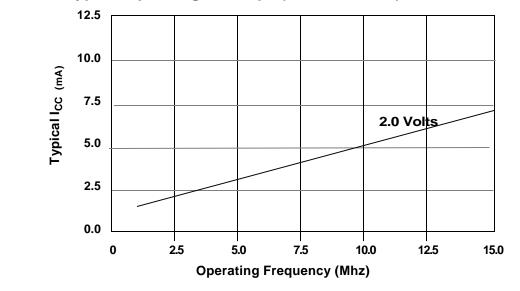

NanoAmp Solutions, Inc. 1982 Zanker Road, San Jose, CA 95112 ph: 408-573-8878, FAX: 408-573-8877 www.nanoamp.com

EM512D16 512Kx16 bit Ultra-Low Power Asynchronous Static RAM

Overview

The EM512D16 is an integrated memory device containing a low power 8 Mbit Static Random Access Memory organized as 524,288 words by 16 bits. The base design is the same as NanoAmp's standard low voltage version, EM512W16. The device is fabricated using NanoAmp's advanced CMOS process and high-speed/ultra low-power/ low-voltage circuit technology. The device pinout is compatible with other standard 512K x 16 SRAMs. The device is designed such that a creative user can improve system power and performance parameters through use of it's unique page mode operation.

FIGURE 1: Pin Configuration


Features

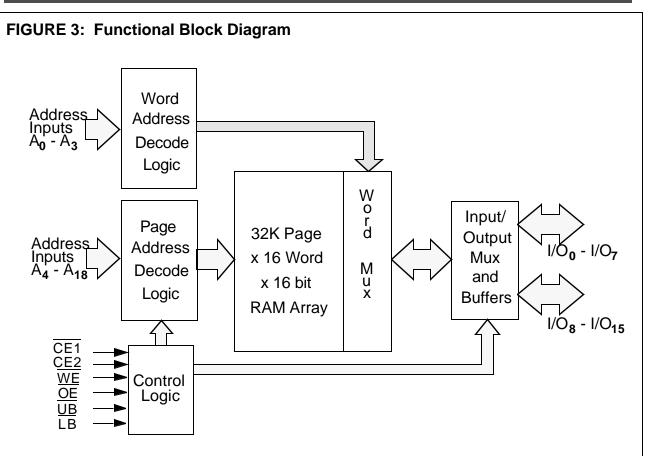

- Dual Voltage for Optimum Performance:
 Vccq 2.3 to 3.6 Volts
 Vcc 1.7 to 2.2 Volts
- Extended Temperature Range: -40 to +85 °C
- Fast Cycle Time: Random Access < 70 ns Page Mode < 25 ns
- Very Low Operating Current: I_{CC} < 5 mA typical at 2V, 10 Mhz
- Very Low Standby Current: I_{SB} < 2 uA @ 55 °C
- 16 Word Fast Page-Mode Operation
- 48-Pin BGA or Known Good Die available

TABLE 1: Pin Descriptions

Pin Name	Pin Function				
A ₀ -A ₁₈	Address Inputs				
WE	Write Enable Input				
CE1, CE2	Chip Enable Inputs				
OE	Output Enable Input				
UB	Upper Byte Enable Input				
LB	Lower Byte Enable Input				
I/O ₀ -I/O ₁₅ Data Inputs/Outputs					
V _{CC}	Power				
V _{CCQ} Power I/O pins only					
V _{SS}	Ground				
NC	Not Connected				

FIGURE 1: Typical Operating Envelope (Serial R/W Mix)

TABLE 2: Functional Description

CE1	CE2	WE	OE	UB	LB	1/0 ₀ - 1/0 ₁₅ ¹	MODE	POWER
Н	Х	Х	Х	Х	Х	High Z Standby ²		Standby
Х	L	Х	Х	Х	Х	High Z Standby ²		Standby
Х	Х	Х	Х	Н	Н	High Z Standby ²		Standby
L	Н	L	Х ³	L ¹	L ¹	Data In Write ³		Active
L	Н	Н	L	L ¹	L1	Data Out Read		Active
L	Н	Н	Н	L ¹	L ¹	High Z Active A		Active

When UB and LB are in select mode (low), I/O₀ - I/O₁₅ are affected as shown. When LB only is in the select mode only I/O₀ - IO₇ are affected as shown. When UB is in the select mode only I/O₈ - I/O₁₅ are affected as shown. If both UB and LB are in the deselect mode (high), the chip is in a standby mode.

2. When the device is in standby mode, control inputs (WE, OE, UB, and LB), address inputs and data input/outputs are internally isolated from any external influence and disabled from exerting any influence externally.

3. When $\overline{\text{WE}}$ is invoked, the $\overline{\text{OE}}$ input is internally disabled and has no effect on the circuit.

TABLE 3: Capacitance*

ltem	Symbol	Test Condition	Min	Max	Unit
Input Capacitance	C _{IN}	$V_{IN} = 0V$, f = 1 MHz, $T_A = 25^{\circ}C$		8	pF
I/O Capacitance	C _{I/O}	$V_{IN} = 0V$, f = 1 MHz, $T_A = 25^{\circ}C$		8	pF

Note: These parameters are verified in device characterization and are not 100% tested

TABLE 4: Absolute Maximum Ratings*

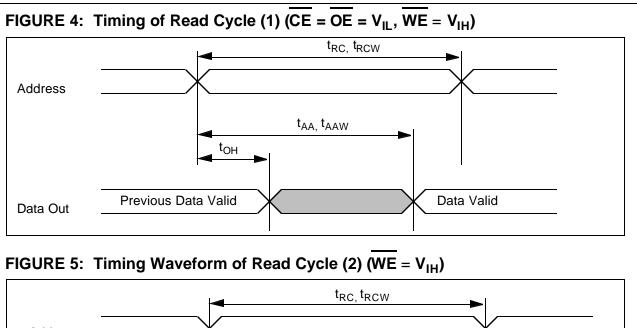
Item	Symbol	Rating	Unit
Voltage on any pin relative to V_{SS}	V _{IN,OUT}	–0.3 to V _{CC} +0.3	V
Voltage on V_{CC} Supply Relative to V_{SS}	V _{CC}	-0.3 to 3.0	V
Storage Temperature	T _{STG}	-40 to 125	°C
Operating Temperature	T _A	40 to +85	°C

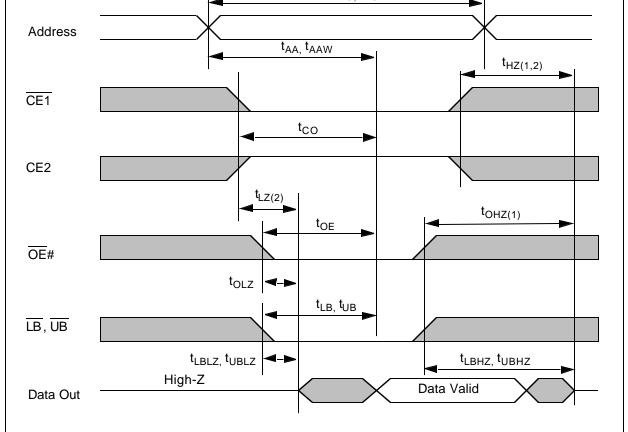
* Stresses greater than those listed above may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

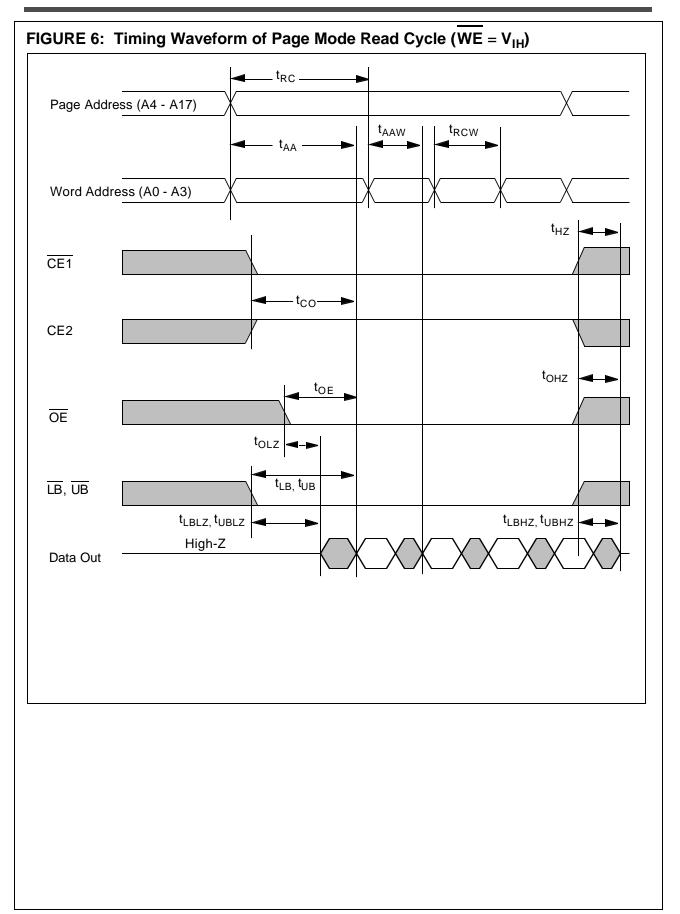
TABLE 5: Operating Characteristics (Over specified Temperature Range)

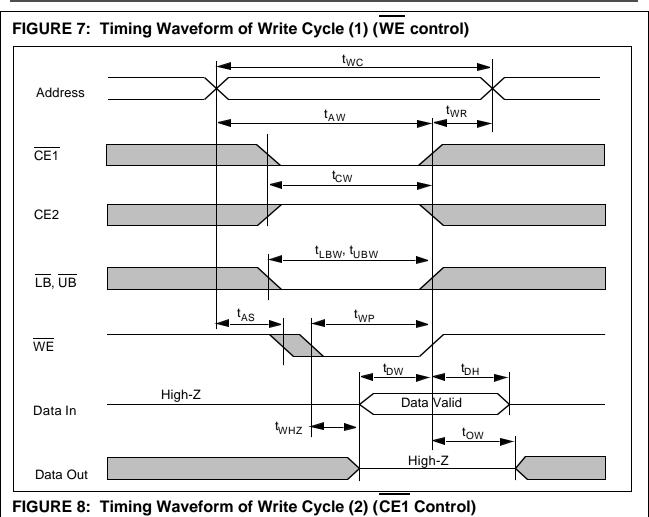
Item	Symbol	Test Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{CC}		1.7		2.2	V
Supply Voltage I/O Only	V _{CCQ}		2.3		3.6	V
Minimum Data Retention Voltage	V _{DR}	Chip Disabled (Note 2)	1.2			V
Input High Voltage	V _{IH}		0.7V _{CC}		V _{CC} +0.5	V
Input Low Voltage	V _{IL}		-0.5		0.3V _{CC}	V
Output High Voltage	V _{OH}	I _{OH} = 0.2mA	V _{CC} -0.2			V
Output Low Voltage	V _{OL}	I _{OL} = -0.2mA			0.2	V
Input Leakage Current	I _{LI}	$V_{IN} = 0$ to V_{CC}			0.5	uA
Output Leakage Current	I _{LO}	$\overline{OE} = V_{IH}$ or Chip Disabled			0.5	uA
Read/Write Operating Supply Cur- rent @ 1 uS Cycle Time	I _{CC1}	VCC=2.2 V, $V_{IN}=V_{IH}$ or V_{IL} Chip Enabled, IOL = 0			2.0	mA
Random Access Operating Supply Current @ 70 nS Cycle Time	I _{CC2}	VCC=2.2 V, $V_{IN}=V_{IH}$ or V_{IL} Chip Enabled, IOL = 0			15.0	mA
Page Mode Operating Supply Cur- rent @ 25 nS Cycle Time	I _{CC2}	VCC=2.2 V, $V_{IN}=V_{IH}$ or V_{IL} Chip Enabled, IOL = 0			7.0	mA
Read/Write Quiescent Operating Supply Current (Note 2)	I _{CC3}	$V_{IN} = V_{CC} \text{ or } 0V$ Chip Enabled, IOL = 0 f = 0, $t_A = 85^{\circ}C$, VCC = 3.6 V			2.0	mA
Operating Standby Current (Note 2)	I _{SB1}	$V_{IN} = V_{CC} \text{ or } 0V$ Chip Disabled $t_A = 55^{\circ}C, VCC = 2.2 V$			2	uA
Maximum Standby Current (Note 2)	I _{SB2}	$V_{IN} = V_{CC}$ or 0V Chip Disabled $t_A = 85^{\circ}C$, VCC = 2.2 V			20	uA
Maximum Data Retention Current (Note 2)	I _{DR}	Vcc = 1.2V, $V_{IN} = V_{CC}$ or 0 Chip Disabled, $t_A = 85^{\circ}C$			5	uA

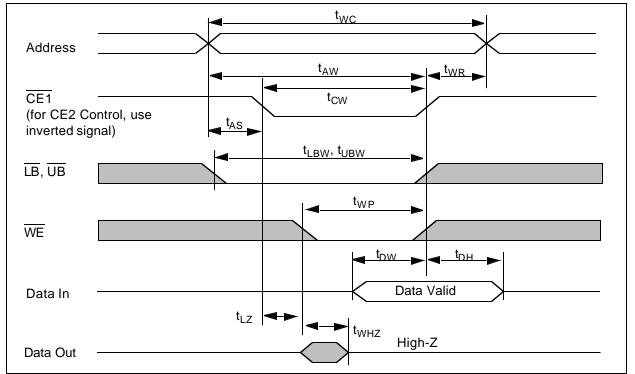
 This device assumes a standby mode if the chip is disabled (CE1 high or CE2 low). It will also go into a standby mode whenever if both UB and LB are high. In order to achieve low standby current all inputs must be within 0.2 volts of either VCC or VSS.


2. The Chip is Disabled when $\overline{CE1}$ is high or CE2 is low. The Chip is Enabled when $\overline{CE1}$ is low and CE2 is high.


TABLE 6: Timing Test Conditions


Item	
Input Pulse Level	0.1V _{CC} to 0.9 V _{CC}
Input Rise and Fall Time	5ns
Input and Output Timing Reference Levels	0.5 V _{CC}
Operating Temperature	-40 to +85 °C


TABLE 7: Timing


Item	Symbol	V _{CCQ =} 2	V _{CCQ =} 2.3 - 3.6 V		V _{CCQ =} 2.7 - 3.6 V	
nem	Symbol	Min.	Max.	Min.	Max.	Units
Read Cycle Time	t _{RC}	85		70		ns
Address Access Time (Random Access)	t _{AA}		85		70	ns
Address Access Time (Word Mode)	t _{AAW}		85		70	ns
Chip Enable to Valid Output	t _{co}		85		70	ns
Output Enable to Valid Output	t _{OE}		30		25	ns
Byte Select to Valid Output	t _{LB} , t _{UB}		85		70	ns
Chip Enable to Low-Z output	t _{LZ}	10		10		ns
Output Enable to Low-Z Output	t _{OLZ}	5		5		ns
Byte Select to Low-Z Output	t _{LBZ} , t _{UBZ}	10		10		ns
Chip Disable to High-Z Output	t _{HZ}	0	20	0	20	ns
Output Disable to High-Z Output	t _{онz}	0	20	0	20	ns
Byte Select Disable to High-Z Output	t _{LBHZ} , t _{UBHZ}	0	20	0	20	ns
Output Hold from Address Change	t _{OH}	10		10		ns
Write Cycle Time	t _{WC}	85		70		ns
Chip Enable to End of Write	t _{CW}	50		50		ns
Address Valid to End of Write	t _{AW}	40		40		ns
Byte Select to End of Write	t _{LBW} , t _{UBW}	50		50		ns
Write Pulse Width	t _{WP}	40		40		ns
Address Setup Time	t _{AS}	0		0		ns
Write Recovery Time	t _{WR}	0		0		ns
Write to High-Z Output	t _{WHZ}		20		20	ns
Data to Write Time Overlap	t _{DW}	40		40		ns
Data Hold from Write Time	t _{DH}	0		0	1	ns
End Write to Low-Z Output	t _{OW}	5		5		ns

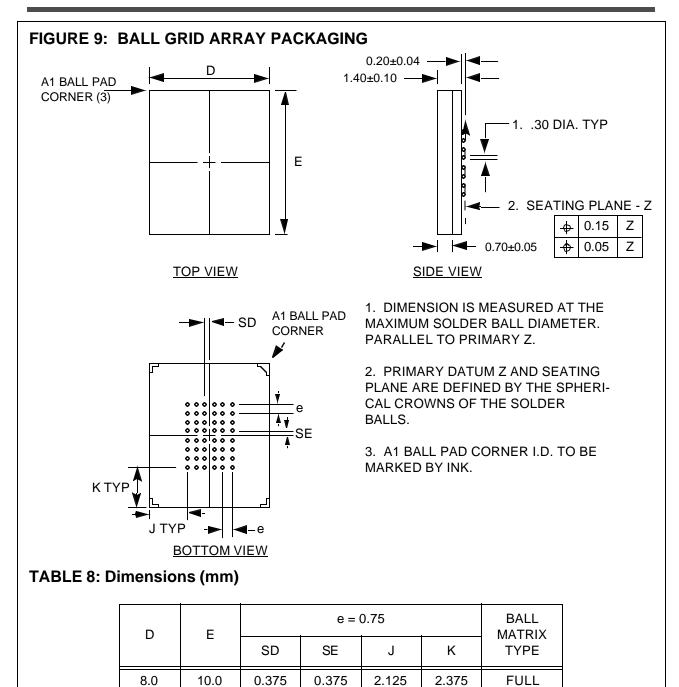


TABLE 9: Revision History

Revision	Date	Change Description			
А	Jan. 1, 2001	Initial Advance Release			
В	Mar 2001	Deleted TSOP references			

 $\ensuremath{\textcircled{\sc 0}}$ 2001 Nanoamp Solutions, Inc. All rights reserved.

NanoAmp Solutions, Inc. ("NanoAmp") reserves the right to change or modify the information contained in this datasheet and the products described therein, without prior notice. NanoAmp does not convey any license under its patent rights nor the rights of others. Charts, drawings and schedules contained in this datasheet are provided for illustration purposes only and they vary depending upon specific applications. NanoAmp makes no warranty or guarantee regarding suitability of these products for any particular purpose, nor does NanoAmp assume any liability arising out of the application or use of any product or circuit described herein. NanoAmp does not authorize use of its products as critical components in any application in which the failure of the NanoAmp product may be expected to result in significant injury or death, including life support systems and critical medical instruments.