

Discrete POWER & Signal **Technologies**

2N4124

MMBT4124

NPN General Purpose Amplifier

This device is designed as a general purpose amplifier and switch. The useful dynamic range extends to 100 mA as a switch and to 100 MHz as an amplifier. Sourced from Process 23. See 2N3904 for characteristics.

Absolute Maximum Ratings*

TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units
V _{CEO}	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	30	V
V _{EBO}	Emitter-Base Voltage	5.0	V
I _C	Collector Current - Continuous	200	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

^{*}These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

 $\underline{\text{NOTES}}$: 1) These ratings are based on a maximum junction temperature of 150 degrees C.

Thermal Characteristics

TA = 25°C unless otherwise noted

Symbol	Characteristic	Max		Units
		2N4124	*MMBT4124	
P _D	Total Device Dissipation Derate above 25°C	625 5.0	350 2.8	mW mW/°C
$R_{\theta JC}$	Thermal Resistance, Junction to Case	83.3		°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	200	357	°C/W

^{*}Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."

²⁾ These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

NPN General Purpose Amplifier

4.0

480

5.0

120

pF

dB

(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
$V_{(BR)CEO}$	Collector-Emitter Breakdown Voltage	$I_C = 1.0 \text{ mA}, I_B = 0$	25		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_C = 10 \mu A, I_E = 0$	30		V
$V_{(BR)EBO}$	Emitter-Base Breakdown Voltage	$I_C = 10 \mu\text{A}, I_C = 0$	5.0		V
I _{CBO}	Collector Cutoff Current	$V_{CB} = 20 \text{ V}, I_E = 0$		50	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
h _{FE}	DC Current Gain	$I_C = 2.0 \text{ mA}, V_{CE} = 1.0 \text{ V}$ $I_C = 50 \text{ mA}, V_{CE} = 1.0 \text{ V}$	120 60	360	
			60	0.0	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.3	V
V _{BE(sat)}	Base-Emitter Saturation Voltage	$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$		0.95	V
SMALL S	IGNAL CHARACTERISTICS				
f _T	Current Gain - Bandwidth Product	$I_C = 10 \text{ mA}, V_{CE} = 20 \text{ V},$ f = 100 MHz	300		MHz
C _{obo}	Output Capacitance	$V_{CB} = 5.0 \text{ V}, I_{E} = 0,$ f = 100 kHz		4.0	pF
		1 - 100 1012			
C _{ibo}	Input Capacitance	$V_{BE} = 0.5 \text{ V}, I_{C} = 0,$ f = 1.0 kHz		8.0	pF

 $V_{CB} = 5.0 \text{ V}, I_E = 0,$ f = 100 kHz

 $V_{CE} = 10 \text{ V}, I_{C} = 2.0 \text{ mA},$ f = 1.0 kHz

 $I_C = 100 \ \mu\text{A}, \ V_{CE} = 5.0 \ \text{V}, \ R_S = 1.0 \text{k}\Omega, \ f = 10 \ \text{Hz} \ \text{to} \ 15.7 \ \text{kHz}$

Noise Figure

Collector-Base Capcitance

Small-Signal Current Gain

 C_{cb}

 h_{fe}

NF

^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%