

July 1999 Revised July 1999

74VCX132

Low Voltage Quad 2-Input NAND Gate with Schmitt Trigger Inputs and 3.6V Tolerant Inputs and Outputs

General Description

The VCX132 contains four 2-input NAND gates with Schmitt Trigger Inputs. The pin configuration and function are the same as the VCX00 except the inputs have hysteresis between the positive-going and negative-going input thresholds. This hysteresis is useful for transforming slowly switching input signals into sharply defined, jitter-free output signals. This product should be used where noise margin greater than that of conventional gates is required.

The VCX132 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V.

This product is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.

Features

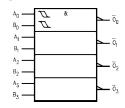
- 1.65V-3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- ton
- 3.3 ns max for 3.0V to 3.6V V_{CC}
 4.1 ns max for 2.3V to 2.7V V_{CC}
 8.2 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL})

±24 mA @ 3.0V V_{CC}

 \pm 18 mA @ 2.3V V_{CC}

±6 mA @ 1.65V V_{CC}

- Uses patented Quiet Series[™] noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance:

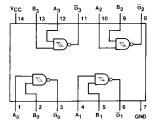

Human body model > 2000V Machine model > 250V

Ordering Code:

Order Number	Package Number	Package Description
74VCX132M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow
74VCX132MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Diagram



Pin Descriptions

Pin Name	Description
A _n , B _n	Inputs
Ōn	Outputs

Quiet Series™ is a trademark of Fairchild Semiconductor Corporation.

Connection Diagram

Absolute Maximum Ratings(Note 1)

±100 mA

-0.5V to +4.6V Supply Voltage (V_{CC}) DC Input Voltage (V_I) -0.5V to 4.6V

DC Output Voltage (V_O) HIGH or LOW State (Note 2) -0.5V to $V_{CC} + 0.5V$ $V_{CC} = 0V$ -0.5V to +4.6V

DC Input Diode Current (I_{IK})

 $V_I < 0V$ -50 mA

DC Output Diode Current (I_{OK})

 $V_O < 0V$ -50 mA $V_O > V_{CC}$ +50 mA DC Output Source/Sink Current ±50 mA

 (I_{OH}/I_{OL})

DC V_{CC} or Ground Current per

Supply Pin (I_{CC} or Ground)

-65°C to +150°C Storage Temperature (T_{STG})

Recommended Operating Conditions (Note 3)

Power Supply

1.65V to 3.6V Operating Data Retention Only 1.2V to 3.6V -0.3V to 3.6V

Input Voltage Output Voltage (V_O)

HIGH or LOW State 0V to V_{CC}

Output Current in I_{OH}/I_{OL}

 $V_{CC} = 3.0 \text{V to } 3.6 \text{V}$ ±24 mA $V_{CC} = 2.3V \text{ to } 2.7V$ $\pm 18~\text{mA}$ $V_{CC} = 1.65V$ to 2.3V $\pm 6~\text{mA}$

Free Air Operating Temperature (T_A) -40°C to +85°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions

for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics (2.7V $< V_{CC} \le 3.6V$)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _t +	Positive Threshold		3.6		2.2	V
			3.0		2.0	v
V _t -	Negative Threshold		3.6	0.8		V
			3.0	0.7		v
V _H	Input Hysteresis		3.6	0.3	1.2	V
			3.0	0.3	1.2	V
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	2.7-3.6	V _{CC} -0.2		
		I _{OH} = -12 mA	2.7	2.2		V
		$I_{OH} = -18 \text{ mA}$	3.0	2.4		v v
		$I_{OH} = -24mA$	3.0	2.2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.7–3.6		0.2	
		$I_{OL} = 12 \mu A$	2.7		0.4	V
		I _{OL} = 18 mA	3.0		0.4	v v
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
I _I	Input Leakage Current	0 ≤ V _I ≤ 3.6V	2.7-3.6		±15.0	μΑ
I _{OFF}	Power Off Leakage Current	$0 \le (V_1, V_0) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	V _I = V _{CC} or GND	2.7-3.6		20	μА
		$V_{CC} \le V_I \le 3.6V$	2.7-3.6		±20	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	2.7-3.6		750	μΑ

DC Electrical Characteristics (2.3V \leq $V_{CC} \leq$ 2.7V)

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
V _t +	Positive Threshold		2.3		1.6	V
V _t -	Negative Threshold		2.3	0.5		V
ΔV_{T}	Input Hysteresis		2.3	0.3	1.0	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \mu\text{A}$	2.3–2.7	V _{CC} -0.2		
		I _{OH} = -6 mA	2.3	2.0		V
		$I_{OH} = -12 \text{ mA}$	2.3	1.8		V
		$I_{OH} = -18 \text{ mA}$	2.3	1.7		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	2.3–2.7		0.2	
		$I_{OL} = 12 \mu A$	2.3		0.4	V
		I _{OL} = 18 mA	2.3		0.6	
I _I	Input Leakage Current	$0 \le V_1 \le 3.6V$	2.3–2.7		±5.0	μΑ
I _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	2.3–2.7		20	
		$V_{CC} \le V_I \le 3.6V$	2.3-2.7		±20	μΑ

DC Electrical Characteristics (1.65V \leq $V_{\mbox{\footnotesize CC}}$ < 2.3V)

Symbol	Parameter	Conditions	V _{cc} (V)	Min	Max	Units
V_{t}^{+}	Positive Threshold		1.65		1.3	V
V _t -	Negative Threshold		1.65	0.25		V
ΔV_T	Input Hysteresis		1.65	0.2	0.9	V
V _{OH}	HIGH Level Output Voltage	$I_{OH} = -100 \ \mu A$	1.65-2.3	V _{CC} -0.2		V
		$I_{OH} = -6 \text{ mA}$	1.65	1.25		V
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65–2.3		0.2	V
		$I_{OL} = 6 \text{ mA}$	1.65		0.3	V
I _I	Input Leakage Current	0 ≤ V _I ≤ 3.6V	1.65–2.3		±5.0	μΑ
I _{OFF}	Power Off Leakage Current	$0 \le (V_I, V_O) \le 3.6V$	0		10	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND	1.65-2.3		20	μА
		$V_{CC} \le V_1 \le 3.6V$	1.65-2.3		±20	μΑ

AC Electrical Characteristics (Note 4)

		$T_A = -40$ °C to $+85$ °C, $C_L = 30$ pF, $R_L = 500$ Ω						
Symbol	Parameter	V _{CC} = 3.3	3 V ± 0.3V	V _{CC} = 2.5	V ± 0.2V	V _{CC} = 1.8	$V \pm 0.15V$	Units
		Min	Max	Min	Max	Min	Max	
t _{PHL}	Propagation Delay	0.6	3.3	0.8	4.1	1.0	8.2	ns
t _{PLH}								
toshl	Output to Output		0.5		0.5		0.75	ns
t _{OSLH}	Skew (Note 5)							

Note 4: For $C_L = 50$ pF, add approximately 300 ps to the AC maximum specification.

Note 5: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = +25°C	Units
V _{OLP}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	0.25	
	Peak V _{OL}		2.5	0.6	V
			3.3	0.8	
V _{OLV}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	-0.25	
	Valley V _{OL}		2.5	-0.6	V
			3.3	-0.8	
V _{OHV}	Quiet Output Dynamic	$C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$	1.8	1.5	
	Valley V _{OH}		2.5	1.9	V
			3.3	2.2	

Capacitance

Symbol	Parameter	Conditions	$T_A = +25^{\circ}C$	Units
- Cyllibor	T di dillotoi	Schalashs	Typical	
C _{IN}	Input Capacitance	$V_I = 0V \text{ or } V_{CC}, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	6	pF
C _{OUT}	Output Capacitance	V _I = 0V or V _{CC} , V _{CC} = 1.8V, 2.5V or 3.3V	7	pF
C _{PD}	Power Dissipation Capacitance	$V_I = 0V \text{ or } V_{CC}, f = 10MHz, V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$	20	pF

AC Loading and Waveforms

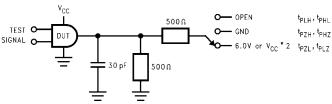
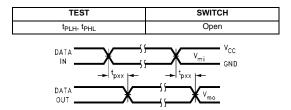
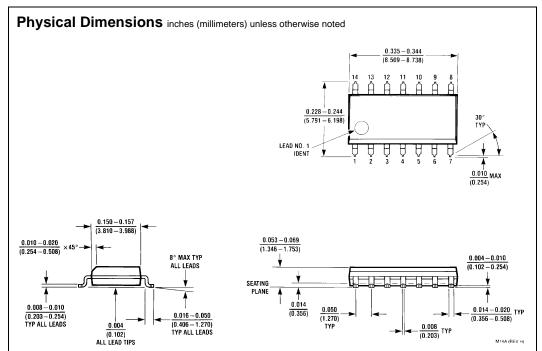
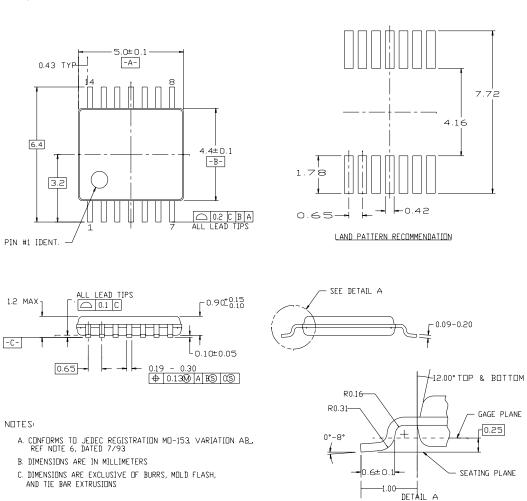


FIGURE 1. AC Test Circuit


FIGURE 2. Waveform for Inverting and Non-inverting Functions

Symbol	V _{CC}					
- Cymbol	$\textbf{3.3V} \pm \textbf{0.3V}$	2.5V ± 0.2V	1.8V ± 0.15V			
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2			
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2			

14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com