Revised November 1999 **h Cut-Off** ts ed operation ting range = -4.2V to -5.7V

00316 Low Power Quad Differential Line Driver with Cut-Off

FAIRCHILD

SEMICONDUCTOR

100316 Low Power Quad Differential Line Driver with Cut-Off

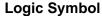
General Description

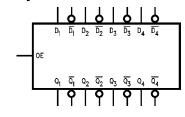
The 100316 is a quad differential line driver with output cutoff capability. The outputs are designed to drive a doubly terminated 50 Ω transmission line (25 Ω equivalent impedance) in an ECL backplane. The 100316 is ideal for driving low noise, differential ECL backplanes. A LOW on the output enable (OE) will set both the true and complementary outputs into a high impedance or cut-off state, isolating them from the backplane. The cut-off state is designed to be more negative than a normal ECL LOW state.

Unlike most 100K devices, the data inputs (D_n, \overline{D}_n) do not have input pull-down resistors. An internal reference supply (V_{BB}) is available for single-ended operation.

Features

- Differential inputs and outputs
- Output cut-off capability
- Drives 25Ω load
- V_{BB} available for single-ended operation
- 2000V ESD protection
- Voltage compensated operating range = -4.2V to -5.7V

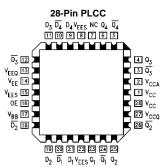

May 1991


Available to industrial grade temperature range

Ordering Code:

Order Number	Package Number	Package Description
100316QC	V28A	28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square
100316QI		28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Industrial Temperature Range (–40°C to +85°C)

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.



Pin Names	Description
D _n	Data Inputs
Q _n	Data Outputs
Qn	Complementary Data Outputs
OE	Output Enable

Connection Diagram

© 1999 Fairchild Semiconductor Corporation DS010922

www.fairchildsemi.com

Truth Table Logic Diagram Inputs Outputs 0E Dn Qn Dn OE Qn L Н Н L Н Q. $\frac{D_1}{D_1}$ н L Н н L Q Х Х L Cut-Off Cut-Off H = HIGH Voltage Level $\frac{D_2}{D_2}$ Q₂ L = LOW Voltage Level $\overline{Q_2}$ X = Don't Care Cut-Off = Lower-than-LOW State $\frac{D_3}{D_3}$ Q3 $\overline{Q_3}$ Q, $\frac{D_4}{D_4}$ $\overline{Q_4}$ V_{BB}

Absolute Maximum Ratings(Note 1)

Storage Temperature (T _{STG})	-65°C to +150°C				
Maximum Junction Temperature (TJ)	on Temperature (T _J)+150°C				
Pin Potential to Ground Pin (V_{EE})	-7.0V to 0.5V				
Input Voltage (DC)	V _{EE} to +0.5V				
Output Current (DC Output HIGH)	–100 mA				
ESD (Note 2)	≥2000V				

Recommended Operating Conditions

Case Temperature (T _C)	
Commercial	0°C to +85°C
Industrial	-40°C to +85°C
Supply Voltage (V _{EE})	-5.7V to -4.2V

100316

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: ESD testing conforms to MIL-STD-883, Method 3015.

Commercial Version

DC Electrical Characteristics (Note 3)

 $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$, $T_{C} = 0^{\circ}C$ to +85°C

Symbol	Parameter	Min	Тур	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1025	-955	-870	mV	V _{IN} = V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1705	-1620	mV	or V _{IL (Min)}	25Ω to $-2.0V$	
V _{OHC}	Output HIGH Voltage	-1035			mV	V _{IN} = V _{IH (Min)}	Loading with	
V _{OLC}	Output LOW Voltage			-1610	mV	or V _{IL (Max)}	25Ω to $-2.0V$	
V _{OLZ}	Cut-Off LOW Voltage			-1950	mV	V _{IN} = V _{IH (Min)}	OE = LOW	
						or V _{IL (Max)}		
V _{BB}	Output Reference Voltage	-1380	-1320	-1260	mV	$I_{VBB} = -1 \text{ mA}$		
V _{DIFF}	Input Voltage Differential	150			mV	Required for Full Output Sw	ing	
V _{CM}	Common Mode Voltage	$V_{CC} - 2.0$		$V_{CC} - 0.5$	V			
V _{IH}	Single-Ended					Guaranteed HIGH Signal fo	r All	
	Input HIGH Voltage	-1110		-870	mV	Inputs (with one input tied to V_{BB})		
						V _{BB (Max)} + V _{DIFF}		
V _{IL}	Single-Ended					Guaranteed LOW Signal for All		
	Input LOW Voltage	-1830		-1530	mV	Inputs (with one input tied to V_{BB})		
						V _{BB (Min)} – V _{DIFF}		
IIL	Input LOW Current	0.50			μΑ	V _{IN} = V _{IL (Min)}		
I _{IH}	Input HIGH Current D _N			250	μΑ	$V_{IN} = V_{IH (Max)}, D_1 = V_{BB}, \overline{D}$	1 = V _{IL (Min)}	
I _{IHZ}	Input HIGH Current OE			360	μA	$V_{IN} = V_{IH (Max)}, D_1 = V_{BB}, \overline{D}$	1 = V _{IL (Min)}	
I _{CBO}	Input Leakage Current	-10			μA	$V_{IN} = V_{EE}, D_1 = V_{BB}, \overline{D}_1 = V_{BB}$	IL (Min)	
I _{EE}	Power Supply Current, Normal	-85		-30	mA	$D_1 = V_{BB}, \overline{D}_1 = V_{IL (Min)}$		
I _{EEZ}	Power Supply Current, Cut-Off	-152		-75	mA	$D_1 - D_4 = V_{BB}, \overline{D}_1 - \overline{D}_4 = V_{IL}$ (_{Min)} , OE = LOW	

Note 3: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

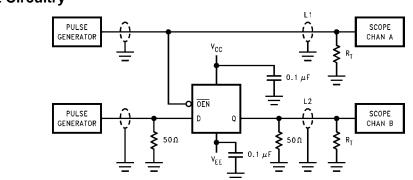
 $V_{\text{EE}} = -4.2 \text{V}$ to $-5.7 \text{V}, \text{ } \text{V}_{\text{CC}} = \text{V}_{\text{CCA}} = \text{GND}$

Symbol	Parameter	$T_C = 0^\circ C$		$T_C = +25^{\circ}C$		$T_C = +85^{\circ}C$		Units	Conditions
		Min	Max	Min	Max	Min	Max	Onits	conditions
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.65	2.10	ns	
t _{PHL}	Data to Output	0.00	2.10	0.05	2.10	0.05	2.10	113	
t _{PZH}	Propagation Delay	1.8	4.00	1.8	4.00	1.8	4.00	ns	Figures 1, 2
t _{PHZ}	OE to Output	1.2	2.90	1.2	2.90	1.2	2.90	115	
t _{TLH}	Transition Time, D _n to Q _n	0.45	1.50	0.45	1.50	0.45	1.50	ns	
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.50	0.45	1.50	113	

100316

Industrial Version

DC Electrical Characteristics (Note 4) $V_{EE} = -4.2V$ to -5.7V, $V_{CC} = V_{CCA} = GND$


Symbol	Parameter	T _C = -	$T_C = -40^{\circ}C$		$T_C = 0^{\circ}C \text{ to } +85^{\circ}C$		Conditions		
Symbol	Falameter	Min	Max	Min	Max	Units	Conditions		
V _{OH}	Output HIGH Voltage	-1085	-870	-1025	-870	mV	V _{IN} = V _{IH (Max)}	Loading with	
V _{OL}	Output LOW Voltage	-1830	-1585	-1830	-1620	mV	or V _{IL (Min)}	25Ω to −2.0V	
V _{OHC}	Output HIGH Voltage	-1095		-1035		mV	$V_{IN} = V_{IH (Min)}$	Loading with	
V _{OLC}	Output LOW Voltage		-1575		-1610	mV	or V _{IL (Max)}	25Ω to −2.0V	
V _{OLZ}	Cut-Off LOW Voltage		-1900		-1950	mV	$\label{eq:observation} \begin{split} & OE = LOW, V_{IN} = V_{IH}_{(Min)} \\ & or V_{IL}_{(Max)} \end{split}$		
V _{BB}	Output Reference Voltage	-1395	-1255	-1380	-1260	mV	$I_{VBB} = -1 \text{ mA}$		
V _{DIFF}	Input Voltage Differential	150		150		mV	Required for Full	Output Swing	
V _{CM}	Common Mode Voltage	V _{CC} - 2.0	$V_{CC} - 0.5$	V _{CC} - 2.0	$V_{CC} - 0.5$	V			
V _{IH}	Single-Ended						Guaranteed HIGH	I Signal for All	
	Input HIGH Voltage	-1115	-870	-1110	-870	mV	Inputs (with one i	nput tied to V _{BB})	
							V _{BB (Max)} + V _{DIFF}		
V _{IL}	Single-Ended						Guaranteed LOW	Signal for All	
	Input LOW Voltage	-1830	-1535	-1830	-1530	mV	Inputs (with one i	nput tied to V _{BB})	
							V _{BB (Min)} - V _{DIFF}		
IIL	Input LOW Current	0.50		0.50		μA	$V_{IN} = V_{IL (Min)}$		
IIH	Input HIGH Current, D _N		240		240	A	V _{IN} = V _{IH (Max)} , D	$_1 = V_{BB},$	
I _{IHZ}	Input HIGH Current, OE		360		360	μA	$\overline{D}_1 = V_{IL (Min)}$		
I _{CBO}	Input Leakage Current	-10		-10		μA	$V_{IN} = V_{EE}, D_1 = V_{EE}$	BB,	
							$\overline{D}_1 = V_{IL (Min)}$		
I _{EE}	Power Supply Current,	-85	-30	-85	-30	mA	$D_1 = V_{BB}, \overline{D}_1 = V_{BB}$	L (Min)	
	Normal								
I _{EEZ}	Power Supply Current,	-152	-75	-152	-75	mA	$D_1 - D_4 = V_{BB}, \overline{D}_1$	$\overline{D}_4 = V_{IL} (Min),$	
	Cut-Off						OE = LOW	2 ()	

Note 4: The specified limits represent the "worst case" value for the parameter. Since these values normally occur at the temperature extremes, additional noise immunity and guardbanding can be achieved by decreasing the allowable system operating ranges. Conditions for testing shown in the tables are chosen to guarantee operation under "worst case" conditions.

AC Electrical Characteristics

Symbol	Parameter	$T_{C} = -40^{\circ}C$		T _C = +25°C		T _C = +85°C		Units	Conditions
		Min	Max	Min	Max	Min	Max	Units	conditions
t _{PLH}	Propagation Delay	0.65	2.10	0.65	2.10	0.65	2.10	20	
t _{PHL}	Data to Output	0.65	2.10	0.05	2.10	0.65	2.10	ns	
t _{PZH}	Propagation Delay	1.80	4.00	1.80	4.00	1.80	4.00		Figures 1Figure
								ns	2
t _{PHZ}	OE to Output	1.20	2.90	1.20	2.90	1.20	2.90		
t _{TLH}	Transition Time	0.45	4.50	0.45	4.50	0.45	4.50		1
t _{THL}	20% to 80%, 80% to 20%	0.45	1.50	0.45	1.50	0.45	1.50	ns	

Test Circuitry

Notes:

$$\begin{split} &V_{CC}, \, V_{CCA} = +2V, \, V_{EE} = -2.5V \\ &L1 \text{ and } L2 = \text{equal length } 50\Omega \text{ impedance lines} \\ &R_T = 50\Omega \text{ terminator internal to scope} \\ &\text{Decoupling } 0.1 \, \mu\text{F from GND to } V_{CC} \text{ and } V_{EE} \\ &\text{All unused outputs are loaded with } 25\Omega \text{ to GND} \\ &G_L = Fixture \text{ and stray capacitance} \leq 3 \, \text{pF} \end{split}$$

FIGURE 1. AC Test Circuit

Switching Waveforms

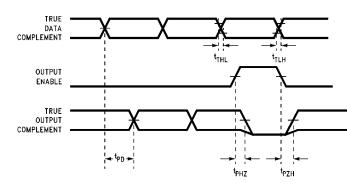
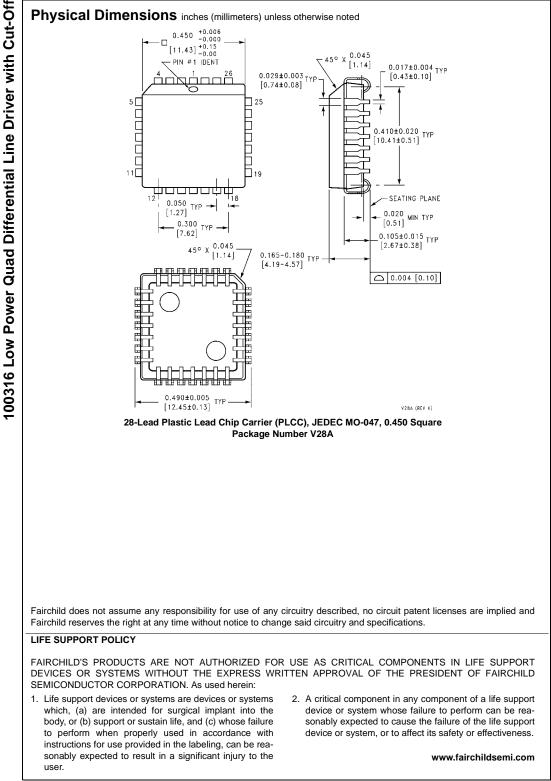



FIGURE 2. Propagation Delay, Cut-Off and Transition Times

100316

www.fairchildsemi.com

www.fairchildsemi.com

6