HD29051

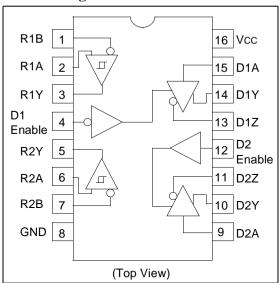
Dual Differential Line Drivers / ReceiversWith 3 State Outputs

The HD29051 features differential line drivers / receivers with three state output designed to meet the spec of EIA RS-422A and 423A. Each device has two drivers / receivers in a 16 pin package. The device becomes in enable state when active high for a driver and active low for a receiver.

Features

Driver

- Built in current restriction when short circuit
- Power up / down protection.
- High output current


Ioh = -40 mA

IoL = 40 mA

Receiver

- Input hysteresis (Typ. 50 mV)
- In phase input voltage ±200 mV of input sensitivity in the range −7 to +12 V.

Pin Arrangement

Function Table

Drivers									
Input A	Enable	Output Y	Output Z						
L	Н	L	Н						
Н	Н	Н	L						
Х	L	Z	Z						

Receivers	
Differential Input A – B	Output Y
VID ≥ 0.2 V	Н
-0.2 V < Vid < 0.2 V	?
VID ≤ -0.2 V	L

H: High level
I: Low level

Z: High impedance

X: Immaterial ?: Irrelevant

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply Voltage *1	Vcc	7	V
Input Voltage A , B *3	Vin	±25	V
Differential Input Voltage *2 *3	VID	±25	V
Output Current *3	lo	50	mA
Enable Input Voltage	VIE	5.5	V
Input Voltage *4	Vin	5.5	V
Output Applied Voltage *4 *5	Vo	-1.0 to 7.0	V
Operating Temperature Range	Topr	0 to 70	°C
Storage Temperature Range	Tstg	-65 to 150	°C

Notes: 1. All voltage values except for differential input voltage are with respect to network ground terminal.

- 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.
- 3. Only receiver
- 4. Only driver
- 5. Z state
- 6. The absolute maximum ratings are values which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.75	5.0	5.25	V
In Phase Input Voltage *1	Vic	-7.0		12	V
Differential Input Voltage *1	VID	-6.0	_	6.0	V
Enable Input Voltage	VIE	0	_	5.25	V
Input Voltage *2	Vin	0	_	5.25	V
Operating Temperature	Topr	0	25	70	°C

Notes: 1. Only receiver

2. Only driver

Electrical Characteristics (Ta = $0 \text{ to } +70^{\circ}\text{C}$)

Driver

Item	Symbol	Min	Тур	Max	Unit	Conditions
Input Voltage	VIHD	2.0			V	
	VILD		=	0.8	V	
Input Clamp Voltage	VIKD	_	_	-1.5	V	Vcc = 4.75 V II = -18 mA
Output Voltage	VOHD	2.5	_	_	V	Vcc = 4.75 V Iон = -20 mA
	-	2.4			V	Vcc = 4.75 V Iон = -40 mA
	Vold			0.45	V	Vcc = 4.75 V IoL = 20 mA
	-			0.5	V	VCC = 4.75 V IOL = 40 mA
Output Leak Current	lozd	-100	_	100	μΑ	Vcc = 5.25 V, Vo = 0.5 V Enable = 0.8 V
	_	-100	_	100	μΑ	Vcc = 5.25 V, Vo = 2.7 V Enable = 0.8 V
	IO(Off)	_	_	-100	μΑ	Vcc = 0 V Vo = -0.25 V
	_	_	_	100	μΑ	Vcc = 0 V Vo = 6.0 V
Input Current	liD	_	_	100	μА	Vcc = 5.25 V Vı = 5.25 V
	IIHD	_	_	20	μΑ	Vcc = 5.25 V VI = 2.7 V
	lihd	_	_	-360	μΑ	Vcc = 5.25 V VI = 0.4 V
Differential Output	ΔVOC	_	_	0.4	V	
Voltage	Vod2	2.0	=	_	V	
	$\Delta _{VOD} $	_	_	0.4	V	
Short Circuit Output Current	1 losd	-30	_	-150	mA	Vcc = 5.25 V Vo = 0 V

Electrical Characteristics (Ta = 0 to $+70^{\circ}$ C)

Receiver

Item	Symbol	Min	Тур	Max	Unit	Conditions
Differential Input *2 Threshold Voltage	VTHR	_	_	0.2	V	Vo≥2.7 V -7.0 V < Vic < 12 V
		-0.2	_		V	Vo ≤ 0.45 V -7.0 V < Vic < 12 V
Input Current	libr	_	_	1.0	mA	VIN = 12 V 0 V ≤ Vcc ≤ 5.25 V
		_	_	-0.8	mA	VIN = -7 V 0 V ≤ Vcc ≤ 5.25 V
Output Voltage	Vohr	2.7			V	$Vcc = 4.75 \text{ V}, \text{ Io} = -400 \ \mu\text{A}$ $VID = 0.4 \text{ V}, -7.0 \text{ V} < VIC < 12 \text{ V}$
	Volr	_	_	0.45	V	VCC = 4.75 V, IO = 8.0 mA VID = -0.4 V, -7.0 V < VIC < 12 V
Short Circuit Output Current	*1 IOSR	-15	_	-85	mA	Vcc = 5.25 V, Vo = 0 V VID = 3.0 V

Supply

Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply Current	Icc	_	55 ^{*3}	80	mΑ	Vcc = 5.25 V

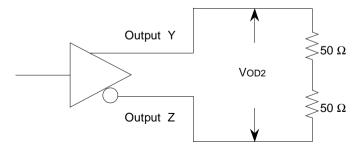
Notes: 1. Not more than one output should be shorted at a time, and duration of the short circuit should not exceed one second.

- 2. In this table, only the threshold voltage is expressed in algebra.
- 3. All typical values are at VCC = 5V, Ta = 25°C.

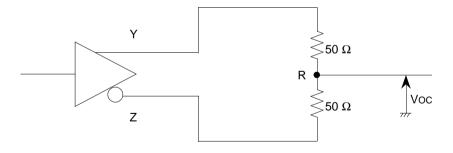
Switching Characteristics ($Ta = 25^{\circ}C$, Vcc = 5 V)

Driver

Item	Symbol	Min	Тур	Max	Unit	Conditions
Propagation Delay Time	tPLHD			20	ns	CL = 30 pF, RL = 75 Ω to GND RL = 180 Ω to Vcc
	tPHLD	_	_	20	ns	CL = 30 pF, RL = 75 Ω to GND RL = 180 Ω to VCC
Propagation Delay Time Difference	tskd *1	_	_	4	ns	CL = 30 pF, RL = 75 Ω to GND RL = 180 Ω to VCC
Output Enable Time	tzhd		_	20	ns	CL = 30 pF $RL = 75 \Omega \text{ to GND}$
	tzld		_	35	ns	CL = 30 pF RL = 180 Ω to VCC
Output Disable Time	tHZD			20	ns	CL = 10 pF RL = 75 Ω to GND
	tLZD		_	25	ns	CL = 10 pF $RL = 180\Omega \text{ to VCC}$


Receiver

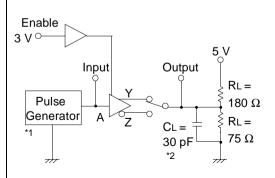
Item	Symbol	Min	Тур	Max	Unit	Conditions
Propagation Delay Time	tPLHR			40	ns	CL = 15 pF
	tPHLR		_	40	ns	CL = 15 pF


Note: 1. tskd = tplhd - tphld

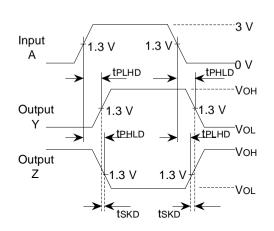
DC Test (|Vod2|, $\Delta |Vod|$, Voc, $\Delta |Voc|$)

|Vod2|, Δ |Vod |Test

Voc, Δ |Voc| Test

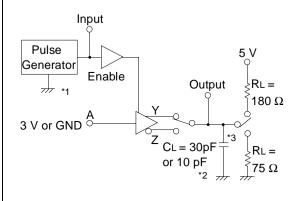

 $\Delta |\text{VoD}|$ and $\Delta |\text{Voc}|$ indicate the differences of voltage from the former states when Y and Z outputs are inversed.

$$\Delta |VOD| = |VOD2| - |\overline{VOD2}|$$

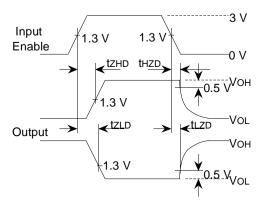

$$\Delta |Voc| = |Voc - \overline{Voc}|$$

1. tplhd, tphld

Test circuit



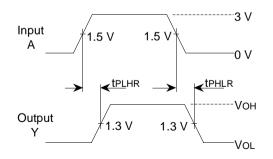
Waveforms



2. tzhd, tzld, thzd, tlzd

Test circuit

Waveforms

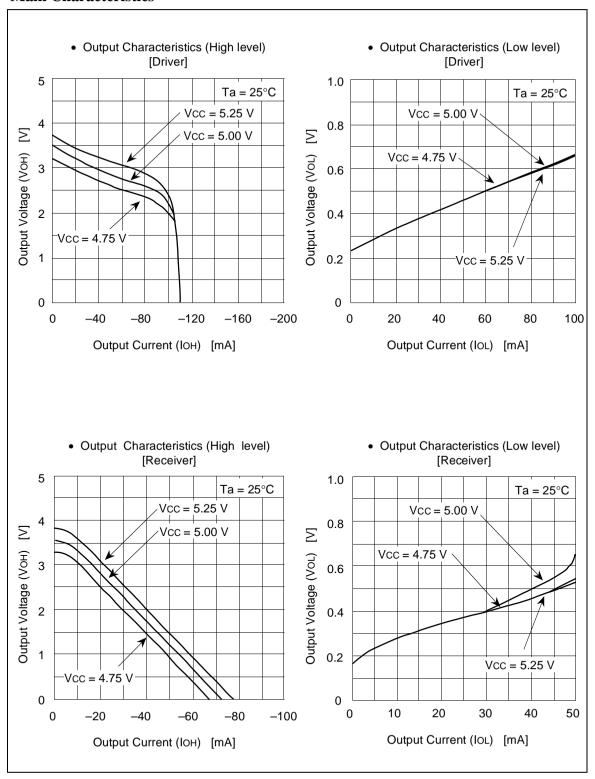

3. tplhr, tphlr

Test circuit

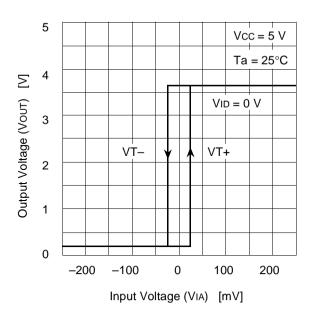
Enable Input Output Pulse Generator Cı = 15 pF *2 -

1.5 V

Waveforms




Notes: 1. The pulse generator has the following characteristics:


PRR = 1 MHz, 50 % duty cycle, tr = tf = 6.0 ns.

- 2. CL includes probe and jig capacitance.
- 3. 75 Ω connected between the pin and GND at tzhp thzp test. 180 Ω connected between the pin and GND at tzhd thzd test.
- 4. At tHZR, tLZR test, S1 and S2 are closed. At tzhr test, S1 is open and S2 is closed. At tzlR test, S1 is closed and S2 is open.

Main Characteristics

