FAIRCHILD

SEMICONDUCTOR

74AC251 • 74ACT251 8-Input Multiplexer with 3-STATE Output

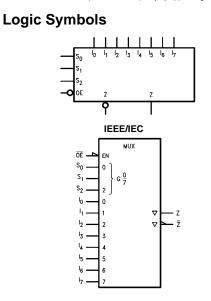
General Description

The AC/ACT251 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one bit of data from up to eight sources. It can be used as universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

Features

- I_{CC} reduced by 50%
- Multifunctional capability
- On-chip select logic decoding
- Inverting and noninverting 3-STATE outputs

November 1988


Revised November 1999

- Outputs source/sink 24 mA
- ACT251 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC251SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC251SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC251MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC251PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT251SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT251MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT251PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Descriptions

Pin Names	Description
S ₀ -S ₂	Select Inputs
OE	3-STATE Output Enable Input
I ₀ —I ₇	Multiplexer Inputs
Z	3-STATE Multiplexer Output
Z	Complementary 3-STATE Multiplexer Output

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

Functional Description

This device is a logical implementation of a single-pole, 8-position switch with the switch position controlled by the state of three Select inputs, S₀, S₁, S₂. Both true and complementary outputs are provided. The Output Enable input (\overline{OE}) is active LOW. When it is activated, the logic function provided at the output is:

the output is:

$$\begin{aligned} (I_0 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_1 \cdot S_0 \cdot \overline{S}_1 \cdot \overline{S}_2 + I_2 \cdot \overline{S}_0 \cdot S_1 \cdot \overline{S}_2 + I_3 \cdot S_0 \cdot S_1 \cdot \overline{S}_2 + I_4 \cdot \overline{S}_0 \cdot \overline{S}_1 \cdot S_2 + I_5 \cdot S_0 \cdot \overline{S}_1 \cdot S_2 + I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_6 \cdot \overline{S}_0 \cdot S_1 \cdot S_2 + I_7 \cdot S_0 \cdot S_1 \cdot S_2) \end{aligned}$$

When the Output Enable is HIGH, both outputs are in the high impedance (High Z) state. This feature allows multiplexer expansion by tying the outputs of up to 128 devices together. When the outputs of the 3-STATE devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. The Output Enable signals should be designed to ensure there is no overlap in the active-LOW portion of the enable voltages.

	Inp	Out	puts		
OE	S ₂	S ₁	S ₀	z	z
Н	х	Х	Х	Z	Z
L	L	L	L	Īo	I ₀
L	L	L	Н	Ī1	I ₁
L	L	н	L	\overline{I}_2	I_2
L	L	н	Н	Ī3	l ₃
L	н	L	L	Ī ₄	I_4
L	н	L	н	\overline{I}_5	I_5
L	н	н	L	Ī ₆	I ₆
L	н	н	н	Ī ₇	I ₇

H = HIGH Voltage Level

Truth Table

L = LOW Voltage Level

X = Immaterial Z = High Impedance

Pese net he this diagram is provided only for the understanding of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be used to estimate the space of logic operations and should net be estimate the space of logic operations and should net be us

Logic Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (I _{IK})	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	–0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	±50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

Recommended Operating Conditions Supply Voltage (V_{CC}) AC 2.0V to 6.0V 4.5V to 5.5V ACT 0V to V_{CC} Input Voltage (VI) 0V to V_{CC} Output Voltage (V_O) $-40^{\circ}C$ to $+85^{\circ}C$ Operating Temperature (T_A) Minimum Input Edge Rate $(\Delta V/\Delta t)$ AC Devices V_{IN} from 30% to 70% of V_{CC} V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns Minimum Input Edge Rate ($\Delta V/\Delta t$) ACT Devices V_{IN} from 0.8V to 2.0V V_{CC} @ 4.5V, 5.5V 125 mV/ns Note 1: Absolute maximum ratings are those values beyond which damage

74AC251 • 74ACT251

to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	Vcc			$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Symbol	Falameter	(V)	Тур	Gι	aranteed Limits	Units	Conditions	
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \ \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46		I _{OH} = -12 mA	
		4.5		3.86	3.76	V	I _{OH} = -24 mA	
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 2)	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	I _{OL} = 24 mA	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN} (Note 4)	Maximum Input Leakage Current	5.5		±0.1	±1.0	μA	$V_I = V_{CC}$, GND	
I _{OZ}	Maximum 3-STATE						V_{I} (OE) = V_{IL} , V_{IH}	
	Current	5.5		±0.25	±2.5	μA	$V_I = V_{CC}, V_{GND}$	
							$V_O = V_{CC}$, GND	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
	Maximum Quiescent Supply Curent	5.5		4.0	40.0	μA	$V_{IN} = V_{CC}$ or GND	

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

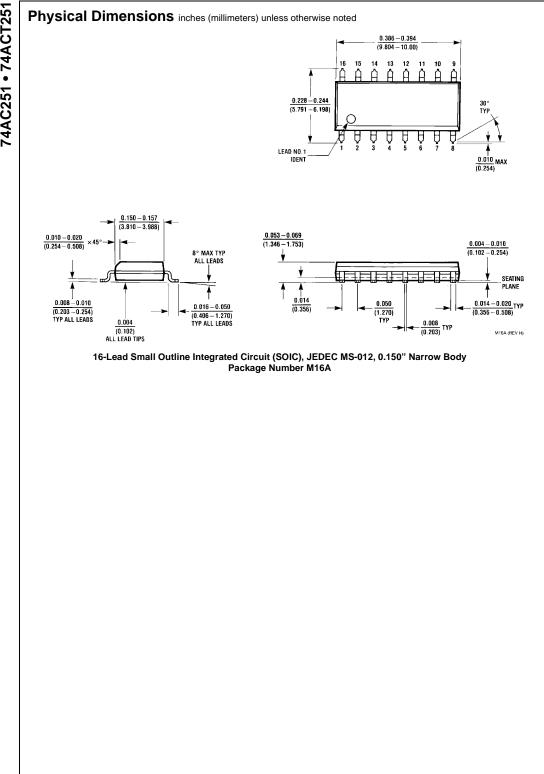
Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
	Parameter	(V)	Тур	G	uaranteed Limits	Units	Conditions
VIH	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$
VIL	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA
	Output Voltage	5.5	5.49	5.4	5.4	v	
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	I _{OH} = -24 mA
		5.5		4.86	4.76		I _{OH} = -24 mA (Note 5
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	V	
	Output Voltage	5.5	0.001	0.1	0.1	v	$I_{OUT} = 50 \ \mu A$
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	I _{OL} = 24 mA
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC_2}$ GND
	Leakage Current	5.5		±0.1	11.0	μΑ	$v_1 = v_{CC}$, GND
I _{OZ}	Maximum 3-STATE	5.5		±0.5	±5.0	μA	$V_I = V_{IL}, V_{IH}$
	Current	0.0		±0.5	10.0	μА	$V_{O} = V_{CC}, GND$
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$
	I _{CC} /Input	5.5	0.0		1.0	IIIA	$v_{1} = v_{CC} = 2.1v$
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5		4.0	40.0	ıιΔ	$V_{IN} = V_{CC}$
	Supply Current	5.5		4.0	40.0	μA	or GND

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

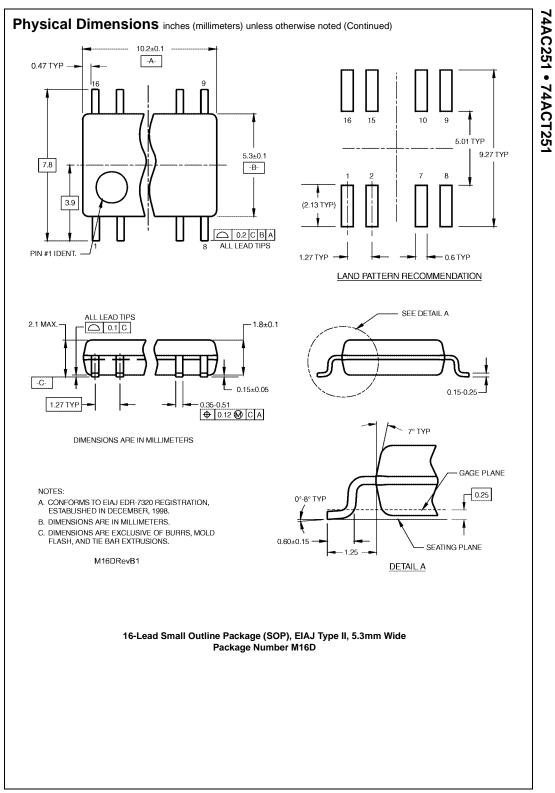
AC Electrical Characteristics for AC

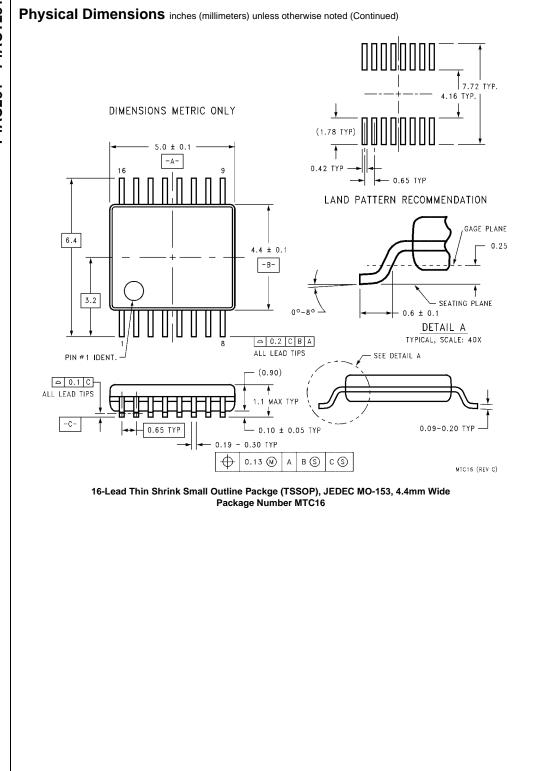
		V _{cc}		$\textbf{T}_{\textbf{A}}=+25^{\circ}\textbf{C}$		$T_A = -40^\circ$	C to +85°C	
Symbol	Parameter	(V)	(V) C _L = 50 pF			$C_L = 50 \text{ pF}$		Units
			(Note 7)	Min	Тур	Max	Min	Max
t _{PLH}	Propagation Delay	3.3	1.5	11.5	17.5	1.5	19.0	
	S_n to Z or \overline{Z}	5.0	1.5	8.5	12.5	1.5	13.5	ns
t _{PHL}	Propagation Delay	3.3	1.5	11.0	17.5	1.5	19.0	ns
	S_n to Z or \overline{Z}	5.0	1.5	8.0	12.5	1.5	13.5	
t _{PLH}	Propagation Delay	3.3	1.5	10.0	14.0	1.5	15.5	ns
	I _n to Z or Z	5.0	1.5	7.0	10.0	1.5	11.0	115
t _{PHL}	Propagation Delay	3.3	1.5	9.0	14.0	1.5	15.5	
	I_n to Z or \overline{Z}	5.0	1.5	6.5	10.0	1.5	11.0	ns
t _{PZH}	Output Enable Time	3.3	1.5	7.5	11.0	1.5	12.0	ns
	OE to Z or Z	5.0	1.5	5.5	8.0	1.5	9.0	115
t _{PZL}	Output Enable Time	3.3	1.5	7.5	11.0	1.5	12.0	20
	OE to Z or Z	5.0	1.5	5.5	8.0	1.5	9.0	ns
t _{PHZ}	Output Disable Time	3.3	1.5	8.5	11.5	1.5	13.0	
	\overline{OE} to Z or \overline{Z}	5.0	1.5	7.0	9.5	1.5	10.0	ns
t _{PLZ}	Output Disable Time	3.3	1.5	7.0	11.0	1.5	12.0	ns
	OE to Z or Z	5.0	1.5	5.5	8.0	1.5	8.5	ns

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$. Voltage Range 5.0 is $5.0V \pm 0.5V$

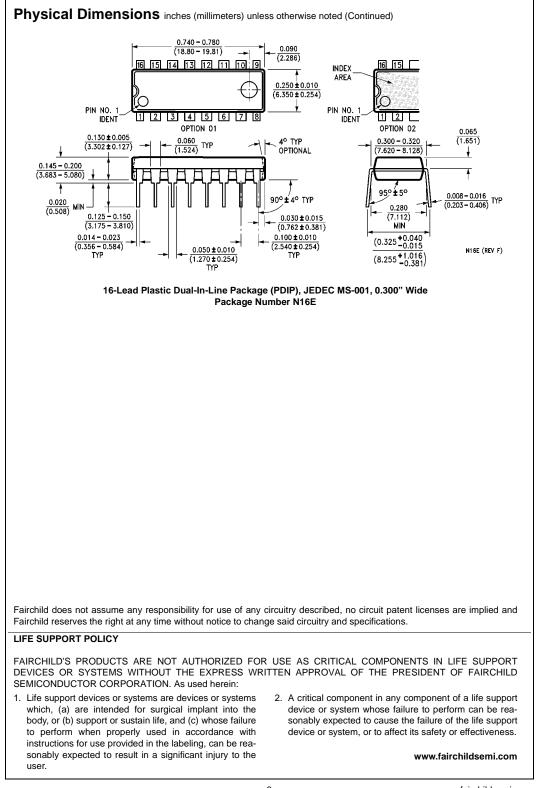

		V _{CC}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)		C _L = 50 pF			$C_L = 50 \ pF$	
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay S_n to Z or \overline{Z}	5.0	2.5	7.0	15.5	2.0	17.0	ns
t _{PHL}	Propagation Delay S_n to Z or \overline{Z}	5.0	2.5	7.5	16.5	2.5	18.5	ns
t _{PLH}	Propagation Delay I_n to Z or \overline{Z}	5.0	2.5	5.5	12.0	2.0	13.0	ns
t _{PHL}	Propagation Delay I_n to Z or \overline{Z}	5.0	2.5	6.5	12.5	2.5	14.0	ns
t _{PZH}	Output Enable Time \overline{OE} to Z or \overline{Z}	5.0	1.5	5.0	8.5	1.5	9.0	ns
t _{PZL}	Output Enable Time \overline{OE} to Z or \overline{Z}	5.0	1.5	4.5	8.5	1.5	9.5	ns
t _{PHZ}	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	2.0	6.0	12.0	2.0	13.0	ns
PLZ	Output Disable Time \overline{OE} to Z or \overline{Z}	5.0	1.5	4.5	8.5	1.5	9.0	ns

Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70.0	pF	$V_{CC} = 5.0V$

74AC251 • 74ACT251



74AC251 • 74ACT251

74AC251 • 74ACT251

74AC251 • 74ACT251 8-Input Multiplexer with 3-STATE Output