

FAN8400D (FAN8400BD3)

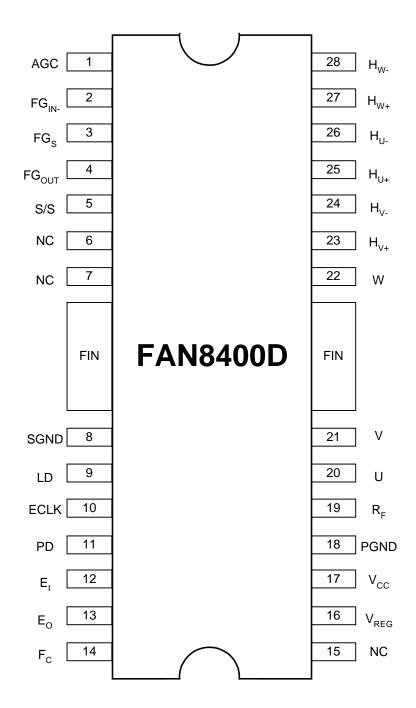
3-Phase BLDC Motor Driver with PLL

Features

- 3-Phase BLDC motor driver IC with speed control
- Phase Locked Loop (PLL) speed control
- · Built-in phase locked detector output
- · Current linear drive scheme
- · External clock for arbitrary motor speed
- Built-in FG amplifier and integrating amplifier
- Auto Gain Control (AGC) circuit for compensation hall amplifier
- Built-in protection circuits (over-current limit, under voltage limit, thermal shut down)

Description

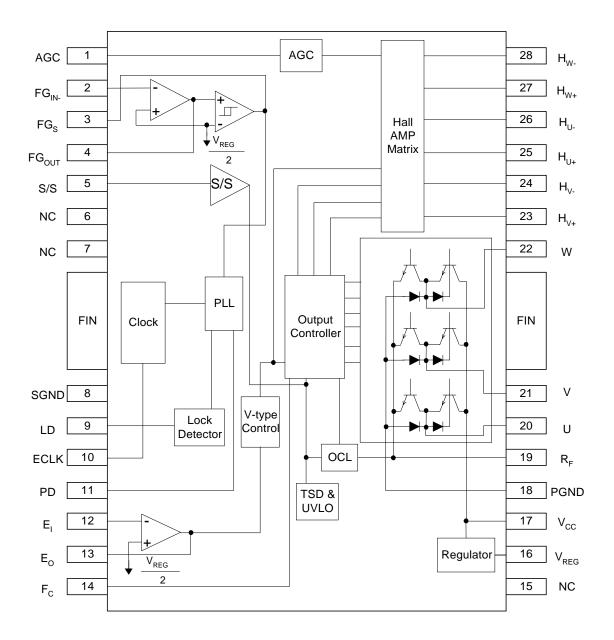
The FAN8400D is a monolithic integrated circuit. it is one driver for laser beam printer (LBP) polygon mirror motor, which has single chip implementation of all circuits. For extremely high rotational precision, it employs the phase locked loop (PLL) speed control scheme.


Typical application

- Polygon mirror motor drive IC for laser beam printer
- Polygon mirror motor drive IC for facsimile
- · Polygon mirror motor drive IC for duplicator
- Polygon mirror motor drive IC for multi function printer
- General 3 phase BLDC motor drive IC

Ordering Information

Device	Package	Operating Temp		
FAN8400BD3	28-SSOPH-375SG2	−20°C ~ +80°C		
FAN8400BD3TF	28-SSOPH-375SG2	−20°C ~ +80°C		


Pin Assignments

Pin Definitions

Pin Number	Pin Name	Pin Function Description
1	AGC	AGC amplifier frequency characteristics correction
2	FGIN-	FG amplifier inverting input
3	FGs	FG pulse output
4	FGout	FG amplifier output
5	S/S	Stop and start
6	NC	-
7	NC	-
8	SGND	Signal ground
9	LD	Phase locked loop detector output
10	ECLK	External clock
11	PD	Phase locked loop detector output
12	Eı	Error amplifier inverting input
13	Eo	Error amplifier output
14	FC	Control amplifier frequency correction
15	NC	-
16	VREG	Regulator voltage stabilization output
17	Vcc	Power supply
18	PGND	Power ground
19	RF	Output current detection
20	U	U output
21	V	V output
22	W	W output
23	H _{V+}	V hall amplifier non inverting input
24	H _V -	V hall amplifier inverting input
25	H _{U+}	U hall amplifier non inverting input
26	Hu-	U hall amplifier inverting input
27	Hw+	W hall amplifier non inverting input
28	Hw-	W hall amplifier inverting input

Internal Block Diagram

Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Value	Unit	Remark
Maximum supply voltage	VCCMAX	30	V	-
Maximum output current	IOMAX	0.6	A	-
Power dissipation	Pd	1.7	W	-
Operating temperature	TOPR	−20 ~ + 80	°C	-
Storage temperature	TSTG	−50 ~ + 150	°C	-

Recommended Operating Conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating voltage range	Vcc	20	24	28	V

Electrical Characteristics (Ta = 25°C)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
POWER SUPPLY CURRENT							
Low power supply current	ICCL	Stop mode, VCC=20V	20	30	40	mA	
Typical power supply current	ICCT	Stop mode, VCC=24V	21	31	41	mA	
High power supply current	Іссн	Stop mode, Vcc=28V	22	32	42	mA	
OUTPUT POWER TRANSISTOR	CHARACTE	RISTICS (VAGC = 3.5V)	•				
U source saturation voltage (1)	VSATUU1	I _O =0.6A, R _F =0Ω	-	1.8	2.5	V	
U source saturation voltage (2)	VSATUU2	IO=0.3A, RF=0Ω	-	1.6	2.3	V	
U sink saturation voltage (1)	VSATUL1	I _O =0.6A, R _F =0Ω	-	0.5	1.0	V	
U sink saturation voltage (2)	VSATUL2	I _O =0.3A, R _F =0Ω	-	0.25	0.7	V	
V source saturation voltage (1)	VSATVU1	I _O =0.6A, R _F =0Ω	-	1.8	2.5	V	
V source saturation voltage (2)	VSATVU2	I _O =0.3A, R _F =0Ω	-	1.6	2.3	V	
V sink saturation voltage (1)	VSATVL1	I _O =0.6A, R _F =0Ω	-	0.5	1.0	V	
V sink saturation voltage (2)	VSATVL2	I _O =0.3A, R _F =0Ω	-	0.25	0.7	V	
W source saturation voltage (1)	VSATWU1	IO=0.6A, RF=0Ω	-	1.8	2.5	V	
W source saturation voltage (2)	VSATWU2	IO=0.3A, RF=0Ω	-	1.6	2.3	V	
W sink saturation voltage (1)	VSATWL1	I _O =0.6A, R _F =0Ω	-	0.5	1.0	V	
W sink saturation voltage (2)	VSATWL2	I _O =0.3A, R _F =0Ω	-	0.25	0.7	V	
U output leakage current	IOLEAKU	Vcc=28V, U=28V	-	-	100	μΑ	
V output leakage current	IOLEAKV	V _{CC} =28V, V=28V	-	-	100	μΑ	
W output leakage current	IOLEAKW	VCC=28V, W=28V	-	-	100	μΑ	
UNDER VOLTAGE LIMIT							
UVLO operating voltage	VsD	-	7.0	7.6	8.2	V	
UVLO hysteresis	HVsD	-	1.0	1.3	1.6	V	
REGULATOR VOLTAGE OUTPUT	•		•				
Regulator output voltage	VREG	-	5.8	6.3	6.8	V	
Power supply variation	HVREG1	VCC=20~28V	-	-	100	mV	
Load variation	HVREG2	ILOAD=0~10mA	-	-	100	mV	
HALL AMPLIFIER INPUT BLOCK							
H∪+ hall AMP input bias current	IBHA1+	-	-	2	10	μΑ	
HU– hall AMP input bias current	IBHA1-	-	-	2	10	μΑ	
H _{V+} hall AMP input bias current	IBHA2+	-	-	2	10	μΑ	
H _V - hall AMP input bias current	Івна2-	-	-	2	10	μΑ	
Hw+ hall AMP input bias current	Івназ+	-	-	2	10	μΑ	
H _W – hall AMP input bias current	Івназ–	-	-	2	10	μΑ	
Hall differential input range	VHIN	Sine wave input	50	-	350	mVp-p	
Hall common input range	VICM	Differential input : 50mVp-p	3.5	-	Vcc-3.5	V	

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
FG AMPLIFIER BLOCK	FG AMPLIFIER BLOCK							
FG AMP. input bias current	IBFG	-	-1	-	1	μΑ		
FG AMP. DC bias level	VBFG	-	2.90	3.15	3.40	V		
FG output high level voltage	Vohfg	No external load	VREG-1.1V	-	-	V		
FG output low level voltage	Volfg	No external load	-	0.8	1.2	V		
FG SCHMIDT COMPARATOR BL	FG SCHMIDT COMPARATOR BLOCK							
FGS high / low input hysteresis	VSHL	-	-50	0	50	mV		
FGS low / high input hysteresis	Vslh	-	100	150	200	mV		
FGS hysteresis	VFGL	-	100	-	200	mV		
FGS input operating level	VFGSIL	-	400	-	-	mVp-p		
FGS output saturation voltage	VFGSSAT	IFGS=4mA	-	0.2	0.4	V		
FGS output leakage current	IFGSLEAK	V _{CC} =28V	-	-	10	μΑ		
ERROR AMPLIFIER BLOCK	•		•	1	ı			
Error AMP. input bias current	IBER	-	-1	-	1	μΑ		
Error AMP. DC bias level	VBER	-	2.90	3.15	3.40	V		
Error output high level voltage	VOHER	No external load	VREG-1.1V	-	-	V		
Error output low level voltage	Voler	No external load	-	-	1.0	V		
CURRENT LIMIT OPERATION	•		•		•	•		
RF output voltage limit	VRF	-	0.55	0.60	0.65	V		
CONTROLLER BLOCK	•		•		•	•		
Dead zone	VDZ	-	50	100	300	mV		
Output idle voltage	VID	-	-	-	5	mV		
Forward gain	GDF+	-	0.4	0.5	0.6	-		
Reverse gain	GDF-	-	-0.6	-0.5	-0.4	-		
Accelerate command voltage	VSTA	-	VREG-1.1V	-	-	V		
Decelerate command voltage	Vsto	-	-	0.8	1.5	V		
Forward limit voltage	VL+	RF=22Ω	-	0.60	-	V		
Reverse limit voltage	VL-	RF=22Ω	-	0.60	-	V		
PHASE COMPARATOR OUTPUT	BLOCK		•		•	•		
PD output high level voltage	VPDH	No external load	5.2	-	-	V		
PD output low level voltage	VPDL	No external load	-	-	0.7	V		
PD output source current	I _{PD+}	V _{PD} =0.5*V _{REG}	-	-	-0.6	mA		
PD output sink current	IPD-	VPD=0.5*VREG	1.0	-	-	mA		
PHASE LOCKED LOOP DETECT	PHASE LOCKED LOOP DETECTOR OUTPUT BLOCK							
LD output saturation voltage	VLDSAT	I _{LD} =5mA	-	0.1	0.4	V		
LD output leakage current	ILDLEAK	Vcc=28V	-	-	10	μΑ		
	•			•		•		

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit		
EXTERNAL CLOCK INPUT BLOCK								
External input frequency	FCLK	External clock mode	0.5	-	7.0	KHz		
ECLK input open voltage	VIOCLK	-	3.7	4.2	4.7	V		
ECLK input high level current	IHCLK	VCLK=VREG	100	150	200	μΑ		
ECLK input low level current	IILCLK	VCLK=0V	-400	-300	-200	μΑ		
S/S BLOCK								
S/S input high level voltage	VIHSS	-	3.0	-	VREG	V		
S/S input low level voltage	VILSS	-	0	-	1.5	V		
S/S hysteresis	Visss	-	0.3	0.5	0.7	V		
S/S input open voltage	VIOSS	-	3.7	4.2	4.7	V		
S/S input high level current	lihss	VSS=VREG	100	150	200	μΑ		
S/S input low level current	lilss	Vss=0V	-400	-300	-200	μΑ		

Application Information

1. Output Block

- 3 Phase power transistor and free wheeling diodes
- Reverse active type upper side diodes and parasitic lower side diodes
- full wave current linear drive with current feedback
- · Connection with external capacitor to prevent voltage spike and oscillation by current drive
- Output transistor commutation by "Winner takes all" method
- Built in over current limit (OCL) circuit

2. Hall AMP Block

- Detection of rotor position using 3 phase hall sensors
- · Determination of output commutation by hall signal

Hall U	Hall V	Hall W	Forwa	orque]		
пан О	Iali U Hali V	nali v nali vv		Output U	Output V	Output W
Н	L	Н	L [H]	H [L]	M [M]	
Н	L	L	L [H]	M [M]	H [L]	
Н	Н	L	M [M]	L [M]	H [L]	
L	Н	L	H [L]	L [H]	M [M]	
L	Н	Н	H [L]	M [M]	L [H]	
L	L	Н	M [M]	H [L]	L [H]	

3. AGC Block

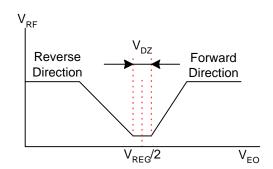
- This block is remained output amplitude.
- It is controlled by envelope through hall signals.

$$V_{AGC} \propto \frac{1}{H_{NI} - H_{I}}$$

NOTES:

VAGC is voltage of AGC output. HNI is hall non inverting input voltage. HI is hall inverting voltage.

4. Speed Control Block


- Digital phase locked loop (PLL) circuit
- Generating error pulse between rising edge of clock and falling edge of FG signal.
- High precision stable speed control

5. FG AMP & FG Schmidt Comparator Block

- This block measures of motor rotation speed and controls motor speed.
- It is determined FG AMP gain and filter by external component.
- FG schmidt block change sine wave form to square wave form

6. Error AMP Block

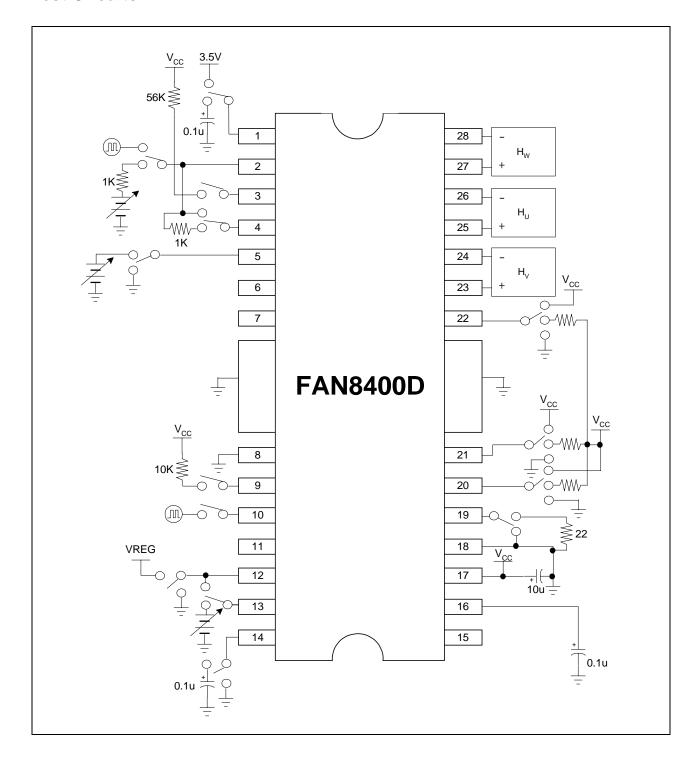
- It composes of dumping filter and ripple filter by external component.
- It determines output amplitude of error AMP by width error pulse.
- It is determined output current by output amplitude of error AMP.
- · Bidirectional torque control

7. Regulator Block

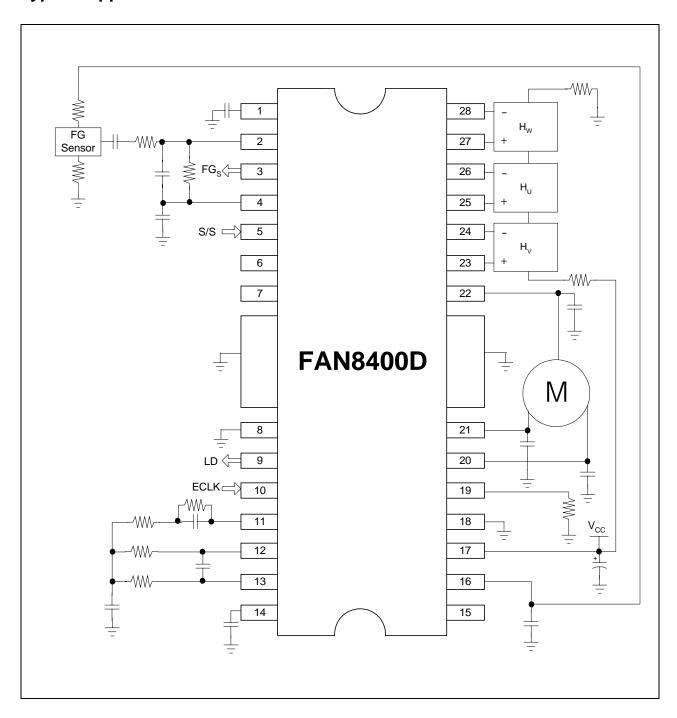
- Power supply of control circuits in inside.
- Band gap reference circuits.

8. Lock Detector

- It is low when FG frequency reaches capture range of clock frequency.
- · Open correct


9. FG Pulse Output

- · Monitoring pin for motor rotative speed
- · Open correct


10. Stop And Start

- Stop mode: Open or high voltage
- Start mode: Low voltage

Test Circuits

Typical Application Circuits

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com