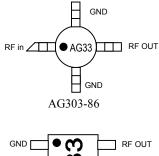
Preliminary Product Information

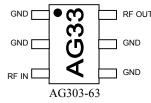
Product Features

AG303

InGaP HBT Gain Block


- DC 5000MHz
- +13 dBm P1dB at 900MHz
- +27 dBm OIP3 at 900MHz
- 20.5 dB Gain at 900MHz
- Single Voltage Supply
- SOT-363 or SOT-86 SMT Package
- Internally matched to 50Ω

Product Description


The AG303 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG303 typically provides 20.5 dB of gain, +27 dBm Output IP3, and +13 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTBF values exceeding 100 years at mounting temperatures of +85°C and is housed in a SOT-363 & SOT-86 industry standard SMT packages.

The AG303 consists of Darlington pair amplifiers using the high reliability InGaP/GaAs HBT technology process technology and only requires DC-blocking capacitors, a bias resistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be directly applied to various current and next generation wireless technologies such as GPRS, GSM, CDMA, W-CDMA, and UMTS. In addition, the AG303 will work for other various applications within the DC to 5 GHz frequency range such as CATV and fixed wireless.

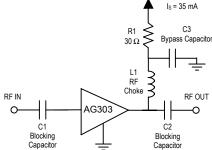
Functional Diagram

Specifications

Parameters ¹	Units	Min	Тур	Max
Frequency Range	MHz		DC-5000	
S21 - Gain	dB		20.5	
S11 - Input Return Loss	dB		-15	
S22 - Output Return Loss	dB		-15	
Output P1dB	dBm		+13	
Output IP3	dBm		+27	
Noise Figure	dB		3.6	
Device Voltage	V		4.0	
Device Current	mA		35	

Test conditions unless otherwise noted

T = 25°C, Supply Voltage = +5 V, R_{blas} = 30 Ω, Frequency = 900MHz, 50 Ω System.
3OIP measured with two tones at an output power of -5 dBm/tone separated by 10MHz. The suppression on the largest IM3 product is used to calculate the 3OIP using a 2:1 rule.


Absolute Maximum Ratings

Parameters	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-40 to +125 °C
Operation of this device above any of there peramet	ara may aguag parmanant damaga

 $V_S = +5 V$

ation of this device above any of there parameters may cause permanent damage

Application Circuit

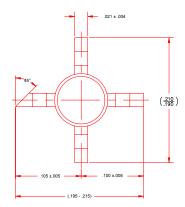
Typical Parameters

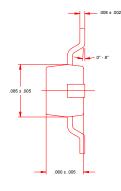
Parameter ¹	Units	Typical		
Frequency	MHz	900	1900	
S21	dB	20.5	19	
S11	dB	-20	-15	
S22	dB	-20	-20	
Output P1dB	dBm	+13	+12	
Output IP3	dBm	+27	+25	
Noise Figure	dB	3.6	3.6	
Supply Voltage	V	5	5	
Device Current	mA	35	35	
1. Data represents typical performance in an application board with				

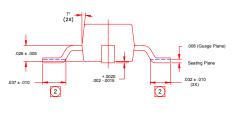
T = 25°C, V_s = +5 V, and R_{bias} = 30 Ω in a 50 Ω system.

Ordering Information

Part No.	Description
AG303-63	InGaP HBT Gain Block SOT-363 Style Package (Available in Tape & Reel)
AG303-86	InGaP HBT Gain Block SOT-86 Style Package (Available in Tape & Reel)
AG303-63PCB AG303-86PCB	Fully Assembled Application Board Fully Assembled Application Board

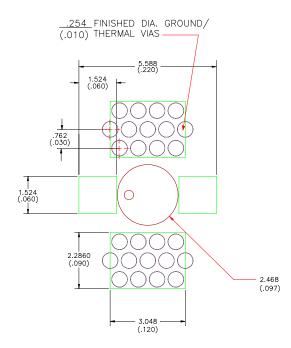

This document contains information on a new product. Specifications and information are subject to change without notice




Preliminary Product Information

AG303-86 Package Information

Outline Drawing

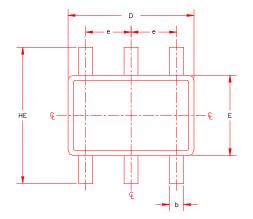


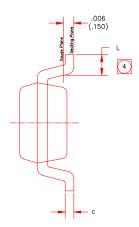
NOTES: 1. DIMENSIONS ARE IN INCHES. THE FOOT LENGTH MEASURING BASED ON GAUGE PLANE METHOD.

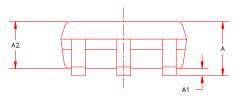
Land Pattern

Mounting Configuration Notes

NOTES:


- THERMAL/GROUND VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS PART. VIAS SHOULD USE A .013" DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER OF .010".
- 2. ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- 3. MOUNTING SCREWS ARE RECOMMENDED NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK. ENSURE THAT THE THERMAL/GROUND VIAS CONTACT THE HEATSINK.
- 4. DO NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGIONS WHERE THE BOARD CONTACTS THE HEATSINK.
- 5. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 6. USE 1 OZ. COPPER MINIMUM.
- 7. DIMENSIONS ARE IN MILLIMETERS / (INCHES).


This document contains information on a new product. Specifications and information are subject to change without notice

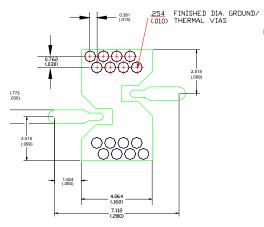

Preliminary Product Information

AG303-63 Package Information

Outline Drawing

SYMBOL	MIN	MAX	
E	.045 (1.15)	.053 (1.35)	
D	.073 (1.85)	.089 (2.25)	
HE	.079 (2.0)	.090 (2.30)	
А	.031 (.80)	.043 (1.10)	
A2	.031 (.80)	.039 (.10)	
A1	.000 (.00)	.004 (.10)	
e	.026 BSC (.65 BSC)		
ь	.006 (.15)	.012 (.30)	
с	.003 (.08)	.010 (.25)	
L	.008 (.21)	.016 (.41)	

NOTES:


1. ALL DIMENSIONS ARE IN INCHES. (MM)

 DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND GATE BURR.
ALL SPECIFICATIONS COMPLY TO JEDEC SPEC MO-203 ISSUE A.

THE FOOT LENGTH MEASURING BASED ON GAUGE PLANE METHOD.

Land Pattern

Mounting Configuration Notes

NDTES:

- THERMAL/GROUND VIAS ARE CRITICAL FOR THE PROPER PERFORMANCE OF THIS PART. VIAS SHOULD USE A .013" DIAMETER DRILL AND HAVE A FINAL, PLATED THRU DIAMETER DF .010".
- 2. ADD AS MUCH COPPER AS POSSIBLE TO INNER AND OUTER LAYERS NEAR THE PART TO ENSURE OPTIMAL THERMAL PERFORMANCE.
- ADD MOUNTING SCREWS NEAR THE PART TO FASTEN THE BOARD TO A HEATSINK, ENSURE THAT THE THERMAL/GROUND VIAS CONTACT THE HEATSINK.
- 4. DD NOT PUT SOLDER MASK ON THE BACK SIDE OF THE PC BOARD IN THE REGIONS WHERE THE BOARD CONTACTS THE HEATSINK.
- 5. RF TRACE WIDTH DEPENDS UPON THE PC BOARD MATERIAL AND CONSTRUCTION.
- 6. USE 1 DZ. COPPER MINIMUM.
- 7. DIMENSIONS ARE IN MILLIMETERS (INCHES).

This document contains information on a new product. Specifications and information are subject to change without notice