FAIRCHILD

SEMICONDUCTOR

74AC151 • 74ACT151 8-Input Multiplexer

General Description

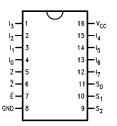
The AC/ACT151 is a high-speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The AC/ACT151 can be used as a universal function generator to generate any logic function of four variables. Both true and complementary outputs are provided.

November 1988 Revised November 1999

Features

- I_{CC} reduced by 50%
- Outputs source/sink 24 mA
- ACT151 has TTL-compatible inputs

Ordering Code:


Order Number	Package Number	Package Description				
74AC151SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body				
74AC151SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74AC151MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
74AC151PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
74ACT151SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Body				
74ACT151SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
74ACT151PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Logic Symbols

Connection Diagram

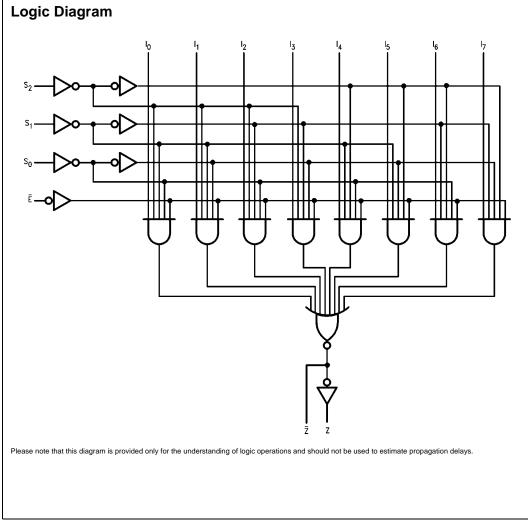
Pin Descriptions

Pin Names	Description
I ₀ —I ₇	Data Inputs
S ₀ -S ₂	Select Inputs
Ē	Enable Input
Z	Data Output
Z	Inverted Data Output

FACT[™] is a trademark of Fairchild Semiconductor Corporation.

74AC151 • 74ACT151

L = LOW Voltage Level X = Immaterial


٦	Truth Table								
		In	Out	puts					
	Ē	S ₂	S ₁	S ₀	z	Z			
	Н	х	х	х	Н	L			
	L	L	L	L	I ₀	Ι _Ο			
	L	L	L	н	I ₁	I ₁			
	L	L	н	L	I_2	I_2			
	L	L	н	н	I ₃	I ₃			
	L	н	L	L	Ī ₄	I_4			
	L	н	L	н	I_5	I_5			
	L	н	н	L	1 ₆	I ₆			
	L	н	н	н	1 ₇	I ₇			
F	I = HIGH V	oltage Level			-				

Functional Description

The AC/ACT151 is a logic implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, S_0 , S_1 , S_2 . Both true and complementary outputs are provided. The Enable input (\overline{E}) is active LOW. When it is not activated, the complementary output is HIGH and the true output is LOW regardless of all other inputs. The logic function provided at the output is:

$$\begin{split} Z &= \overline{E} \bullet (I_0 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + I_1 \bullet S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 + \\ I_2 \bullet \overline{S}_0 \bullet S_1 \bullet \overline{S}_2 + I_3 \bullet S_0 \bullet S_1 \bullet \overline{S}_2 \overline{F} + I_4 \bullet \overline{S}_0 \bullet \overline{S}_1 \bullet S_2 + I_5 \bullet \\ S_0 \bullet \overline{S}_1 \bullet \overline{S}_2 \overline{F} + I_6 \bullet \overline{S}_0 \bullet S_1 \bullet S_2 + I_7 \bullet S_0 \bullet S_1 \bullet S_2) \end{split}$$

The AC/ACT151 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the AC/ACT151 can provide any logic function of four variables and its complement.

Absolute Maximum R	atings(Note 1)	Recommended Operat	ing		
Supply Voltage (V _{CC}) -0.5V to +7.0V		Conditions			
DC Input Diode Current (I _{IK})		Supply Voltage (V _{CC})			
$V_{I} = -0.5V$	–20 mA	AC	2.0V to 6.0V		
$V_I = V_{CC} + 0.5V$	+20 mA	ACT	4.5V to 5.5V		
DC Input Voltage (V _I)	$-0.5 V$ to $V_{CC} + 0.5 V$	Input Voltage (V _I)	0V to V _{CC}		
DC Output Diode Current (I _{OK})		Output Voltage (V _O)	0V to V _{CC}		
$V_0 = -0.5V$	–20 mA	Operating Temperature (T _A)	-40°C to +85°C		
$V_O = V_{CC} + 0.5V$	+20 mA	Minimum Input Edge Rate (ΔV/Δt)			
DC Output Voltage (V _O)	$-0.5 V$ to $V_{CC} + 0.5 V$	AC Devices			
DC Output Source		V_{IN} from 30% to 70% of V_{CC}			
or Sink Current (I _O)	±50 mA	V _{CC} @ 3.3V, 4.5V, 5.5V	125 mV/ns		
DC V _{CC} or Ground Current		Minimum Input Edge Rate (ΔV/Δt)			
per Output Pin (I _{CC} or I _{GND})	±50 mA	ACT Devices			
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	V _{IN} from 0.8V to 2.0V			
Junction Temperature (T _J)		V _{CC} @ 4.5V, 5.5V	125 mV/ns		
PDIP	140°C	Note 1: Absolute maximum ratings are those val to the device may occur. The databook specific out exception, to ensure that the system desig supply, temperature, and output/input loading vz recommend operation of FACT [™] circuits outside	ations should be met, with- n is reliable over its power ariables. Fairchild does not		

DC Electrical Characteristics for AC

Symbol	Parameter	V _{cc}	T _A = -	⊦25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions	
Symbol	Farameter	(V)	Тур	Gu	aranteed Limits	Units	Conditions	
VIH	Minimum HIGH Level	3.0	1.5	2.1	2.1		V _{OUT} = 0.1V	
	Input Voltage	4.5	2.25	3.15	3.15	V	or $V_{CC} - 0.1V$	
		5.5	2.75	3.85	3.85			
VIL	Maximum LOW Level	3.0	1.5	0.9	0.9		$V_{OUT} = 0.1V$	
	Input Voltage	4.5	2.25	1.35	1.35	V	or $V_{CC} - 0.1V$	
		5.5	2.75	1.65	1.65			
V _{OH}	Minimum HIGH Level	3.0	2.99	2.9	2.9			
	Output Voltage	4.5	4.49	4.4	4.4	V	I _{OUT} = -50 μA	
		5.5	5.49	5.4	5.4			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		2.56	2.46		$I_{OH} = -12 \text{ mA}$	
		4.5		3.86	3.76	V	I _{OH} = -24 mA	
		5.5		4.86	4.76		I _{OH} = -24 mA(Note 2	
V _{OL}	Maximum LOW Level	3.0	0.002	0.1	0.1			
	Output Voltage	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \ \mu A$	
		5.5	0.001	0.1	0.1			
							$V_{IN} = V_{IL} \text{ or } V_{IH}$	
		3.0		0.36	0.44		I _{OL} = 12 mA	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
I _{IN} Note 4)	Maximum Input Leakage Current	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	5.5			-75	mA	V _{OHD} = 3.85V Min	
I _{CC} Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	μΑ	$V_{IN} = V_{CC}$ or GND	

Note 3: Maximum test duration 2.0 ms, one output loaded at a time.

Note 4: $I_{\rm IN}$ and $I_{\rm CC}$ @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V $V_{\rm CC}.$

Symbol	Parameter	V _{CC}	$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions
Symbol	Farameter	(V)	Тур	G	uaranteed Limits	Units	Conditions
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	2.0	2.0		or $V_{CC} - 0.1V$
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$
	Input Voltage	5.5	1.5	0.8	0.8		or $V_{CC} - 0.1V$
V _{OH}	Minimum HIGH Level	4.5	4.49	4.4	4.4	V	L 50A
	Output Voltage	5.5	5.49	5.4	5.4	v	I _{OUT} = -50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA}$ (Note
V _{OL}	Maximum LOW Level	4.5	0.001	0.1	0.1	v	I _{OUT} = 50 μA
	Output Voltage	5.5	0.001	0.1	0.1		i _{OUT} = 50 μA
							$V_{IN} = V_{IL} \text{ or } V_{IH}$
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 5)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_1 = V_{CC}$, GND
	Leakage Current	0.0		±0.1	1.0	μι	vi = v _{CC} , citib
I _{CCT}	Maximum	5.5	0.6		1.5	mA	$V_1 = V_{CC} - 2.1V$
	I _{CC} /Input	0.0	5.0		1.0		VI = VCC = 2.1V
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max
I _{OHD}	Output Current (Note 6)	5.5			-75	mA	V _{OHD} = 3.85V Min
I _{CC}	Maximum Quiescent	5.5	1	4.0	40.0	μA	$V_{IN} = V_{CC}$
	Supply Current	5.5	1	4.0	40.0	μΛ	or GND

Note 5: All outputs loaded; thresholds on input associated with output under test.

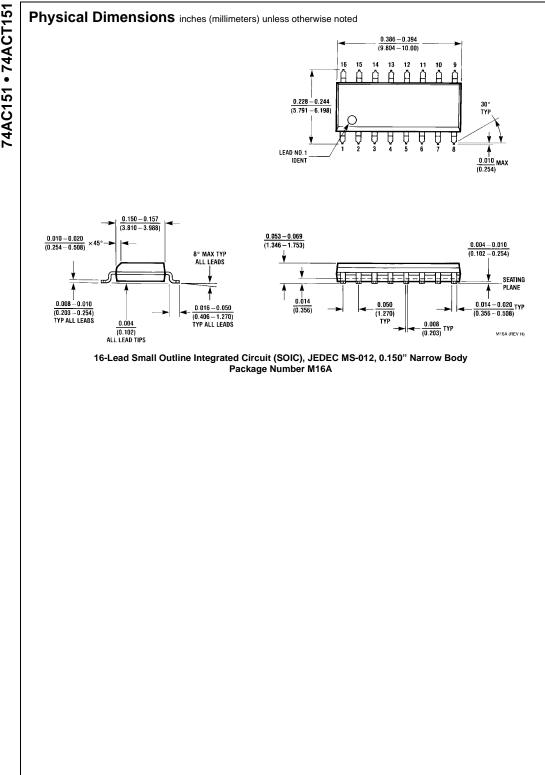
Note 6: Maximum test duration 2.0 ms, one output loaded at a time.

AC Electrical Characteristics for AC

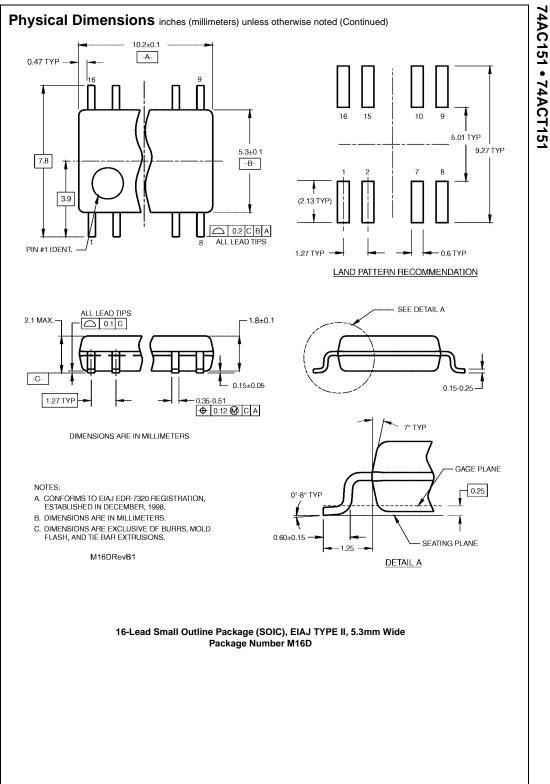
		V _{cc}		$T_A = +25^{\circ}C$		T _A = -40°	C to +85°C	
Symbol	Parameter	(V)	C _L = 50 pF			$C_L = 50 \text{ pF}$		Units
		(Note 7)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	3.3	3.0	11.5	18.0	3.0	20.0	ns
	S_n to Z or \overline{Z}	5.0	2.5	8.5	13.0	2.0	15.0	115
t _{PHL}	Propagation Delay	3.3	2.5	12.0	18.0	2.5	20.0	ns
	S_n to Z or \overline{Z}	5.0	2.0	8.5	13.0	1.5	15.0	
t _{PLH}	Propagation Delay	3.3	2.5	8.0	13.0	2.0	14.0	ns
	E to Z or Z	5.0	2.0	6.0	10.0	1.5	11.0	115
t _{PHL}	Propagation Delay	3.3	1.5	8.5	13.0	1.5	14.0	ns
	E to Z or Z	5.0	1.5	6.5	10.0	1.5	11.0	115
t _{PLH}	Propagation Delay	3.3	2.5	9.5	14.0	2.0	15.5	
	I_n to Z or \overline{Z}	5.0	1.5	7.0	10.5	1.5	11.0	ns
t _{PHL}	Propagation Delay	3.3	2.5	9.5	15.0	2.0	16.0	ns
	I _n to Z or Z	5.0	1.5	7.0	11.0	1.5	12.0	115

Note 7: Voltage Range 3.3 is $3.3V \pm 0.3V$

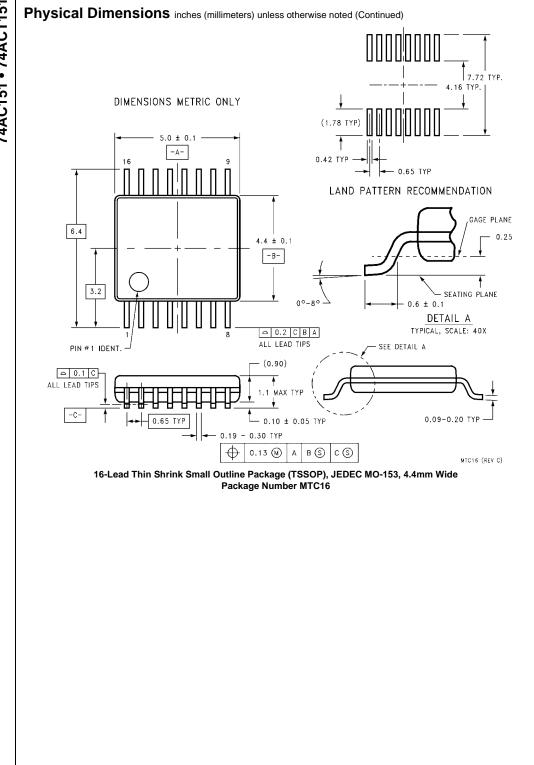
Voltage Range 5.0 is 5.0V $\pm\,0.5V$

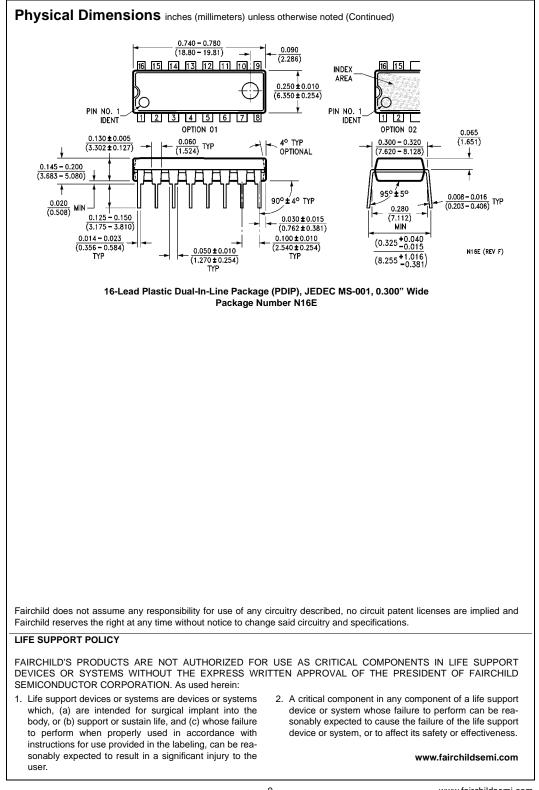

		V _{CC}	T _A = +25°C C _L = 50 pF			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		
Symbol	Parameter	(V)				C _L =	50 pF	Units
		(Note 8)	Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay S _n to Z	5.0	3.5	12.5	15.5	3.0	17.0	ns
t _{PHL}	Propagation Delay S _n to Z	5.0	3.5	12.5	15.5	3.0	16.5	ns
t _{PLH}	Propagation Delay S_n to \overline{Z}	5.0	3.5	12.5	15.0	3.0	16.5	ns
t _{PHL}	Propagation Delay S_n to \overline{Z}	5.0	4.0	12.5	16.5	3.5	18.5	ns
t _{PLH}	Propagation Delay E to Z	5.0	2.5	6.0	9.5	2.5	10.0	ns
t _{PHL}	Propagation Delay E to Z	5.0	2.5	6.0	9.0	2.5	10.0	ns
t _{PLH}	Propagation Delay E to Z	5.0	2.5	6.0	8.5	2.5	9.5	ns
t _{PHL}	Propagation Delay E to Z	5.0	3.0	6.5	10.0	2.5	10.5	ns
t _{PLH}	Propagation Delay I _n to Z	5.0	3.5	7.5	11.5	3.0	12.5	ns
t _{PHL}	Propagation Delay I _n to Z	5.0	3.5	8.0	12.0	3.0	13.5	ns
t _{PLH}	Propagation Delay I_n to \overline{Z}	5.0	3.5	8.0	12.0	3.0	13.0	ns
t _{PHL}	Propagation Delay I_n to \overline{Z}	5.0	4.0	8.0	12.5	3.0	14.0	ns

Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$


Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.5	pF	V _{CC} = OPEN
C _{PD}	Power Dissipation Capacitance	70.0	pF	$V_{CC} = 5.0V$


74AC151 • 74ACT151


74AC151 • 74ACT151

7

74AC151 • 74ACT151

74AC151 • 74ACT151 8-Input Multiplexer