

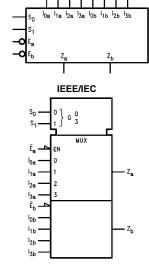
November 1988 Revised November 1999

74AC153 • 74ACT153 Dual 4-Input Multiplexer

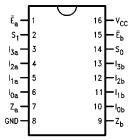
General Description

The AC/ACT153 is a high-speed dual 4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the AC/ACT153 can act as a function generator and generate any two functions of three variables.

Features


- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- ACT153 has TTL-compatible inputs

Ordering Code:


Order Number	Package Number	Package Description
74AC153SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74AC153SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC153MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC153PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT153SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body
74ACT153MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

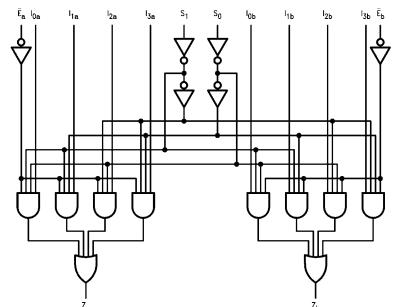
Pin Descriptions

Pin Names	Description
I _{0a} –I _{3a}	Side A Data Inputs
I _{0b} -I _{3b}	Side B Data Inputs
S ₀ , S ₁	Common Select Inputs
\overline{E}_a	Side A Enable Input
\overline{E}_b	Side B Enable Input
Za	Side A Output
Z _b	Side B Output

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Functional Description

The AC/ACT153 is a dual 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs $(S_0,\,S_1)$. The two 4-input multiplexer circuits have individual active-LOW Enables $(\overline{E}_a,\,\overline{E}_b)$ which can be used to strobe the outputs independently. When the Enables $(\overline{E}_a,\,\overline{E}_b)$ are HIGH, the corresponding outputs $Z_a,\,Z_b)$ are forced LOW. The AC/ACT153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the Select inputs. The logic equations for the outputs are shown below.


$$\begin{split} Z_a &= \overline{E}_a \bullet (I_{0a} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1a} \bullet \overline{S}_1 \bullet S_0 + \\ &I_{2a} \bullet S_1 \bullet \overline{S}_0 + \overline{I}_{\overline{3a}} \bullet \overline{S}_1 \bullet \overline{S}_0) \\ Z_b &= \overline{E}_b \bullet (I_{0b} \bullet \overline{S}_1 \bullet \overline{S}_0 + I_{1b} \bullet \overline{S}_1 \bullet S_0 + \\ &I_{2b} \bullet S_1 \bullet \overline{S}_0 + \overline{I}_{\overline{3b}} \bullet \overline{S}_1 \bullet \overline{S}_0) \end{split}$$

Truth Table

Select Inputs			Output				
S ₀	S ₁	E	I ₀	I ₁	l ₂	l ₃	Z
X	Χ	Н	Χ	Χ	Χ	Χ	L
L	L	L	L	Χ	Χ	Х	L
L	L	L	Н	Χ	Χ	Х	Н
Н	L	L	Х	L	Х	Х	L
Н	L	L	Х	Н	Х	Х	н
L	Н	L	Χ	Χ	L	Χ	L
L	Н	L	Χ	Х	Н	Χ	Н
Н	Н	L	Χ	Х	Х	L	L
Н	Н	L	Х	Х	Х	Н	н

H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

 $\begin{array}{ccc} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$

DC Output Diode Current (I_{OK})

 $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA

DC Output Voltage (V_O) -0.5V to $V_{CC} + 0.5V$

DC Output Source

or Sink Current (I_O) ±50 mA

DC V_{CC} or Ground Current

per Output Pin (I $_{\rm CC}$ or I $_{\rm GND}$) ± 50 mA Storage Temperature (T $_{\rm STG}$) $-65^{\circ}{\rm C}$ to $+150^{\circ}{\rm C}$

Junction Temperature (T_J)

PDIP 140°C

Recommended Operating Conditions

Supply Voltage (V_{CC})

 $\begin{array}{ccc} AC & 2.0 V \text{ to } 6.0 V \\ ACT & 4.5 V \text{ to } 5.5 V \\ Input Voltage (V_I) & 0 V \text{ to } V_{CC} \\ Output Voltage (V_O) & 0 V \text{ to } V_{CC} \\ \end{array}$

Operating Temperature (T_A) -40° C to $+85^{\circ}$ C

Minimum Input Edge Rate ($\Delta V/\Delta t$)

AC Devices

 V_{IN} from 30% to 70% of V_{CC}

V_{CC} @ 3.3V, 4.5V, 5.5V 125 mV/ns

Minimum Input Edge Rate ($\Delta V/\Delta t$)

ACT Devices

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V 125 mV/ns

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V _{CC}	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Syllibol		(V)	Typ Gua		aranteed Limits	Oilles		
V _{IH}	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or V _{CC} – 0.1V	
		5.5	2.75	3.85	3.85			
V _{IL}	Maximum LOW Level	3.0	1.5	0.9	0.9		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	1.35	1.35	V	or V _{CC} – 0.1V	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL}$ or V_{IH}	
		3.0		0.36	0.44		$I_{OL} = 12 \text{ mA}$	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μА	$V_I = V_{CC}$, GND	
(Note 4)	Leakage Current					·	. 55	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC} (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	μА	$V_{IN} = V_{CC}$ or GND	

Note 2: All outputs loaded; thresholds on input associated with output under test.

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: I_{IN} and $I_{\text{CC}} @ 3.0 \text{V}$ are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC} .

DC Electrical Characteristics for ACT T_A = +25°C $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ V_{CC} Units Conditions Symbol Parameter Guaranteed Limits (V) Тур V_{IH} Minimum HIGH Level 4.5 1.5 2.0 $V_{OUT} = 0.1V$ 5.5 2.0 2.0 or $V_{CC} - 0.1 V$ Maximum LOW Level V_{IL} 4.5 1.5 0.8 8.0 $V_{OUT} = 0.1V$ ٧ Input Voltage 5.5 1.5 0.8 0.8 or $V_{CC} - 0.1 V$ Minimum HIGH Level 4.5 4.49 V_{OH} 4.4 4.4 $I_{OUT} = -50~\mu A$ Output Voltage 5.5 5.49 5.4 5.4 $V_{IN} = V_{IL} \text{ or } V_{IH}$ 4.5 3.86 3.76 $I_{OH} = -24 \text{ mA}$ 4.86 $I_{OH} = -24 \text{ mA (Note 5)}$ 5.5 4.76 V_{OL} Maximum LOW Level 4.5 0.1 0.1 $I_{OUT} = 50 \; \mu A$ Output Voltage 0.1 0.1 $V_{IN} = V_{IL} \text{ or } V_{IH}$ 4.5 0.44 $I_{OL} = 24 \text{ mA}$ 0.36 I_{OL} = 24 mA (Note 5) 5.5 0.36 0.44 Maximum Input I_{IN} 5.5 ±0.1 ±1.0 $V_I = V_{CC}$, GND μΑ Leakage Current I_{CCT} Maximum 5.5 0.6 $V_I = V_{CC} - 2.1 V \,$ 1.5 mΑ I_{CC}/Input $\overline{V_{OLD}} = 1.65V \text{ Max}$

75

-75

40.0

mΑ

mΑ

V_{OHD} = 3.85V Min

 $V_{IN} = V_{CC}$

or GND

Note 5: All outputs loaded; thresholds on input associated with output under test.

5.5

5.5

Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

Minimum Dynamic

Maximum Quiescent

Supply Current

Output Current (Note 6)

 I_{OLD}

 I_{OHD}

I_{CC}

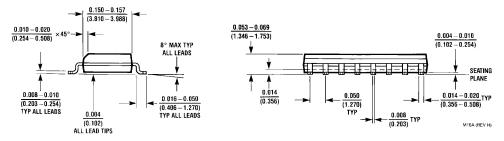
AC Electrical Characteristics for AC

		V _{cc}		$\textbf{T}_{\textbf{A}} = +25^{\circ}\textbf{C}$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Parameter	(V) $C_L = 50 \text{ pF}$			C _L = 50 pF		Units	
		(Note 7)	Min	Тур	Max	Min	Max	•
t _{PLH}	Propagation Delay	3.3	2.5	9.5	15.0	2.5	17.5	ns
	S _n to Z _n	5.0	2.0	6.5	11.0	2.0	12.5	115
t _{PHL}	Propagation Delay	3.3	3.0	8.5	14.5	2.5	16.5	ns
	S _n to Z _n	5.0	2.5	6.5	11.0	2.0	12.0	115
t _{PLH}	Propagation Delay	3.3	2.5	8.0	13.5	2.0	16.0	
	E to Z _n	5.0	1.5	5.5	9.5	1.5	11.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	7.0	11.0	2.0	12.5	
	E to Z _n	5.0	2.0	5.0	8.0	1.5	9.0	ns
t _{PLH}	Propagation Delay	3.3	2.5	7.5	12.5	2.0	14.5	ns
	I _n to Z _n	5.0	1.5	5.5	9.0	1.5	10.5	115
t _{PHL}	Propagation Delay	3.3	1.5	7.0	11.5	1.5	13.0	ns
	I _n to Z _n	5.0	1.5	5.0	8.5	1.5	10.0	115

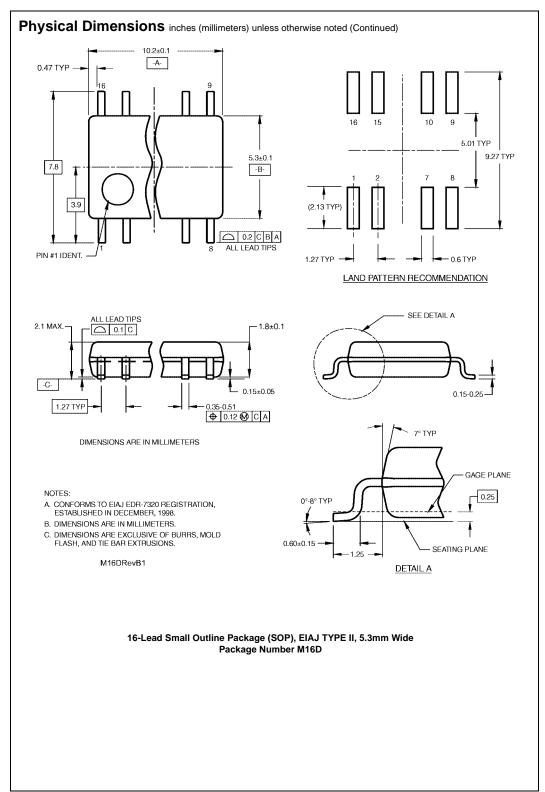
4.0

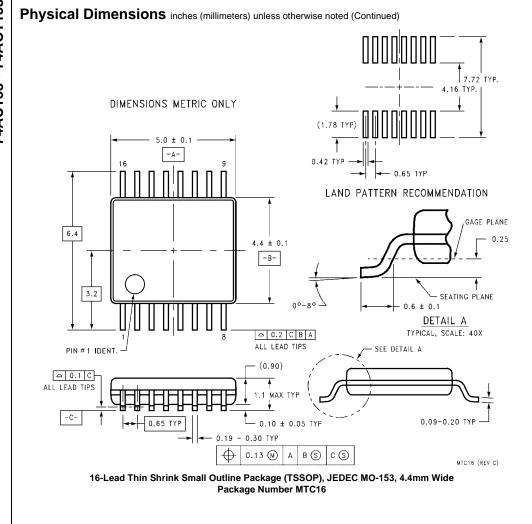
Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$ Voltage Range 5.0 is 5.0V \pm 0.5V

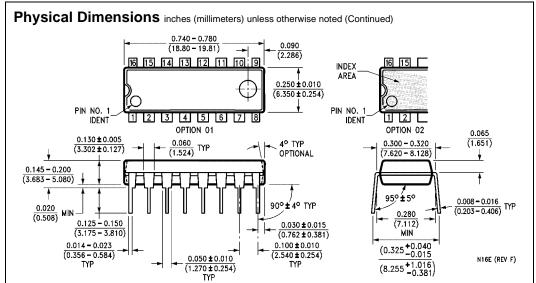
AC Electrical Characteristics for ACT


	Parameter	V _{CC}	T _A = +25°C C _L = 50 pF			$T_A = -40$ °C to +85°C $C_L = 50 \text{ pF}$		Units
Symbol		(V)						
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	5.0	3.0	7.0	11.5	2.0	13.5	ns
	S_n to Z_n	5.0	3.0	7.0	11.5	2.0	13.5	118
t _{PHL}	Propagation Delay	5.0	3.0	7.0	11.5	2.5	13.5	ns
	S_n to Z_n	3.0	3.0	7.0	11.5	2.5	13.5	115
t _{PLH}	Propagation Delay	5.0	0.0	0.5	40.5	0.0	40.5	
	\overline{E}_n to Z_n	5.0	2.0	6.5	10.5	2.0	12.5	ns
t _{PHL}	Propagation Delay	5.0	0.0	0.0	0.5	0.5	44.0	
	\overline{E}_n to Z_n	5.0	3.0	6.0	9.5	2.5	11.0	ns
t _{PLH}	Propagation Delay	5.0	2.5	5.5	9.5	2.0	11.0	ns
	I _n to Z _n	3.0	2.5	5.5	9.5	2.0	11.0	115
t _{PHL}	Propagation Delay	5.0	2.0	5.5	9.5	2.0	11.0	ns
	I_n to Z_n	5.0	2.0	3.5	3.3	2.0	11.0	115

Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance


Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	65.0	pF	$V_{CC} = 5.0V$



16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com