

Product Description

Stanford Microdevices' SGA-6586 is a high performance cascadeable 50-ohm amplifier housed in an low-cost surface-mountable plastic package. Designed for operation at voltages as low as 5.0V, this RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 1 micron emitters with F_T up to 50 GHz.

This circuit uses a darlington pair topology with resistive feedback for broadband performance as well as stability over its entire temperature range. Internally matched to 50 ohm impedance, the SGA-6586 requires only DC blocking and bypass capacitors for external components.

SGA-6586

DC-2500 MHz Silicon Germanium HBT Cascadeable Gain Block

Product Features

- DC-2500 MHz Operation
- Single Voltage Supply
- High Output Intercept: +34.0 dBm typ. at 850 MHz
- High Output Power : 21.5 dBm typ. at 850 MHz
- High Gain : 24.0 dB typ. at 850 MHz
- Internally Matched to 50 Ohms Input & Output

Applications

- Oscillator Amplifiers
- Final PA for Low Power Applications
- IF/ RF Buffer Amplifier
- Drivers for CATV Amplifiers

Symbol	Parameters: Test Conditions: Z0 = 50 Ohms, Id = 80 mA, T = 25°C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz	dBm dBm		21.5 18.1	
S ₂₁	Small Signal Gain	f = DC - 1000 MHz f = 1000 - 2000 MHz f = 2000 - 2500 MHz	dB dB dB		25.6 20.3 17.2	
S ₁₂	Reverse Isolation	f = DC - 1000 MHz f = 1000 - 2000 MHz f = 2000 - 2500 MHz	dB dB dB		27.8 23.3 20.2	
S ₁₁	Input VSWR	f = DC - 2500 MHz	-		1.1:1	
S ₂₂	Output VSWR	f = DC - 2500 MHz	-		1.2:1	
IP ₃	Third Order Intercept Point Power out per tone = 3 dBm	f = 850 MHz f = 1950 MHz	dBm dBm		33.8 32.5	
NF	Noise Figure	f = DC - 1000 MHz f = 1000 - 2500 MHz	dB dB		2.6 3.4	
T _D	Group Delay	f = 1000 MHz	pS		163	
V _D	Device Voltage		V	4.6	5.0	5.4

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices. Inc. All worldwide rights reserved.

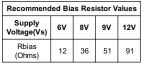
Preliminary SGA-6586 DC-2500 MHz 5.0V SiGe Amplifier

	5	Specificatio	n		Test
Parameter	Min	Тур.	Max.	Unit	Condition
Device Bias					T= 25C
Operating Voltage	4.6	5.0	5.4	V	
Operating Current		80.0		mA	
500 MHz					T= 25C
Gain	21.5	25.8		dB	
Noise Figure		2.5		dB	
Output IP3		32.2		dBm	
Output P1dB		20.9		dBm	
Input Return Loss		19.9		dB	
Isolation		28.0		dB	
850 MHz					T= 25C
Gain		23.8		dB	
Noise Figure		2.7		dB	
Output IP3		33.8		dBm	
Output P1dB		21.5		dBm	
Input Return Loss		23.3		dB	
Isolation		26.5		dB	
1950 MHz					T= 25C
Gain		18.4		dB	
Noise Figure		3.1		dB	
Output IP3		32.2		dBm	
Output P1dB		18.0		dBm	
Input Return Loss		23.7		dB	
Isolation		21.4		dB	
2400 MHz					T= 25C
Gain		16.7		dB	
Noise Figure		3.7		dB	
Output IP3		30.2		dBm	
Output P1dB		16.8		dBm	
Input Return Loss		18.2		dB	
Isolation		19.7		dB	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC 2

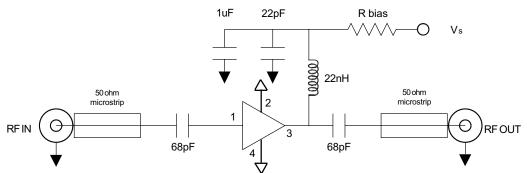


Preliminary

SGA-6586 DC-2500 MHz 5.0V SiGe Amplific	ər
---	----


Pin #	Function	Description	Device Schematic
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
2	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.	
3	rf out/ Bias	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.	
4	GND	Sames as Pin 2	

Application Schematic for Operation at 900 MHz



For 8V operation or higher, a resistor with a power handling capability of 1/2W or greater is recommended.

RFIN

Application Schematic for Operation at 1900 MHz

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. The information provided herein is believed to be reliable at press line. Standord incodevices assumes no responsibility for inaccuracies of oninstitutions. Standord Microdevices assumes no responsibility for the use of this information and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

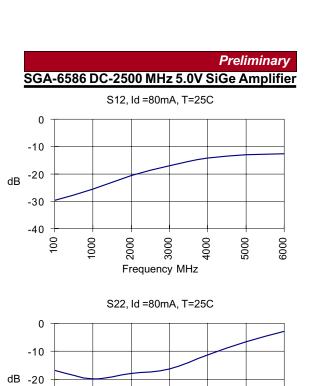
2000

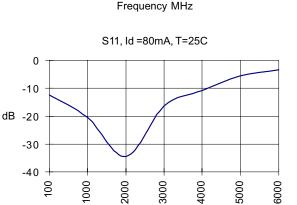
1000

40

30

20


10


0

100

dB

S21, Id =80mA, T=25C

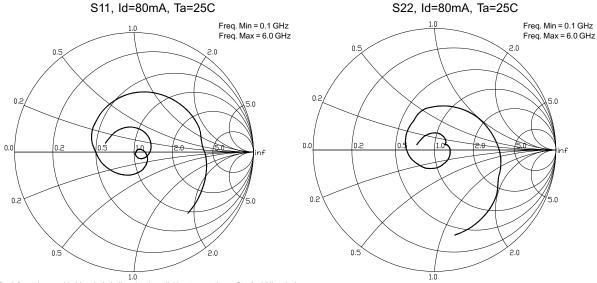
Frequency MHz

3000

4000

5000

6000


4000

5000

6000

3000

Frequency MHz

-30

-40

100

1000

2000

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

40

30

20

0

0

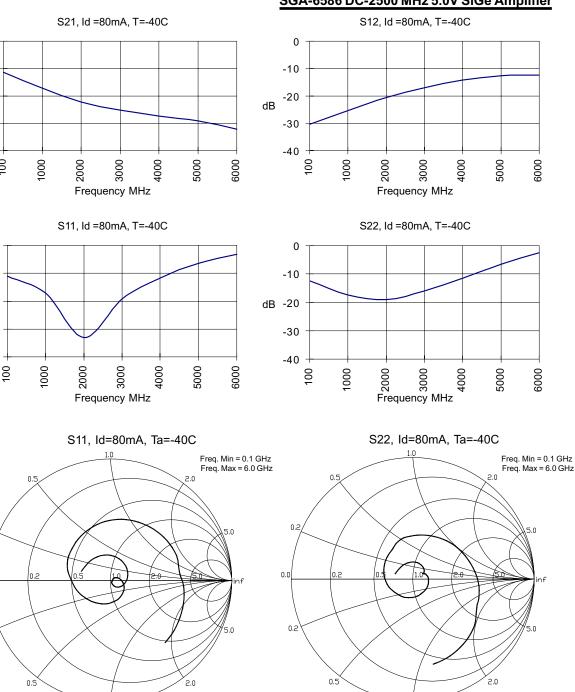
-10

-30

-40

0.2

0.0

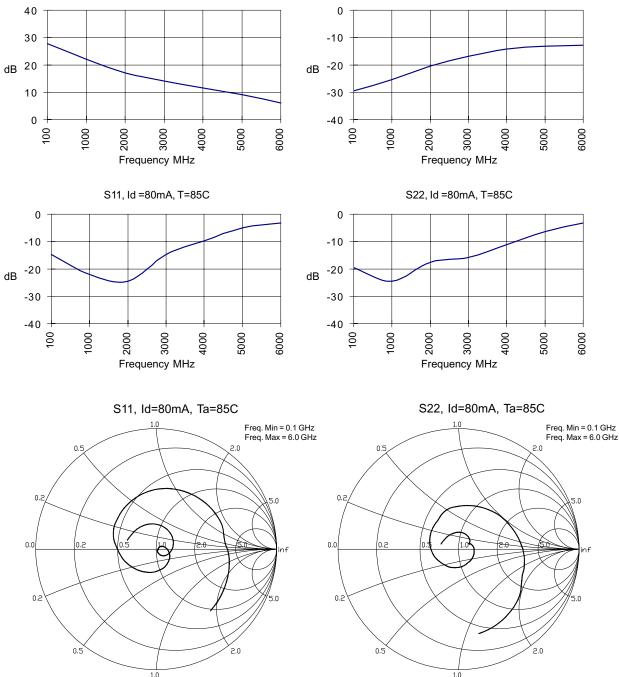

0.2

dB -20

100

dB 10

Preliminary SGA-6586 DC-2500 MHz 5.0V SiGe Amplifier


1.0 The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

Phone: (800) SMI-MMIC 5

S21, Id =80mA, T=85C

Preliminary SGA-6586 DC-2500 MHz 5.0V SiGe Amplifier S12, Id =80mA, T=85C

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices, product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

```
Phone: (800) SMI-MMIC
6
```


Absolute Maximum Ratings

Parameter	Value	Unit	
Supply Current	160	mA	
Operating Temperature	-40 to +85	С	
Maximum Input Power	+6	dBm	
Storage Temperature Range	-40 to +150	С	
Operating Junction Temperature	+150	С	

1

2

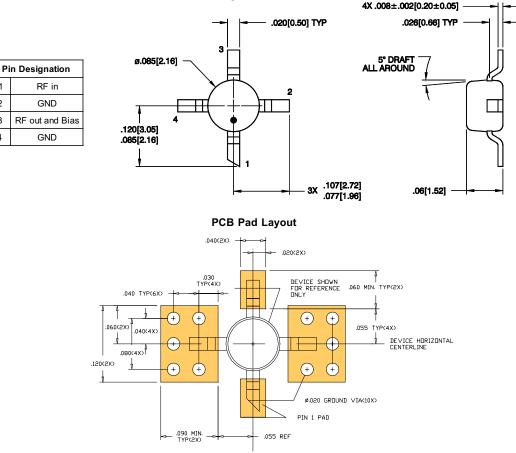
3

4

Caution:

RF in

GND


GND

Operation of this device above any one of these parameters may cause permanent damage. Appropriate precautions in handling, packaging and testing devices must be observed

Thermal Resistance (Lead-Junction): 97° C/W

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel		
SGA-6586	13"	3000		

Package Dimensions

DEVICE VERTICAL CENTERLINE

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.