™	SyncFET™
EcoSPARK™	HiSeC™	MSX™	QT Optoelectronics [™]	TinyLogic [®]
E ² CMOS [™]	I²C™	MSXPro™	Quiet Series [™]	TINYOPTO™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConfigure™	TruTranslation™
FACT™	ImpliedDisconnect [™]	OCXPro™	RapidConnect™	UHC™
FACT Quiet Seri	es™	OPTOLOGIC[®]	µSerDes™	UltraFET [®]
Across the board. Around the world.™		OPTOPLANAR™	SILENT SWITCHER®	UniFET™
The Power Franchise [®]		PACMAN™	SMART START™	VCX™
Programmable Active Droop [™]		POP™	SPM™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	•	Rev. I14