

Product Description

Stanford Microdevices' NGA-689 is a high performance Gallium Arsenide Heterojunction Bipolar Transistor MMIC Amplifier. Designed with InGaP process technology for improved reliability, a Darlington configuration is utilized for broadband performance up to 5 Ghz. The heterojunction increases breakdown voltage and minimizes leakage current between junctions. Cancellation of emitter junction non-linearities results in higher suppression of intermodulation products.

NGA-689

DC-5000 MHz, Cascadable GaAs HBT MMIC Amplifier

Product Features

- 11.7dB Gain, 18.9 dBm P1dB at 1950Mhz
- Cascadable 50 ohm: 1.4:1 VSWR
- Patented GaAs HBT Technology
- Operates from Single Supply
- Low Thermal Resistance Package
- Unconditionally Stable

Applications

- Cellular, PCS, CDPD
- Wireless Data, SONET

Symbol	Parameters: Test Conditions: Z ₀ = 50 Ohms, I _D = 80 mA, T = 25°C		Units	Min.	Тур.	Max.
P _{1dB}	Output Power at 1dB Compression	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		19.9 18.9 17.9	
IP ₃	Third Order Intercept Point Power out per tone = 0 dBm	f = 850 MHz f = 1950 MHz f = 2400 MHz	dBm dBm dBm		36.9 33.6 32.1	
S ₂₁	Small Signal Gain	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		11.9 11.7 11.6	
Bandwidth	Determined by S11 and S22 values		MHz		5000	
S ₁₁	Input VSWR	f = DC - 5000 MHz	=		1.4:1	
S ₂₂	Output VSWR	f = DC - 5000 MHz	=		1.4:1	
S ₁₂	Reverse Isolation	f = 850 MHz f = 1950 MHz f = 2400 MHz	dB dB dB		19.7 19.5 19.4	
NF	Noise Figure	f = 2000 MHz	dB		6.0	
V _D	Device Voltage		٧		5.8	
R _{th} , j-l	Thermal Resistance (junction - lead)	°C/W		91		

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patient rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

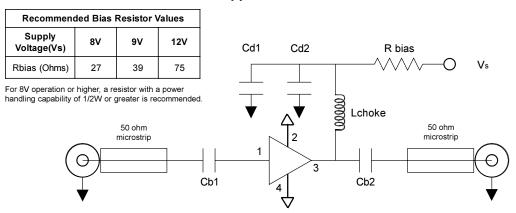
Phone: (800) SMI-MMIC

Absolute Maximum Ratings

Operation of this device above any one of these parameters may cause permanent damage.

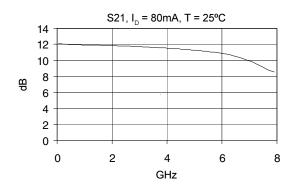
Bias Conditions should also satisfy the following expression: I_DV_D (max) < $(T_J - T_{OP})/R_{th}$, j-I

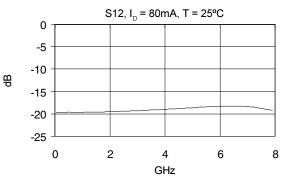
Parameter	Value	Unit
Supply Current	120	mA
Device Voltage	6.7	٧
Operating Temperature	-40 to +85	°C
Maximum Input Power	+13	dBm
Storage Temperature Range	-40 to +150	°C
Operating Junction Temperature	+150	°C

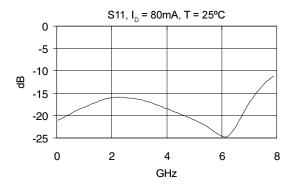

Key parameters, at typical operating frequencies:

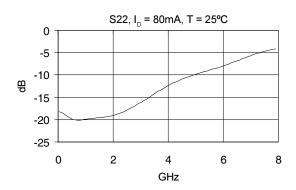
noy parameters, at typical operating noqueneres.							
	Typical		Test Condition				
Parameter	25°C	Unit	(I _D = 80mA, unless otherwise noted)				
500 MHz							
Gain	12.0	dB					
Output IP3	37.2	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm				
Output P1dB	19.9	dBm					
Input Return Loss	19.6	dB					
Reverse Isolation	19.7	dB					
850 MHz							
Gain	11.9	dB					
Output IP3	36.9	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm				
Output P1dB	19.9	dBm					
Input Return Loss	18.5	dB					
Reverse Isolation	19.7	dB					
1950 MHz							
Gain	11.7	dB					
Output IP3	33.6	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm				
Output P1dB	18.9	dBm					
Input Return Loss	16.0	dB					
Reverse Isolation	19.5	dB					
2400 MHz							
Gain	11.6	dB					
Output IP3	32.1	dBm	Tone spacing = 1 MHz, Pout per tone = 0dBm				
Output P1dB	17.9	dBm					
Input Return Loss	15.9	dB					
Reverse Isolation	19.4	dB					

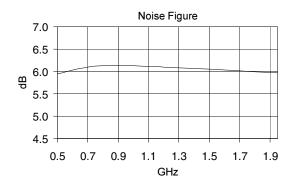
Pin #	Function	Description	Device Schematic
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
2	GND	Connection to ground. For best performance use via holes (as close to ground leads as possible) to reduce lead inductance.	
3	RF OUT/ BIAS	RF output and bias pin. Bias should be supplied to this pin through an external series resistor and RF choke inductor. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well bypassed.	
4	GND	Same as Pin 2.	

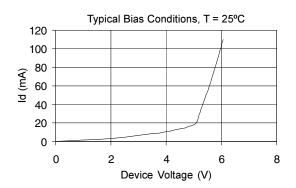

Application Schematic

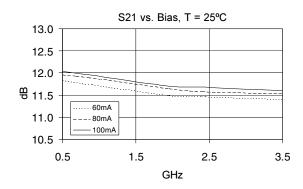


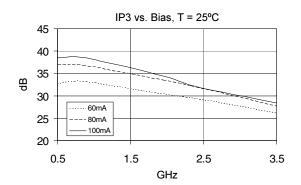

Reference Designator	Function	500 MHz	850 MHz	1950 M Hz	2400 MHz
Cb1	DC Blocking	220 pF	100 pF	68 pF	56 pF
Cb2	DC Blocking	220 pF	100 pF	68 pF	56 pF
Cd1	Decoupling	1 uF	1 uF	1 uF	1 uF
Cd2	Decoupling	100 pF	68 pF	22 pF	22 pF
Lchoke	AC Blocking	68 nH	33 nH	22 nH	18 nH

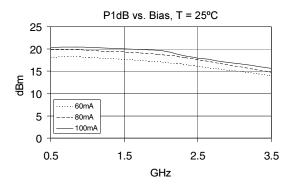


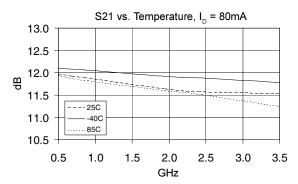


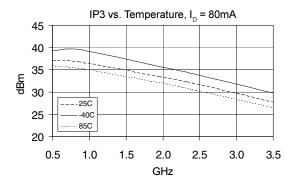


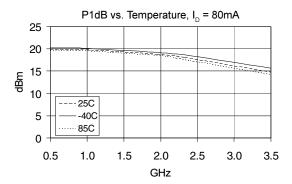










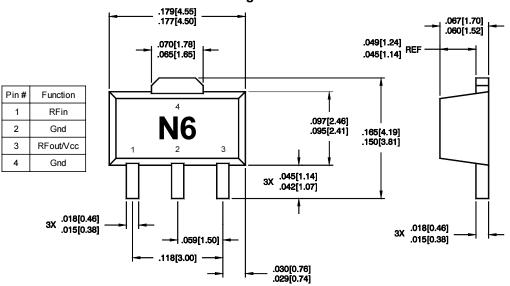


Typical S-Parameters, I_D = 80mA (No external matching, de-embedded to device leads)

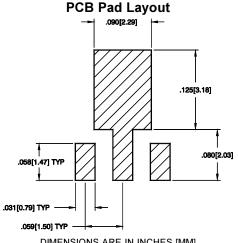
	S.	11		S21			S12		s	22
Freq GHz	mag	Ang	dB	mag	Ang	dB	mag	Ang	mag	Ang
0.05	0.089	2	12.1	4.014	175	-19.7	0.103	0	0.124	-180
0.10	0.090	1	12.1	4.009	174	-19.7	0.103	0	0.121	-179
0.20	0.093	-1	12.0	3.997	173	-19.7	0.104	-2	0.116	-178
0.30	0.097	-4	12.0	3.985	170	-19.7	0.104	-3	0.111	-177
0.40	0.101	-7	12.0	3.976	168	-19.7	0.104	-4	0.106	-175
0.50	0.105	-10	12.0	3.968	165	-19.7	0.104	-6	0.101	-173
0.60	0.109	-12	12.0	3.964	162	-19.7	0.104	-7	0.099	-171
0.70	0.114	-14	12.0	3.959	159	-19.7	0.104	-8	0.098	-168
0.80	0.117	-16	11.9	3.955	156	-19.7	0.104	-9	0.099	-167
0.90	0.120	-18	11.9	3.950	153	-19.7	0.104	-10	0.100	-165
1.00	0.124	-20	11.9	3.948	150	-19.7	0.104	-11	0.100	-164
1.10	0.128	-22	11.9	3.944	147	-19.7	0.104	-12	0.102	-163
1.20	0.131	-24	11.9	3.940	144	-19.7	0.104	-13	0.103	-162
1.30	0.135	-26	11.9	3.936	141	-19.6	0.104	-14	0.104	-161
1.40	0.140	-28	11.9	3.931	138	-19.6	0.104	-16	0.105	-161
1.50	0.144	-29	11.9	3.928	135	-19.6	0.104	-17	0.106	-161
1.60	0.148	-31	11.9	3.923	132	-19.6	0.105	-18	0.106	-161
1.70	0.152	-32	11.9	3.920	129	-19.6	0.105	-19	0.107	-161
1.80	0.156	-34	11.9	3.916	126	-19.6	0.105	-20	0.108	-162
1.90	0.158	-36	11.8	3.911	123	-19.5	0.105	-21	0.110	-164
2.00	0.159	-38	11.8	3.907	120	-19.5	0.106	-22	0.111	-166
2.20	0.161	-43	11.8	3.898	113	-19.5	0.106	-25	0.116	-172
2.40	0.160	-47	11.8	3.889	107	-19.4	0.107	-27	0.123	-179
2.60	0.158	-53	11.8	3.878	101	-19.4	0.107	-30	0.133	174
2.80	0.155	-57	11.7	3.866	95	-19.3	0.108	-32	0.143	167
3.00	0.151	-60	11.7	3.854	89	-19.3	0.109	-35	0.156	160
3.20	0.146	-63	11.7	3.838	83	-19.2	0.109	-37	0.170	154
3.40	0.140	-66	11.6	3.823	76	-19.2	0.110	-40	0.186	147
3.60	0.133	-69	11.6	3.805	70	-19.1	0.111	-43	0.204	142
3.80	0.126	-71	11.6	3.785	64	-19.0	0.112	-45	0.222	136
4.00	0.120	-74	11.5	3.766	58	-19.0	0.112	-48	0.240	131
4.20	0.113	-76	11.5	3.745	51	-18.9	0.113	-51	0.258	126
4.40	0.107	-78	11.4	3.723	45	-18.9	0.114	-54	0.276	121
4.60	0.101	-80	11.4	3.702	38	-18.8	0.115	-57	0.292	116
4.80	0.095	-82	11.3	3.679	32	-18.7	0.116	-60	0.308	111
5.00	0.089	-83	11.3	3.655	26	-18.6	0.117	-63	0.323	106
5.20	0.084	-84	11.2	3.630	19	-18.5	0.118	-67	0.337	101
5.40	0.078	-84	11.1	3.602	13	-18.5	0.119	-70	0.351	95
5.60	0.071	-81 -75	11.1	3.574	6	-18.4	0.120	-74	0.365	89
5.80 6.00	0.064	-75 65	11.0 10.9	3.538	-1	-18.3 -18.3	0.121	-77	0.382	82
	0.059	-65		3.496 3.349	-7		0.122	-81 -91	0.399 0.455	76
6.50 7.00		-26	10.5		-25	-18.3	0.122			58
7.50	0.138 0.220	-11 -11	9.9	3.138 2.863	-42 -59	-18.4 -18.8	0.120 0.115	-102 -112	0.521 0.583	41 25
7.50	0.220	-11 -15	8.5	2.863	-59 -70	-18.8 -19.1		-112	0.583	16
7.90	0.276	-15	0.5	2.072	-/0	-19.1	0.110	-119	0.021	ıθ

Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed.

NGA-689 DC-5.0 GHz 5.8V GaAs HBT

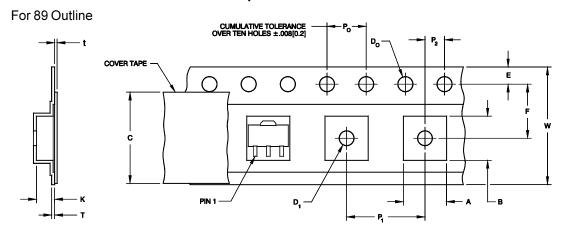

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel	
NGA-689	7"	1000	


Part Symbolization

The part will be symbolized with a "N6" designator on the top surface of the package.

Package Dimensions


Pin assignments shown for reference only, not marked on part

Component Tape and Reel Packaging

Tape Dimensions

DETAIL A

		Size			
	Description	Symbol	Millimeters	Inches	
Cavity	Length Width Depth	A B K	4.91 +/- 0.01 4.52 +/- 0.01 1.90 +/- 0.01	0.19 +/- 0.0004 0.18 +/- 0.0004 0.07 +/- 0.0004	
	Pitch Bottom Hole Diameter	P ₁ D ₁	8.00 +/- 0.01 1.60 +/- 0.10	0.07 +/- 0.0004 0.31 +/- 0.0004 0.06 +/- 0.004	
Perforation	Diameter Pitch Position	D _o P _o E	1.55 +/- 0.05 4.00 +/- 0.01 1.75 +/- 0.01	0.06 +/- 0.002 0.16 +/- 0.0004 0.07 +/- 0.0004	
Cover Tape	Width Tape Thickness	C t	9.10 +/- 0.25 0.05 +/- 0.01	0.36 +/- 0.01 0.002 +/- 0.0004	
Carrier Tape	Width Thickness	W T	12.0 +/- 0.03 0.30 +/- 0.05	0.47 +/- 0.001 0.01 +/- 0.002	
Distance	Cavity to Perforation (Width Direction) Cavity to Perforation (Length Direction)	F P ₂	5.50 +/- 0.10 2.00 +/- 0.10	0.22 +/- 0.0004 0.08 +/- 0.0004	

Note: Drawing not to scale