

ACC2087 ENHANCED SUPER CHIP

DATA BOOK ADVANCED INFORMATION

AUGUST 1996 Revision 1.1 _____ 2087

ACC Microelectronics Corporation

2500 Augustine Drive, Santa Clara, CA 95054 Phone: (408) 980-0622 Fax: (408) 980-0626

Copyright 1996 ACC Microelectronics Corporation. All rights reserved. P/N 520141 Revision 1.1 August 1996

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of ACC Microelectronics Corporation.

ACC Microelectronics Corporation makes no warranty for the use of its products and bears no responsibility for any errors which might be appear in this document. Specifications are subject to change without notice.

ACC Micro is a trademark of ACC Microeletronics Corporation.

IBM, AT, XT, PS/2, Micro Channel are trademarks of International Business Machines.

Pentium, Intel are trademarks of Intel Corporation. M1 is a trademark of Cyrix Corporation. K5 is a trademark of Advanced Micro Devices

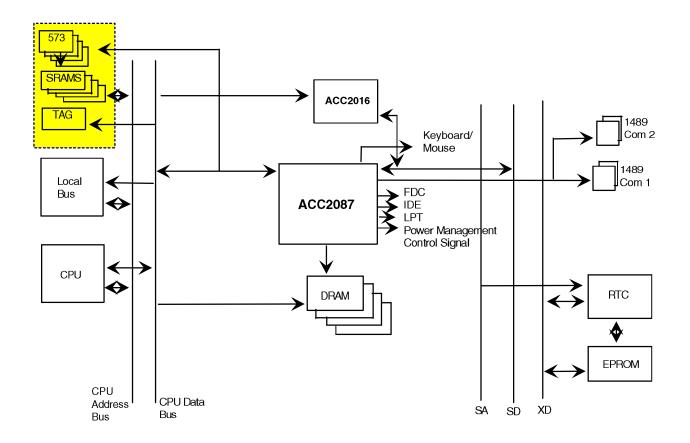
Table of Contents

Title		Page
1.0	ACC2087 Introduction	1
	1.1 ACC2087 Features	1
	1.2 ACC2087 System Block Diagram	1
	1.3 ACC2087 Internal Block Diagram	3
2.0	ACC2087 Functional Description	4
	2.1 CPU Interface	4
	2.2 80387 Interface Control	4
	2.3 Clock Generator	4
	2.4 Clock Mode Selection	5
	2.5 Stop Grant, Stop Clock, for 1X Clock Scaling	6
	2.6 Clock Throttling	7
	2.7 Local Bus Peripheral Support	7
	2.8 Intel System Management Mode Interface	8
	2.9 Power Management Features	10
	2.10 Shadow Register Table Description	11
	2.11 High Performance Cache Controller	14
	2.12 Memory Controller	15
	2.13 Memory Mapping	16
	2.14 Shadow RAM	16
	2.15 Interrupt Controllers	16
	2.16 DMA	16
	2.17 Memory Mapper	17
	2.18 Timer/Counter	17
	2.19 ACC2087 I/O Address Map	17
	2.20 PIO	17
	2.21 DMA Arbitration Logic	17
	2.22 Refresh Generation Logic	17
	2.23 Staggered Refresh Logic	18
	2.24 NMI and Port B Logic	18
	2.25 Bus Controller and Converter	18
	2.26 Turbo Speed Control Logic	19
	2.27 8-bit/16-bit ROM Options	20
	2.28 128K/64K ROM BIOS Range	20
	2.29 Reset and Shutdown Logic	20
	2.30 OS/2 Optimization	21
	2.31 Floppy Disk Drives	22
	2.32 Serial Port Interface	38
	2.33 Parallel Port Interface	51

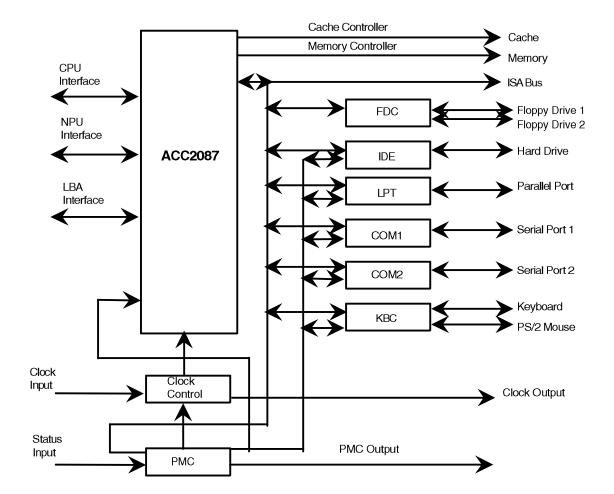
Table of Contentscontd.

Title		Page
3.0	ACC2087 Pin Description	56
	3.1 ACC2087 Pin Descriptions	56
	3-1 Clock Interface	56
	3-2 Reset Interface	56
	3-3 CPU Interface	56
	3-4 Power Management/Cache/DRAM/AT Multiplex Interface	59
	3-5 Dedicated Power Management Interface	60
	3-6 Dedicated Cache Interface	61
	3-7 DRAM Interface	62
	3-8 AT Bus Interface	62
	3-9 Keyboard/Mouse Interface	65
	3-10 FDC Interface	65
	3-11 COM1 Interface	66
	3-12 COM2 Interface	66
	3-13 IDE and LPT1 Interface	67
	3.2 ACC2087 Numerical Pin List	68
	3.3 ACC2087 Desktop vs. Notebook Multiplexed Pin Summary	69
	3.4 ACC2087 Pins Status for Various CPU Types	69
	3.5 ACC2087 Numerical Pin List with Multifunction pins and Power	
	Plane Description	70
4.0	ACC2087 Register Settings	73
	4.1 ACC2087 Register Settings	73
5.0	ACC2087 Upgrade Advanced Parallel Port	112
	5.1 Description, Features, and Block Diagram	112
	5.2 Features	112
	5.3 Block Diagram	112
	5.4 Programmable Configuration Registers	114
	5.5 Parallel Port Interface	115
6.0	ACC2087 DC Specifications	116
7.0	ACC2087 AC Specifications	125
8.0	ACC2087 Package Specifications	150

Appendix A-1 List of Sales Representatives


Section 1

Introduction


1.1 2087 Features

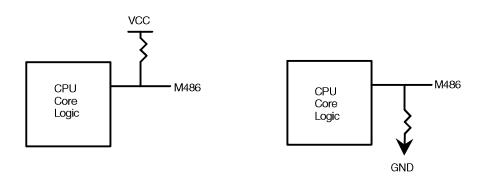
- Supports Intel iDX4, AMD AM486, Cyrix 5x86, TI 486s, and IBM Blue Lightning microprocessor with operation up to 50 MHz
- ♦ 3.3V / 5.0V mixed voltage system design
- Level 1 Write Back Cache
- Level 2 Cache Controller
 - Support either write back or write through implementation
 - Up to 2 MB in cache size
- High Performance DRAM Controller
 Supports four banks of 32-bit DRAM, Fast Page Mode only, allowing up to 64 MB memory
- Integrated Peripheral Controller: 2 x 8237, 2 x 8259, 1 x 8254, 1 x 74612
- Integrated Floppy Disk Controller supports two floppy disk drives
- Supports one IDE interface
- Supports two high speed 16C550 compatible UARTs with 16 Byte FIFOs
- Supports one bi-directional Parallel port with ECP mode
- Support PPM mode where Floppy Disk Drive can be used on Parallel Port
- PS/2 compatible Keyboard Controller and Mouse
- Power Management Control
 - Power-On Suspend
 - Power-Off Suspend
 - Doze / Idle Detection
 - Suspend / resume Button
 - APM support
 SMM / SMI
 - Stop Clock Protocol
 - Battery monitoring signal and dedicated low-battery warning alarm
- Supports Flash EPROM
- Local Bus IDE
- Fast reset / Fast gate A20 (Port 92)
- 256-pin PQFP device

1.2 2087 System Block Diagram

2087

1.3 2087 Internal Block Diagram

Section 2


Functional Description

2.1 CPU Interface

The ACC2087 supports the 486 and 386DX CPUs. The CPU interface selection is determined by detecting a pull up or pull down resistor on pin 172 (M486) during the reset period. A pull up resistor on pin 172 will trigger the ACC2087 operating in the 486 mode. A pull down resistor on pin 172 will trigger the ACC2087 operating in the 386DX mode.

486DX mode configuration

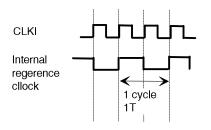
386 mode configuration

2.2 80387 Interface Control

The 80387 interfaces directly to the 386DX with the error-reporting logic built in the ACC2087. A coprocessor error is sent to the ACC2087, generating an interrupt request to the CPU, followed by a service request. A write operation to I/O port 0F0 will clear the interrupt request.

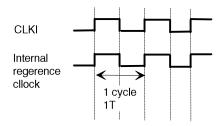
2.3 Clock Generator

The ACC2087 Clock Generator provides flexible clock signals to support internal and external timing requirements. Clock outputs for the CPU, the NPU, and the Keyboard Controller are generated from these inputs. Three clock sources (CLKSRC, X24M and X14M) are used to derive the system clock output (SYSCLK).


Signal X14M interfaces to a 14.318 MHz crystal to generate a 14.318 MHz frequency. A 24 MHz crystal is used by signal X24M to provide all timing signal for the integrated floppy disk controller. The CLKSRC input is the same input to the CPU clock. CLKSRC input must be driven by an external oscillator. This input is one or two times of the CPU operation clock and provides turbo mode operation in 1x or 2x clock mode, respectively.

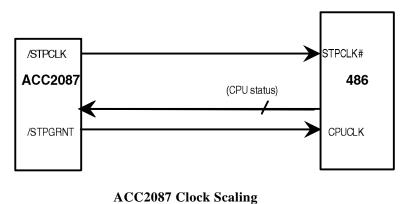
The AT Bus clock can be derived from three sources: CLKSRC, X14M, and X24M (by programming register 6h, bit 4-0). CLKSRC can be divided to an approximated 16MHz frequency, or use the 14.318 MHz directly, or it can be generated from the external 24 MHz directly.

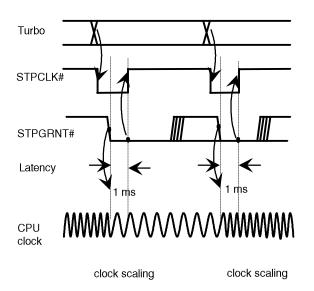
2.4 Clock Mode Selection


The ACC2087 supports both 1x clock and 2x clock. The clock phase is determined by selecting pin 51, CLKX1 signal for 1x clock from the ACC2087 or by selecting pin 49, CLKX2 signal for 2x clock from the ACC2087.

The 2x clock has a clock source, which is two times the CPU operation clock. In 2x clock, every cycle consists of two CLKI periods. 2x clock can be used for both the 486DX/SX systems or 386DX systems. In 486 mode, the ACC2087 provides a dedicated 486 Clock, which is a half of the CLKSRC. This pin, (pin 49) CLKx2, is actually the phase 1 reference clock.

2x clock


The 1x clock has a clock source which is one times of the CPU operation clock. In 1x clock, every CLKI input period becomes one completed cycle. 1x clock is used primarily for the 486 systems. CLKx1 can be used as 486 CPU clock input.



1x clock

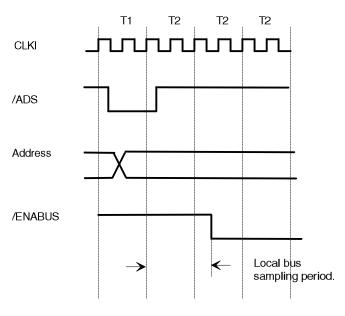
2.5 Stop Grant, Stop Clock, for 1X Clock Scaling:

In a Notebook system, the ability to switch CPU clock is a very important feature for power saving. The ACCACC2087 supports this feature by providing the interface to the CPU for Stop Grant and Stop Clock for 1x Clock Scaling functions.

1x Clock Stop-Grant Protocol

2X Clock Mode: When Register 20h bit 5 and Register 8h bit 3-0 of the ACC2087 are set, the "Turbo" pin can toggle CPU clock between turbo and sleep frequency. The CPU clock can also be switched between turbo and sleep frequency by programming Register 1Bh bit 0 to toggle the frequency.

1X Clock Mode: When Register 20h bit 3 is set to zero, ACC2087 will toggle between turbo and sleep frequency.


2.6 Clock Throttling:

To further reduce the power consumption in the Notebook system, the ACC2087 supports another mode called Clock Throttling. After scaling the CPU clock, the ACC2087 can periodically assert the STPCLK# request which will force the CPU into Stop Grant State. Hence the CPU power can be further reduced.

2.7 Local Bus Peripheral Support Master / DMA Mode and SMM Support in Local Bus Cycle

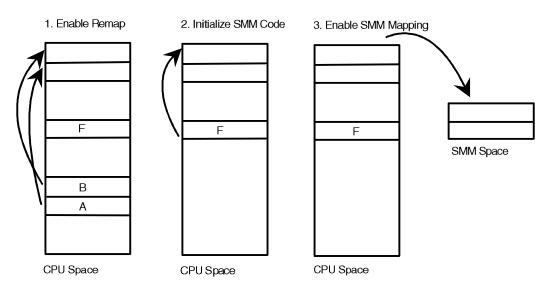
The ACC2087 supports VL-Bus with master and DMA modes. To further enhance the flexibility, the local bus can be detected under System Management Mode (SMM).

The ACC2087 determines whether the cycle is a local bus cycle or not by detecting the existence of the local bus cycle signal, signaled by a local bus device. When the ACC2087 Register 1Bh, bit 4, is set to one, pin 127 (READY0#, LBA#) becomes the LBA# pin. This pin is connected to the local bus device's local bus acknowledge signal. When LBA# is asserted low, the ACC2087 will terminate all the bus cycles, and relinquish the control to the local bus. The ACC2087 starts to sense the LBA# pin status from the end of T1 until the beginning of the ENABUS# as shown below.

Local Bus Detection

For local bus devices operating with a fast speed CPU clock, the ACC2087 offers an option to delay the ADS# one cycle internally to detect the local bus acknowledge or delay the AT bus for one cycle as shown below. Register 1Ah, bit 7, programs the ACC2087 internal ADS# timing. Register 18h, bit 6, programs the AT bus cycle delay.

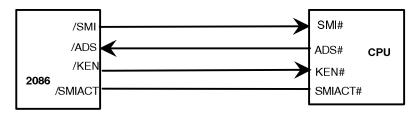
2087



Local Bus Delay Option

2.8 Intel System Management Mode Interface (SMM)

System Management Mode (SMM) is designed to handle power management interrupts that are totally transparent to the existing programs, operating systems and CPU operation modes. The ACC2087 contains dedicated logic to interface with SMM implemented by the Intel SL-enhanced 486 for battery-powered portable computers. The ACC2087 utilizes the DRAMs located between segments A000h and B000h as the separate SMM memory (SMRAM) required by SMM functions.


Before activating the SMM function, the system BIOS first needs to load the SMM service routine into the separate SMM memory (SMRAM). During power-up, the system BIOS can turn on the ACC2087 remap feature so that memory physically located between segment A000h to segment B000h can be accessed logically through locations between X + 128K and X if X memory is installed in the system. The system BIOS then loads the SMM code into this area, disables the remap and then enables ACC2087 SMM support. The remap space is now reserved for SMM. Two 64K blocks are available and one can be programmed as segment 3000h for executing the SMI handler. The remap function will not be available when SMM is used.

SM-RAM Mapping and Initializing for System Management Mode

The power management interrupt generated by the ACC2087 is connected to the CPU SMI# pin. The SMM interface circuit has been integrated in the ACC2087 to handle SMM cycle, memory map, and CPU internal cache.

The ACC2087 will enter SMM cycles when it detects SMIACT# being asserted low by the CPU. The physical memory (30000h - 3FFFh) dedicated to System Management Mode (SMM) will be enabled. CPU will use this dedicated SMRAM to perform SMM state save and state restore starting at address location 3FFFh, proceeding downward in a stack-like fashion and execute the SMI handler starting at address location 38000h. Register 1Fh in the ACC2087 contains the SMI enable bits. Setting bit 4 to one will enable the SMM. While bit 5 provides the access to the SMRAM starting at segment 3000h.

System Management Mode Interface (Intel SL-Enhanced CPU)

2.9 **Power Management Features**

The ACC2087 provides a powerful mechanism of system power management that is completely transparent to the operating system and application software. It was designed from the system level to synthesize and manage power consumption for the lowest power operation while maintaining system performance in the portable system.

The ACC2087 implements four special power saving modes to provide the most sophisticated system information needed for power management application. They are "Local Standby", "Global Standby", "Suspend / Resume", and "Doze" mode. The ACC2087 also provides a dedicated battery low input pin (LBAT#) and warning timer for an external battery pack. A transition on LBAT# should trigger this programmed warning timer. A 1khz tone will be generated through the speaker output as soon as the LBAT# transition is detected. If no transition has been detected, upon warning timer time-out, an SMI will be generated.

Local Standby Mode (LSM)

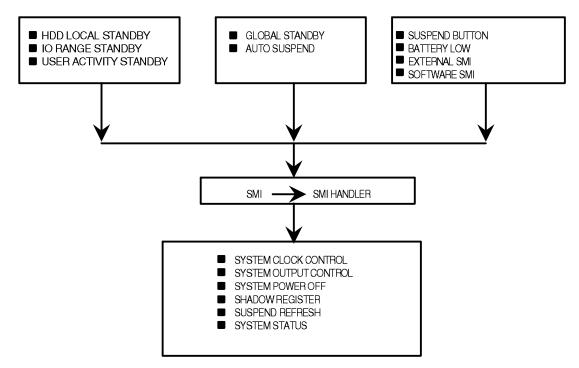
The "Local Standby" mode provides three dedicated local standby control circuits to monitor activity on HDD, I/O address for general chip select (GCS), and VRAM, Keyboard/Mouse, respectively. When the associated programmed timer is timed out, an optional SMI will be generated and status bit will be set. Any break event such as hard disk access will generate SMI and bring system back to normal operation.

Global Standby Mode (GSM)

When the system has been idle for a programmed standby timer count, and there is no screen activity for a programmed VRAM count, the system can go into global standby mode. All of the peripheral devices can be powered off and the CPU clock can be stopped under global standby mode.

Suspend and Resume Mode

The suspend mode can be entered by pressing the suspend/resume button or receiving a low battery input. In addition to the suspend / resume button, the ACC2087 has two user-defined buttons, User button and Standby button, which can bring the system to suspend mode.


The suspend to disk and resume feature is also supported by the ACC2087 through the SL-compatible shadow register.

Doze Mode

Doze mode provides a mechanism that allows power saving even between the keystrokes. This mechanism utilizes the Frequency Modulation (FM) and Pulse Modulation (PM) techniques which are commonly used in the

telecommunications field. This mode is used not only to provide the temperature control when CPU is busy (non-Doze) but also to further reduce power consumption when CPU is not busy (Doze).

Architecture of System and Power Management

2.10 Shadow Register Table Description

All defined register bits in the ACC2087 are readable and writeable to support the Intel SL type of shadow register. Also the F2 register is now readable to further support the power-saving feature.

Through the shadow registers, the ACC2087 can be powered off and its current state can be suspended to the disk. The device then can be powered back on to the same state as before the last power off when it is desired. This suspend and resume capability minimizes the system's battery power consumption.

Table 1.0 summarizes all of the shadow registers and their descriptions.

1. All the registers listed are originally write-only in ISA standard. The shadow mechanism makes them readable through the 0F2h/0F3h indexing scheme.

2. For some DMA registers that contain 2 bytes but have only one index assigned, the following sequence must be followed:

- cli ;make sure the sequence will not be broken
- out 0f2h, indx ;output index, clear the byte pointer, point to low byte
- mov ah, al ;save it somewhere
- in al, of 3h ;high byte, byte pointer will not be changed, stay at high byte.

- * Any write to 0F2h with index 0Axh will clear the byte pointer, which will set pointer to low byte. The first read from 0F3h after writing the index will set the pointer to high byte.
- * Only one byte pointer is shared by all paired register sets.
- * The first read from 0F3h will return the low byte, the second read will return the high byte.

3. For those registers that do not use all the bits, unused bits status are undefined. Software needs to mask out these bits when it restores.

- 4. For DMA base address registers, word count registers, channel mode registers, and channel mask registers, the value read back from the shadow registers are the original values loaded.
- 5. The value read back from shadow registers for the timer count are the original values loaded.

ACC Micro[™]_____

Shadow Register Table

Register Name	SL Mnemonic	Original	Index	Comment
		Address		
DMA CH0 Base Address	SHDMA0BA	00H	0A0H	2 bytes
DMA CH0 Count	SHDMA0WC	01h	0A1h	2 bytes
DMA CH1 Base Address	SHDMA1BA	02h	0A2h	2 bytes
DMA CH1 Count	SHDMA1WC	03h	0A3h	2 bytes
DMA CH2 Base Address	SHDMA2BA	04h	0A4h	2 bytes
DMA CH2 Count	SHDMA2WC	05h	0A5h	2 bytes
DMA CH3 Base Address	SHDMA3BA	06h	0A6h	2 bytes
DMA CH3 Count	SHDMA3WC	07h	0A7h	2 bytes
DMA CH0 Mode	SHDMA0MOD	0Bh	0C0h	1 byte
DMA CH1 Mode	SHDMA1MOD	0Bh	0C1h	1 byte
DMA CH2 Mode	SHDMA2MOD	0Bh	0C2h	1 byte
DMA CH3 Mode	SHDMA3MOD	0Bh	0C3h	1 byte
DMA CNTLR 1 Mask Reg.	SHDMAMSK1	0Fh	0C4h	1byte
PIC1 ICW2	SHINT1ICW2	21h	0D0h	1 byte
PIC1 ICW4	SHINT1ICW4	21h	0D1h	1 byte
PIC1 OCW3	SHINT10CW3	20h	0D2h	1 byte
NMI Mask & RTC index	SHNMIMASK	70h	0D6h	1 byte
TMR 1 CNTR 0 cnt low	SHT1CH0CL	40h	0CAh	1byte
TMR 1 CNTR 0 cnt high	SHT1CH0CH	40h	0CBh	1 byte
TMR 1 CNTR 1 cnt low	SHT1CH1CL	41h	0CCh	1 byte
TMR 1 CNTR 1 cnt high	SHT1CH1CH	41h	0CDh	1 byte
TMR 1 CNTR 2 cnt low	SHT1CH2CL	42h	0CEh	1 byte
TMR 1 CNTR 2 cnt high	SHT1CH2CH	42h	0CFh	1 byte
DMA CH4 Base Address	SHDMA4BA	0C0h	0A8h	2 bytes
DMA CH4 Count	SHDMA4WC	0C2h	0A9h	2 bytes
DMA CH5 Base Address	SHDMA5BA	0C4h	0AAh	2 bytes
DMA CH5 Count	SHDMA5WC	0C6h	0ABh	2 bytes
DMA CH6 Base Address	SHDMA6BA	0C8h	0ACh	2 bytes
DMA CH6 Count	SHDMA6WC	0CAh	0ADh	2 bytes
DMA CH7 Base Address	SHDMA7BA	0CCh	0AEh	2 bytes
DMA CH7 Count	SHDMA7WC	0CEh	0AFh	2 bytes
DMA CH4 Mode	SHDMA4MOD	0D6h	0C5h	1 byte
DMA CH5 Mode	SHDMA5MOD	0D6h	0C6h	1 byte
DMA CH6 Mode	SHDMA6MOD	0D6h	0C7h	1 byte
DMA CH7 Mode	SHDMA7MOD	0D6h	0C8h	1 byte
DMA CNTLR 2 Mask Reg.	SHDMAMSK2	0DEh	0C9h	1 byte
PIC2 ICW2	SHINT2ICW2	0A1h	0D3h	1 byte
PIC2 ICW4	SHINT2ICW4	0A1h	0D4h	1 byte
PIC2 OCW3	SHINT2OCW3	0A0h	0D5h	1 byte

2.11 High Performance Cache Controller

The integrated ACC2087 cache controller supports a direct mapped cache from 32 Kbytes up to 2 Mbytes in size. The direct mapped architecture means that a specified line in the cache is capable of caching only a certain range of memory addresses. The low order address bits choose the location (index) while the high order address bits (tag) identify the entry.

As for write policy, the ACC2087 supports either write through or write back cache implementations. In addition, the ACC2087 cache architecture can be used in both 386DX and 486 applications. For a 386DX design, the ACC2087 cache controller can be used to support a primary cache. In a 486 AT system, if the internal cache of the 486 is enabled, the ACC2087 direct mapped cache can be used as secondary cache.

Write Back Cache Policy

The write back cache policy implemented in the ACC2087 allows the system to minimize the frequency of unnecessary slow DRAM updates. For instance, when there are consecutive write hit cycles, the ACC2087 simply updates the cache without introducing any memory delay.

A write back cache design allows the write hit cycles to be completed in zero wait state accesses without updating the system main memory. Therefore, "stale" data is created where cache data and main memory data are not coherent. A write back cache design uses a "dirty" bit to keep track of whether each cache data line is a "clean" or "dirty" line. A "clean" line, dirty bit = 0, means the cache data and the corresponding main memory are identical. A "dirty" line, dirty bit = 1, indicates the cache data has been modified, which at some point must be written back to main memory.

Following is the write back cache mechanism for ACC2087:

Write Hit

In a cache write hit cycle, the ACC2087 will write to cache and set the "dirty" bit to 1.

Write Miss

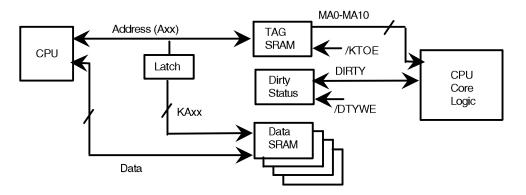
In a cache write miss cycle, the ACC2087 will write to DRAM directly.

Read Hit

In a cache read hit cycle, the ACC2087 will read from cache directly.

Read Miss

In a cache read miss cycle, the ACC2087 will examine the "dirty" bit status. If it is non-dirty, cache will be updated directly. If it is dirty, cache data will be "write back" before being updated.


The ACC2087 write back cache is enabled by programming configuration register 1E. When bit 3 in Register 1Eh is set to 1, write back is enabled and the ACC2087 will use integrated comparators for determining cache hit or miss status.

As described earlier, "dirty" status must be updated as well as detected for write back mode. MA10 becomes the dirty bit status signal (DIRTY) and NA# becomes the dirty bit write enable signal (DTYWE#). Refer to figure 1.4.

Posted Write and Write Through

The ACC2087 cache controller supports write-through and post write cache update options to prevent old data from being used.

The write-through option is the simplest way to keep cache coherent. In a cache write hit cycle, the memory controller will update the DRAM at the same time that it is written to the cache. The ACC2087 cache controller default mode is write-through mode.

Write Back Cache Circuit Block Diagram

The ACC2087 also supports posted write cache system by programming Configuration Register 4h, bit 7=1. The posted write option allows the data to be buffered before updating to the main memory. The system performance is therefore increased, since the processor can start a new cycle before the write cycle to the main memory is completed.

Cache Burst and Line Size

The ACC2087 supports a flexible line size structure and cache burst. The ACC2087 supports 32 bit, 64 bit, or 128 bit line sizes. Configuration Register 4h, bits 2 and 1 determine the line size. In the case of a cache read hit cycle, the ACC2087 will pull the burst ready signal, BRDY#, low and fill the 486 internal cache lines quickly. A 128 bit line size requires only 5 cycles to fill the cache lines. A 64 bit line size requires 3 cycles.

In the case of a read miss cycle, the ACC2087 burst mode will generate four continuous DRAM read cycles for a 128 bit line size to fill both 486 internal and external cache. For a 64 bit line size, the ACC2087 burst mode will generate two burst cycles instead of four.

2.12 Memory Controller

The Memory Controller is a key feature of the ACC2087. This versatile circuit provides complete control of up to 64 megabytes of system DRAM. In any control mode, it generates up to four Row Address Strobes (RAS#0-3) and one Memory Write Enable signal (WEN#). The Memory Controller also provides the interface to transfer control to a DMA controller or an AT Bus master.

The ACC2087 Memory Controller supports 256KB, 512KB, 1MB and 4MB DRAM devices. The ACC2087 provides all control signals and programmable control to support 256Kx1, 512Kx1, 1Mx1, 1Mx4, 4Mx1 and 4Mx4 (symmetrical only).

2.13 Memory Mapping

Memory Mapping translates system RAM within the 640 KB to 1MB range, which is reserved for the system ROM and BIOS application, to an accessible address range above the physical RAM space. For example, if 4 MB of memory are installed, and the memory mapping feature is on, the DRAMs in the 640 KB to 1MB range are mapped to an address immediately above 4 MB.

Memory Mapping is enabled by bit 7 of Register 0h in the configuration registers. When Shadow RAM is enabled simultaneously with Memory Mapping, the quantity of RAM available for Memory Mapping is reduced. If Shadow RAM segment F is enabled, 320KB of RAM can be mapped. If Shadow segment E is enabled, 256KB of RAM can be mapped. If any of the segments C0, C1, or D is enabled, 128 KB of RAM can be mapped. This mapping function can be used in all memory options, except option 24.

2.14 Shadow RAM

Shadow RAM provides an option to transfer BIOS or video-extension BIOS program codes into system RAM. This option provides significant performance improvement for applications requiring intensive BIOS calls.

Shadow RAM implements an alternate BIOS source by copying the complete EPROM program code into system RAM. This is referred to as "shadowing" because the DRAM and EPROM are both located in the same physical address space. This change is transparent to the rest of the system. ROM can then be disabled, allowing the RAM to respond in its place.

The ACC2087 Shadow RAM is configured in five independent segments: 00C0000 to 00C7FFF (Shadow C0), 00C8000 to 00CFFFF (Shadow C1), 00D0000 to 00DFFFF (Shadow D), 00E0000 to 00EFFFF (Shadow E), and 00F0000 to 00FFFFF (Shadow F). Each segment can be enabled for shadow operation individually or simultaneously.

Enabling a Shadow RAM segment requires two steps. The "shadow enable" configuration bit for the segment to be shadowed must be set to allow the transfer of code from EPROM to DRAM. The second step sets the "Shadow Read Only" configuration bit of the corresponding segment to protect the Shadow RAM. Interrupt Controllers

2.15 Interrupt Controllers

There are two programmable interrupt controllers for the ACC2087. They are fully compatible with Intel's 8259 controller, providing up to 15 interrupt sources

(14 external and 1 internal). The internal line connects to the 8254 Counter 0 output.

These interrupt controllers prioritize interrupt requests to the CPU.

2.16 DMA

The ACC2087 has two DMA controllers, compatible with the Intel 8237, which provide a total of seven external DMA channels.

Combined with the Memory Mapper, each DMA channel has a 24-bit address output to access data throughout the 64 megabyte system address space.

2.17 Memory Mapper

The ACC2087 has a built-in logic equivalent to the 74LS612, generating the upper address bits during a DMA cycle.

2.18 Timer/Counter

The ACC2087 provides three internal counters, which are compatible with the 8254. The clock input for each counter is tied to a clock of 1.19 MHz, which is derived by dividing the

14.318 MHz crystal input by 12. The output of Counter 0 is connected to the IRQ0 input of interrupt controller 1. Counter 1 initiates a refresh cycle and Counter 2 generates sound waveforms for the speaker.

2.19 ACC2087 I/O Address Map

The ACC2087 I/O address decode is fully compatible to the IBM PC/AT requirements. The ACC2087 has decoded the I/O address range from 000 to 0FF to allow users to use the I/O areas not used by the IBM PC/AT.

Hex Range	Device
000-00F	DMA controller 1, 8237A-5
020-021	Interrupt controller 1, 8259A, Master
040-043	Timer, 8254
060/064	Integrated Keyboard Controller
060-064	External Keyboard Controller
070-071	Real-time clock, NMI (non-maskable interrupt) mask
080-08F	DMA page register, 74LS612
092	Alternative Gate A20 and FAST RESET Register.
0A0-0A1	Interrupt controller 2, 8259A
0C0-0DF	DMA controller 2, 8237A-5
0F0	Clear Math Coprocessor Busy
0F1	Reset Math Coprocessor
0F2	ACC2087 Configuration Register Index
0F3	ACC2087 Configuration Register Data
0F8-0FF	Math Coprocessor

2.20 PIO

The PIO is the system configuration to control the speaker port. It also has circuitry to detect refresh. This condition can be read back as Bit 4 of I/O Port 61h.

2.21 DMA Arbitration Logic

There are two possible sources for a hold request to the CPU. Either the DMA controller issues a hold request or the output of Counter 1 in the 8254 makes a low to high transition. The HOLD line is active when either source is requesting a hold. The ACC2087 contains the logic to do the arbitration.

2.22 Refresh Generation Logic

The ACC2087 contains circuitry to perform DRAM refresh cycle. Refresh circuitry contains an 8-bit counter for address SA0-7 during a refresh. In addition, three more address counter bits are presented inside the ACC2087 to support refresh for DRAMs up to 4M bits.

2.23 Staggered Refresh Logic

The ACC2087 refresh logic works to perform a periodic refresh for both system DRAM and extended RAM on the AT Bus. The ACC2087 initiates a refresh cycle by driving its REFRESH# output low, and driving the refresh address onto the MA Bus, simultaneously generating staggered refresh pulses on the four RAS outputs. The RAS outputs are staggered to reduce the current drain caused by the refresh operation. During each refresh cycle, the ACC2087 drives the current refresh address onto the AT address bus. This provides the refresh address for extended memory.

2.24 NMI and Port B Logic

The ACC2087 contains non-maskable interrupt (NMI) signal generation logic. An NMI can be caused by an I/O error or by a parity error. Port B identifies the source of the error. At power up, the NMI signal is masked off. NMI is enabled by writing to I/O address 070 with bit 7 low; NMI is disabled by writing to I/O address 070 with bit 7 high.

2.25 Bus Controller and Converter

The flexible ACC2087 Bus Controller provides all of the control logic needed to interface to the CPU, alternate masters, local memory, primary or secondary cache and the AT bus. Each access may be initiated by the ACC2087 decoding the address and cycle type provided on the local CPU bus. The cycle type is determined by monitoring the signals D/-C, W/-R and M/-IO.

The bus controller has seven modes of operation which are defined as follows:

Local Memory Mode

Local memory mode is entered if the CPU addresses are part of the installed memory and the cycle is defined as a memory access.

Local Peripheral Mode

Local Peripheral Mode is entered when the ACC2087 LBA# signal is asserted during the local bus cycle. The ACC2087 will ignore all transactions when LBA# is properly asserted. The local bus peripheral decodes the local address for accesses to the local bus device. The peripheral will assert LBA# and properly complete the cycle. When the local peripheral bus interface is enabled, READY# is not available for coprocessors. The Weitek device should be treated as a local peripheral device. The 387 accesses will always include one wait state.

AT CPU Mode

This mode is active when HLDA is low. The CPU bus controller generates IOR#, IOW#, INTA#, MEMR#, and MEMW# signals.

DMA Mode

DMA mode is active if HLDA and AEN are active. The DMA controller drives the IOR#, IOW#, MEMR#, and MEMW# signals.

Refresh Mode

Refresh mode is active when HLDA and REFRESH# are active. MEMR# becomes active at this time to perform a refresh on both AT bus and local DRAM.

Master Mode

Master mode is active when HLDA is active and a card in the AT slot pulls MASTER# low. The card controls system address, data line and control line.

Bus Conversion Mode

The ACC2087 contains logic to convert between 16-bit and 8-bit data accessing. During a bus conversion cycle, the AT bus command strobe (MEMR#, MEMW#, IOR#, or IOW#) is activated two times.

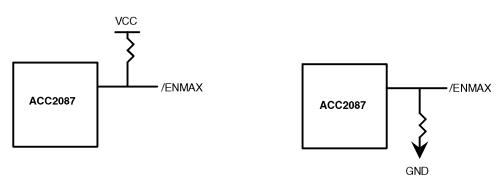
2.26 Turbo Speed Control Logic

The CPU clock frequency can be switched between CLKSRC and the AT clock. The frequency switch can be generated through either hardware or software. A TURBO pin is provided to support a front panel turbo speed switch. TURBO high selects CLKSRC as the CPU clock. TURBO low selects AT Bus clock as the CPU clock.

For power conservation, a standby mode clock control is provided. A system needs to pre-select the standby frequency first, then BIOS will monitor the activity of the system. If all pre-defined conditions of the standby mode are satisfied, the system will go into the standby mode by programming bit 3 of Register 8h to 1 or if the Turbo/Sleep bit has been set to 1. The Turbo pin, when driven low, will force the system into sleep mode.

The standby mode CPU operating frequency can be pre-set by programming bits 2-0 of configuration Register 8h. If AT Bus clock source is at 16 MHz, the standby frequencies output of CLKOUT are set as follows:

Bit 2	Bit 1	Bit 0	Frequency
0	0	0	16 MHz
1	0	0	9 MHz
1	0	1	4 MHz
1	1	0	2 MHz
1	1	1	1 MHz


2087

2.27 8-bit/16-bit ROM Options

The ACC2087 supports both 8-bit and 16-bit ROM data buses. It is configured by a pull-up or a pull-down resistor on pin 139, ENMAX#, as demonstrated below:

8-bit ROM configuration

16-bit ROM configuration

2.28 128K/64K ROM BIOS Range

The ROM BIOS range can be set to two different sizes 64K or 128K to accommodate various application requirements. Refer to Configuration Register 0h definition to configure the size of the ROM BIOS range.

2.29 Reset and Shutdown Logic

The reset and shutdown logic contains the circuitry for the RESET and CPURDY# signals. Reset circuitry generates two resets. One is for the general system reset with power on and the other is for the CPU. The PWRGOOD signal generates a system reset and is synchronized to CPUCLK. When the SWRESET# signal is generated from the integrated/external keyboard controller (called a warm reset), CPURST is activated to reset the CPU. CPURST is asserted for at least sixteen CPUCLK cycles and then deactivated for proper CPU operation.

2.30 OS/2 Optimization

The ACC2087 implements OS/2 optimization, which is a more efficient way to switch back and forth between real and protected modes in an OS/2 environment when frequent DOS calls are made. Conventional methods require the processor to communicate with the integrated /external keyboard controller in switching to protected mode and activating gate A20.

With OS/2 optimization, the ACC2087 allows control of software CPU reset and A20 gating through Port 92h.

Configuration Register Port 92h, Fast A20 Gate, and Alternative RESET Control

Bit	Function
7-2	Reserved
1	Fast Gate A20
0	Fast reset

- Bit 1 This bit controls CPU address bit A20. When set to 1, it enables A20. When set to 0, this bit makes the A20 Signal inactive, thus preventing the Address bus from going beyond the 0FFFFFh boundary in Real Mode. It is much faster than Gate A20 signal because it is just a simple I/O write operation. Default is 0.
- Bit 0 By setting this bit to 1, application software can reinitialize the microprocessor and switch the operation from Protected Mode to Real Mode. Setting this bit does not reset the whole system, it only affects the CPU. This reset function is the same as that of the integrated/external keyboard controller's "KBRST" signal. However, it provides a faster reset sequence. This bit can be read by application software to determine if it is a hot rest or cold boot. It can only be set to 0 by writing a 0 to bit 0 of the register or by power up. Default is 0.

With the ACC2087, designers can build an IBM PC/XT or AT compatible Floppy Disk Drive with fast access time, high reliability and low cost per bit capability. The ACC2087 integrates the functions of a standard floppy disk drive controller.

Data separator Write precompensation circuit Decode logic Data rate selection Clock generation Drive interface drivers and receivers.

This integration greatly reduces the number of components required to interface floppy disk drives to a microprocessor system.

The ACC2087 supports up to two floppy disk drives. It is compatible with IBM System 34 double density format (MFM), and Sony EMCA format.

The ACC2087 contains the decode logic for the internal registers, the write logic and the read logic. The system address decoder is compatible with the IBM PC drive system. Handshaking signals are provided to make DMA operation easy to incorporate with the aid of an external DMA control chip. The ACC2087 operates in either DMA or Non-DMA modes. In the Non-DMA mode, the ACC2087 generates interrupts to the processor each time a data byte is made available. In DMA mode, the processor only needs to load the command into the ACC2087 which will control all data transfers.

The Data Separator in the ACC2087 minimizes read error rates for high performance floppy disk drives. The on-chip phase locked loop digital circuit adjusts the clock used during data read to keep it in phase with the data signal. Write pre compensation is included in addition to the formatting, encoding/decoding, stepper motor control, and status sensing functions. All inputs are TTL compatible, and outputs are high current, open drain with direct drive interface.

Using a single 24 MHz crystal input, the ACC2087's internal Clock Generation circuit provides all timing signals for the sampling clock, write clock, and master clock. It generates 8 and 4 MHz to handle standard data rates of 500 and 250 Kb/s and 4.8 MHz to support a 300 Kb/s data rate.

The ACC2087 executes the following fifteen commands from the microprocessor.

Read Data Read Deleted Data Read a Track Read ID Write Data Write Deleted Data Format a Track Scan Equal Scan Low or Equal Scan High or Equal Recalibrate Sense Interrupt Status Specify Sense Drive Status Seek

FDC Register Descriptions

There are six floppy disk controller registers in the ACC2087, three registers for the status of signals used in diskette operations, one for data register, and two controller registers. The I/O addresses of these registers are described in the tables below.

Address		Registers	
Primary	Secondary	READ	WRITE
3F0	370	Input Register	
3F2	372		Digital output register
3F4	374	Main status register	
3F5	375	Data register	Data register
3F7	377	Digital input register	Diskette control register

Input Register (HEX 3F0) (R)

The Input Register is a general purpose input register.

Bit	Function
7-6	0
5	General purpose programmable bit 5.
4	General purpose programmable bit 4.
3	General purpose programmable bit 3.
2	General purpose programmable bit 2.
1	General purpose programmable bit 1.
0	General purpose programmable bit 0.

Digital Output Register. (HEX 3F2) (8-bits) (W).

The Digital Output Register controls drive motors, drive selection, and feature enable. All bits are cleared by the I/O reset line.

Bit	Function
7-6	Reserved.
5	Motor Enable 1.
4	Motor Enable 0.
3	DMA and Interrupt Enable.
2	Floppy Disk Controller reset.
1,0	Drive Select 0,1
	b1 b0
	0 0 Select drive 0.
	0 1 Select drive 1.
	1 0 Reserved.
	1 1 Reserved.

Main Status Register (HEX 3F4) (R)

The main status register controls data flow between the microprocessor and the controller.

Bit	Function
7	Request for Master. = 1 Data Register ready for transfer.
6	Data Input/Output. = 1 Data transfer from controller; = 0 Data transfer from the SD bus.
5	Execution Mode (Non-DMA mode). =1 Execution
4	Controller Busy. = 1 Controller busy.
3	Drive 3 Busy. = 1 Diskette 3 in seek mode. Drive 3 busy.
2	Drive 2 Busy. = 1 Diskette 2 in seek mode. Drive 2 Busy.
1	Drive 1 Busy. = 1 Diskette 1 in seek mode. Drive 1 Busy.
0	Drive 0 Busy. = 1 Diskette 0 in seek mode. Drive 0 Busy.

Data Register (HEX 3F5) (R/W)

The Data Register consists of four status registers in a stack. Only one register is presented to the data bus at a time. It stores data, commands and parameters, and provides diskette/drive status information. Data bytes are passed through the data register to program or obtain results after a command.

ACC Micro™_____

Status Register 0 (ST0)

Bit	Function		
7-6	IC (Interrupt Code).		
	<u>7 6</u>		
	0 0 Normal termination of command.		
	0 1 Abnormal termination of command.		
	1 0 Invalid command issue.		
	1 1 Abnormal termination because the ready signal from FDD changed state during		
	command		
	execution.		
5	SE, (seek end). $= 1$ Seek end.		
4	EC (Equipment Check). = 1 When a fault signal is received from the FDD, or the track 0 signals		
	fails to occur after 77 step pulses; $= 0$ No error.		
3	NR (Not Ready). = 1 Drive is not ready; = 0 Drive is ready.		
2	HD (Head address). = 1 Head 1 select; = 0 Head 2 select.		
1-0	US1,US0 (Unit select).		
	1 0		
	0 0 Drive 0 select.		
	0 1 Drive 1 select.		
	1 0 Drive 2 select.		
	1 1 Drive 3 select.		

Status Register 1 (ST1)

Bit	Function
7	EN (End of Cylinder). $= 1$ When the FDC tries to access a sector beyond the final sector of a cylinder.
6	Not used. This bit is always 0.
5	DE (Data Error). = 1 When the FDC detects a CRC error in either the ID field or data field.
4	OR (Over Run). = 1 If the FDC is not serviced by the host system during data transfer within a certain time interval.
3	Not used. This bit is always 0.
2	ND (No Data). = 1 During execution of Read, Write or Verify Data if the specified sector cannot be found.
1	NW (Not Writable). = 1 Set if the "write Protect" signal is detected from the diskette drive during the execution.
0	Missing Address Mark. = 1 When the FDC cannot detect the data address mark or deleted data address mark.

ACC Micro[™]_____

Status Register 2 (ST2)

Bit	Function
7	Not used. Always $= 0$.
6	CM (Control Mark). = 1 If deleted data is encountered during execution of the Read Data or Scan
	command.
5	DD (Data Error in Data Field). = 1 If the FDC detects a CRC error in the data field.
4	WC (Wrong Cylinder). = 1 Wrong cylinder.
3	SH (Scan Equal Hit). = 1 During execution of the Scan command, if the condition "equal" is
	satisfied.
2	SN (Scan Not Satisfy). = 1 During execution of the Scan command, if the FDC cannot find a sector.
1	BC (Bad Cylinder). = 1 Bad cylinder.
0	MD (Missing Address mark in Data Field). = 1 When data is read from the medium, if the FDC
	cannot find a data address mark or deleted data address mark.

Status Register 3 (ST3)

Bit	Function
7	FT, Fault.
6	WP, Write Protected.
5	RY, Ready.
4	T0, Track 0.
3	TS, Two-Side.
2	HD, Head Address.
1	US1, Unit Select 1.
0	US0, Unit Select 0.

Digital Input Register (HEX 3F7) (R)

The Digital Input Register is for diagnostic purposes.

Bit	Function
7	Diskette Change (DSKCHG)
6-0	Tri-State

2087

Diskette Control Register (HEX 3F7) (W)

The Diskette Control Register sets the precompensation.

Bit	Function						
7-2	Reserved						
1-0	Transfer Rates Select and Reduced Write Current Control 00 500Kb/s RWC#=1 01 300Kb/s RWC#=0 10 250Kb/s RWC#=0 11 Reserved RWC#=0						

Commands

The diskette controller in ACC2087 is capable of performing fifteen commands. Each command is initiated by a multi-byte transfer from the microprocessor. The result can also be a multi-byte transfer back to the microprocessor. Each command consists of three phases: Command, Execution, and Result.

Command

The microprocessor issues all required information to the controller to perform a specific operation.

Execution

The controller performs the specified operation.

Result

After completing the operation, status information and other housekeeping information are made available to the microprocessor.

Command Symbol Descriptions

- A0 Address Line 0. A0 controls the selection of main status register (A0=0) or data register (A0=1).
- **C** Cylinder Number. Current or selected cylinder (track), numbers 0 through 76.
- **D** Data. Data pattern to be written into a sector.
- **D7 -D0** Data Bus. 8 bit data bus, where D7 stand for the most significant bit, and D0 stands for the least significant bit.
- **DTL** Data Length. The value of this byte is normally ignored by the controller. However a byte must be written at this location.
- **EOT** End of Track. The final sector number on a cylinder.

- **H** Head Address. Head number 0 or 1, as specified in the ID field.
- **HD** Head. Selected head number 0 or 1. (H=HD in all commands)
- HLT Head Load Time. The head load time in the selected FDD (2 to 254 ms in 2 ms increments.)
- **HUT** Head Unload Time. Time after a Read or Write operation. (16 to 240 ms in 16 ms increments).
- MF Must be 1 to select MFM mode.
- **MT** Multitrack. If MT is high, a multitrack operation is performed. If MT=1 after finishing a read/write operation on side 0, FDC automatically starts searching for sector 1 on side 1.
- **N** Number. The number of data bytes written in a sector.

NCN New Cylinder Number. New cylinder number reached as a result of the seek operation; desired position of head.

- **ND** Non-DMA Mode.
- **PCN** Present Cylinder Number. Cylinder number at the completion of the Sense Interrupt Status command, current position of the head.
- **R** Record. The sector number to be read or written.
- **R/W** Read/Write. Either a Read or Write signal.
- **SC** Sector. Number of sectors per cylinder.
- **SK** Skip. Skip deleted data address mark.
- **SRT** Stepping Rate. These bits indicate the stepping rate for the FDD (1 to 16 ms in 1 ms increments). Stepping rate applies to all drives (FH=1ms, EH=2 ms, etc.).

ST0-ST3

Status 0-Status 3. One of the four registers that store status information after a command has been executed. This information is available during the result phase after command execution. These registers must not be confused with the main status register (selected by A0=0). ST0-ST3 are read only after a command has been executed and only if they contains information relevant to the command.

- **STP** Scan Test. If STP=1 during a scan operation, the data in contiguous sectors is compared byte by byte with data sent from the processor (or DMA). If STP=2, alternate sectors are read and compared.
- **US0-1** Unit Select. Selected drive number 0 or 1.

ACC Micro[™]_____

Command Format

The following commands can be issued to the controller. An "x" indicates a "don't care" condition.

READ DATA

Command Phase

	7	6	5	4	3	2	1	0
Byte 0	MT	MF	SK	0	0	1	1	0
Byte 1	х	х	х	х	х	HD	US1	US0
Byte 2	Cylinde	Cylinder Number						
Byte 3	Head Address							
Byte 4	Sector Number							
Byte 5	Number of Data Bytes in Sector							
Byte 6	End of Track							
Byte 7	Gap Length							
Byte 8	Data Length							

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

ACC Micro™_____

READ DELETED DATA

Command Phase

	7	6	5	4	3	2	1	0
Byte 0	MT	MF	SK	0	1	1	0	0
Byte 1	х	х	х	х	х	HD	US1	US0
Byte 2	Cylinde	Cylinder Number						
Byte 3	Head Address							
Byte 4	Sector Number							
Byte 5	Number of Data Bytes in Sector							
Byte 6	End of Track							
Byte 7	Gap Length							
Byte 8	Data Length							

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

READ A TRACK

Command Phase

Byte 0	0	MF	SK	0	0	0	1	0
Byte 1	х	х	х	х	х	HD	US1	US0
Byte 2	Cylinde	Cylinder Number						
Byte 3	Head Address							
Byte 4	Sector Number							
Byte 5	Number of Data Bytes in Sector							
Byte 6	End of Track							
Byte 7	Gap Length							
Byte 8	Data Length							

ACC Micro[™]_____

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

READ ID

Command Phase

	7	6	5	4	3	2	1	0
Byte 0	0	MF	0	0	1	0	1	0
Byte 1	Х	Х	Х	Х	Х	HD	US1	US0

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

WRITE DATA

Command Phase

	7	6	5	4	3	2	1	0
Byte 0	MT	MF	0	0	0	1	0	1
Byte 1	х	х	х	х	х	HD	US1	US0
Byte 2	Cylinder Number							
Byte 3	Head Address							
Byte 4	Sector Number							
Byte 5	Number of Data Bytes in Sector							
Byte 6	End of Track							
Byte 7	Gap Length							
Byte 8	Data Length							

ACC Micro[™]_____

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

WRITE DELETED DATA Command Phase

	7	6	5	4	3	2	1	0
Byte 0	MT	MF	0	0	1	0	0	1
Byte 1	х	Х	х	х	х	HD	US1	US0
Byte 2	Cylinder Number							
Byte 3	Head Address							
Byte 4	Sector Number							
Byte 5	Number of Data Bytes in Sector							
Byte 6	End of Track							
Byte 7	Gap Length							
Byte 8	Data Length							

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

FORMAT A TRACK Command Phase

	7	6	5	4	3	2	1	0
Byte 0	0	MF	0	0	1	1	0	1
Byte 1	Х	х	Х	Х	Х	HD	US1	US0
Byte 2	Number of Data Bytes in Sector							
Byte 3	Sectors per Cylinder							
Byte 4	Gap Length							
Byte 5	Data							

ACC Micro™_____

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

SCAN EQUAL

Command Phase

	7	6	5	4	3	2	1	0			
Byte 0	MT	MF	SK	1	0	0	0	1			
Byte 1	х	х	х	х	х	HD	US1	US0			
Byte 2	Cylinde	Cylinder Number									
Byte 3	Head Address										
Byte 4	Sector	Sector Number									
Byte 5	Numbe	r of Data	Bytes ir	n Sector							
Byte 6	End of	Track									
Byte 7	Gap Le	Gap Length									
Byte 8	Scan Test										

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

SCAN LOW OR EQUAL

Command Phase

	7	6	5	4	3	2	1	0			
Byte 0	MT	MT MF SK 1 1 0 0 1									
Byte 1	х	х	х	х	х	HD	US1	US0			
Byte 2	Cylinde	Cylinder Number									
Byte 3	Head A	Head Address									
Byte 4	Sector	Number									
Byte 5	Numbe	r of Data	ı Bytes ir	n Sector							
Byte 6	End of	Track									
Byte 7	Gap Le	Gap Length									
Byte 8	Scan Te	Scan Test									

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

SCAN HIGH OR EQUAL

Command Phase

	7	6	5	4	3	2	1	0				
Byte 0	MT MF SK 1 1 1 0 1											
Byte 1	х	х	х	х	х	HD	US1	US0				
Byte 2	Cylinde	Cylinder Number										
Byte 3	Head Address											
Byte 4	Sector	Sector Number										
Byte 5	Numbe	r of Data	a Bytes in	n Sector								
Byte 6	End of	Track										
Byte 7	Gap Le	Gap Length										
Byte 8	Scan Test											

ACC Micro™_____

Result Phase

Byte 0	Status Register 0
Byte 1	Status Register 1
Byte 2	Status Register 2
Byte 3	Cylinder Number
Byte 4	Head Address
Byte 5	Sector Number
Byte 6	Number of Data Bytes in Sector

RECALIBRATE

Command Phase (This command has no result phase.)

	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	0	1	1	1
Byte 1	Х	Х	Х	Х	Х	0	US1	US0

SENSE INTERRUPT STATUS

Command Phase

	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	1	0	0	0

Result Phase

Byte 0	Status Register 0
Byte 1	Present Cylinder Number

Specify

Command Phase (This command has no result phase.)

	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	0	0	1	1
Byte 1		SRT				HUT		
Byte 2			HLT					ND

SENSE DRIVE STATUS

Command phase

	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	0	1	0	0
Byte 1	Х	Х	х	х	Х	HD	US1	US0

ACC Micro™_____

Result Phase

Byte 0	Status 3 Register

SEEK

Command Phase (This command has no result phase.)

	7	6	5	4	3	2	1	0
Byte 0	0	0	0	0	1	1	1	1
Byte 1	Х	х	х	х	х	HD	US1	US0
Byte 2	New Cylinder Number for Seek							

INVALID

Result Phase

The following status byte is returned to the microprocessor when an invalid command is received.

Byte 0 Status 0 Register

Floppy Disk Drive Support on Parallel Port

The ACC2087 allows the floppy disk control signals to be multiplex to the parallel port pins for external floppy disk drive support. To enable this function, set Register BEh, bit 2 to one to enable this function. Table 1.0 summarizes the FDC signals which are multiplexed with the parallel port pins.

FDD Connector Pin #	FDC mode	Parallel Port Mode	Parallel Port Connector Pin #
32	HEAD#	ERROR#	15
22	WDATA#	PE	12
24	WE#	SLCT	13
16	MOIN#	BUSY	11
12	DSIN#	ACK#	10
2	RWC#	AUTOFD#	14
18	DIR#	INIT#	16
20	STEP#	SLIN#	17
8	INDEX#	PD0	2
26	TRK0#	PD1	3
28	WD#	PD2	4
30	RDDATA#	PD3	5
34	DSKCHG#	PD4	6

The ACC2087 supports two NS16C550 compatible serial ports. Each serial port interface converts data from peripheral devices or modems from serial-in-data to parallel-out-data. Data transmitted from the CPU is converted from parallel-in-data to serial-out-data. The status of the UART can be read during any CPU operation. Status includes type and condition of the transfer operations in progress, and error conditions.

Each serial port interface has three types of internal registers: Control, Status, and Data registers.

Control registers

Bit Rate Select Register DLL (Divisor Latch LSB). Bit Rate Select Register DLM (Divisor Latch MSB). Line Control Register. Interrupt Enable Register. Interrupt Identification Register. FIFO Control Register. Modem Control Register.

Status registers

Line Status Registers Modem Status Register

Data registers

Receiver Buffer Register Transmitter Holding Register Scratch Register

Table 1 summarizes the serial port registers.

Table 1 Serial Port Register Summary

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Receiver	Data	Data	Data	Data	Data	Data	Data	Data
Buffer	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Register								
(read only)								
Transmitt-er	Data Bit 7	Data Bit 6	Data Bit 5	Data Bit 4	Data Bit 3	Data Bit 2	Data Bit 1	Data Bit 0
Holding								
Register								
(write onl only)								
Divisor	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Latch (LS)	Dit /	DII 0	BR 5	DII 4	DII 5	DIL 2	DITI	DIU
Divisor	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Latch (MS)	BR 15	Dit 14	DR 15	DR 12	DITT	DR 10	DRy	DICO
Interrupt	0	0	0	0	Enable	Enable	Enable	Enable
Enable					Modem	Receiver	Transmitt-er	Received
Register					Status	Line Status	Holding	Data
-					Interrupt	Interrupt	Register	Available
							Interrupt	Interrupt
Interrupt	FIFOs	FIFOs	0	0	0	Interrupt ID	Interrupt ID	"0" IF
Identificatio	Enabled	Enabled				Bit 1	Bit 0	Interrupt
n Register								Pending
(Read only)	D GLID	D.GGU			-	D. DEC.	D	5.11
FIFO Control	RCVR	RCSV	0	0	0	Reset FIFO XMIT	Reset FIFO RCVR	Enable FIFO
Control Register	Trigger (MSB)	Trigger (LSB)				AMII	KUVK	FIFO
(Write only)	(MSD)	(LSD)						
Line Control	Divisor	Set Break	Stick Parity	Even Parity	Parity	Number of	Word	Word
Register	Latch	Bet Break	Stick Fully	Select	Enable	Stop Bits	Length	Length
8	Address Bit			~~~~~		~···F -···	Select Bit 1	Select Bit 0
Modem	0	0	0	Loop	Interrupt	Not Used	Request to	Data
Control				Î	Enable		Send	Terminal
Register								Ready
Line Status	Error in	Transmitter	Transmitter	Break	Framing	Parity Error	Overrun	Data Ready
Register	RCVCR	Empty	Holding	Interrupt	Error		Error	
	FIFO		Register					
	D		Empty					
Modem	Data Carrier	Ring	Data Ready	Clear to	Delta	Trailing	Delta Data	Delta Clear
Status	Detect	Indicator	Set	Send	Receive	Edge Ring Indicator	Set Ready	to Send
Register					Line Signal Detect	malcator		
Scratch	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Register	DIL /	DILU	DIUJ	DIL 4	ыгэ	DIL 2	DILI	BILU

Programmable Baud Rate Generator

The serial port interface in the ACC2087 contains a programmable Baud Rate Generator that divides the clock from DC to 3.1 MHz. Any divisor from 1 to 2^{16-1} can be used. The output frequency of the baud rate generator is 16X the data rate [divisor # = clock + (baud rate x 16)]. The divisor is stored in a 16-bit binary format by two 8-bit divisor latch registers. These divisor latch registers must be loaded during initialization. A 16-bit baud counter is immediately loaded after either of the divisor latches is loaded to prevent long counts on initial load.

The serial port receiver circuitry in the ACC2087 is programmable for 5, 6, 7 or 8 data bits per character. Word with less than eight bits are right justified, LSB = Data Bit 0, which is the first data bit received. Unused bits in a character less than eight bits are output low to the parallel output by the serial port.

Data received at the SIN0(1) (serial input) pin is shifted into the **Receiver Shift Register** by the clock (16X) provided at the XIN input. Based on the position of the start bit, this clock is synchronized to the incoming data.

When a complete character is shifted into the Receiver Shift register, the assembled data bits are loaded in parallel into the **Receiver Buffer Register** (**RBR**). The Data Ready flag in the Line Status register is set.

Transmitter Holding Register (THR)(HEX 3F8 or 2F8, DLAB = 0, W) **Receiver Buffer Register**(HEX 3F8 or 2F8, DLAB = 0, R)

The Transmitter Holding Register and Receiver Buffer Register are data registers that hold from five to eight bits of data. If fewer than eight data bits are transmitted, bit 0 is always the first serial data bit received and transmitted. Data registers are buffered twice to allow read and write operations to be executed at the same time the UART is converting parallel to serial and serial to parallel.

The data received is buffered twice to permit continuous data reception without loss of data. As the Receiver Shift register is shifting a new character into the serial port, the Receiver Buffer register is holding a previously received character for the CPU. If data in the Receiver Buffer register is not read before complete reception of the next character, the data in the Receiver register goes low. The overrun condition is flagged by an Overrun error (Bit 1 of the Line Status register). Table 2 contains Receiver Buffer Register bit definitions.

Bit	Function
0	Data Bit 0
1	Data Bit 1
2	Data Bit 2
3	Data Bit 3
4	Data Bit 4
5	Data Bit 5
6	Data Bit 6
7	Data Bit 7

Table 2 Receiver Buffer Register

The Transmitter Holding Register holds parallel data from the data bus until the Transmitter Shift register is empty and ready to accept a new character. The receiver word length and transmitter and number of stop bit are the same. If the character has less than eight bits, unused bits are ignored by the transmitter at the microprocessor data bus. Table 3 contains the bit definitions of the Transmitter Holding register.

Table 3 Transmitter Holding Register

Bit	Function
0	Data Bit 0 *
1	Data Bit 1
2	Data Bit 2
3	Data Bit 3
4	Data Bit 4
5	Data Bit 5
6	Data Bit 6
7	Data Bit 7

* Bit 0 is the first serial data bit transmitted.

Interrupt Enable Register (IER) (HEX 3F9 or 2F9, DALB = 0, R/W)

The Interrupt Enable Register is a write register that enables the two serial port interrupts independently. The interrupts activate the interrupt output. All interrupts are disabled by resetting Bits 0-3 of this register. Interrupts are enabled by setting the appropriate bits of this register high. When interrupts are disabled, the Interrupt Identification register and the active (high) INTSE0(1) signal is inhibited. All other system functions operate normally, including the setting of the Line Status register and the Modem Status register. Table 4 contains Interrupt Enable register bit definitions.

Table 4 Interrupt Enable Register

Bit	Function
0	Received Data Available interrupt. $= 1$ enable; $= 0$ disable.
1	Transmitter holding register empty interrupt. $= 1$ enable; $= 0$ disable.
2	Receiver line status interrupt. $= 1$ enable; $= 0$ disable.
3	Modem Status interrupt. $= 1$ enable; $= 0$ disable.
4-7	Must be set to logic 0.

Interrupt Identification Register (IIR)(HEX 3FA or 2FA, R)

The Interrupt Identification Register has the interrupt capability to interface to current microprocessors. The serial port interface prioritizes interrupts into four levels to minimize software overhead during data character transfer. The four levels of interrupt conditions include

- Priority 1 Receiver Line Status
- Priority 2 Received Data Ready
- Priority 3 Transmitter Holding Register Empty
- Priority 4 Modem Status

The Interrupt Identification register stores information that an interrupt is pending and the type of interrupt. When addressed during chip select time, this register indicates the highest priority interrupt pending. No other interrupts are acknowledged until the CPU services this interrupt. Table 5 contains Interrupt Identification register bit definitions. Table 6 contains interrupt identification, set and reset information.

Table 5 Interrupt Identification Register

Bit	Function
0	Indicates a pending interrupt. When this bit is low, an interrupt is pending and the register contents can be used as a pointer to the appropriate interrupt service routine. When this bit is high, no
	interrupt is pending.
1-2	Identifies highest priority pending
3-5	Set to 0. Bit 3 must be set to 0. In FIFO mode, this bit is set along with bit 2 when a time-out interrupt is pending.
6-7	Enable FIFO. These bits are set when the FIFO Control Register bit 0 is set to one.

Table 6 IIR Interrupt ID, Set and Reset

Inter	rupt Id	entifica	tion		Interrupt Set and Reset Functions			
Bit 3	Bit2	Bit1	Priorit y Bit 0	Level	Interrupt Flag	Interrupt Source	Interrupt Reset Control	
0	X	Х	1		None	None		
0	1	1	0	1	Receiver line status	OE, PE, FE, or BI	LSR Read	
0	1	0	0	2	Received data available	Received data available	RBR Read or the FIFO drops below the trigger level	
1	1	1	0	2	Character Time-out	Atleast one character is in the FIFO and no characters have been read from or input to the FIFO during the last 4 character times	RBR Read	
0	0	1	0	3	THRE	THRE	IIR Read if THRE is the interrupt source or THR write	
0	0	0	0	4	Modem status	CTS0#(1), DSR0#(1). RI0#(1), RLSD0#(1).	MSR Read	

x = not defined

2087

FIFO Control Register (HEX 3FA or 2FA, W)

Bit	Function									
0	Enable FIFO. When set to 1, bit 1, 2 is enabled. Resetting this bit will cleared all bytes in both									
	FIFOs.									
1	Reset FIFO Receiver. When set to 1, it clears all bytes in the receiver FIFO. Its logic counter will									
	be reset to 0.									
2	Reset FIFO Transmitter. When set to 1, it clears all bytes in the Transmitter FIFO. Its logic counter									
	will be reset to 0.									
3	Set to 0.									
4-5	Set to 0									
6	Trigger Receiver (LSB). This bit is used to set the trigger level for the receiver FIFO.									
7	Trigger Receiver (MSB). This bit is used to set the trigger level for the receiver FIFO.									
	7 6 RCV FIFO Trigger Level (Bytes)									
	0 0 1									
	0 1 4									
	1 0 8									
	1 1 14									

Address, Read, and Write inputs are used with the Divisor Latch Access bit (DLAB) in the Line Control register bit 7 [LCR(7)] to select the register to be read or written. Refer to Table 7 for register select states.

DLAB	A2	A1	A0	Register
0	0	0	0	Receiver buffer register (read only)
0	0	0	0	Transmitter holding register (write only)
0	0	0	1	Interrupt enable register
х	0	1	0	Interrupt identification register (read only)
Х	0	1	1	Line control register
Х	1	0	0	Modem control register
Х	1	0	1	Line status register
Х	1	1	0	Modem status register
Х	1	1	1	Scratch register
1	0	0	0	Divisor latch (LSB)
1	0	0	1	Divisor latch (MSB)

Table 7 Serial Port Internal Register Selection

x = Don't care

Note that the serial port is accessed only when internal chip select signal CSSE0#(1) is low.

Line Control Register (LCR) (HEX 3FB or 2FB, R/W)

The Line Control Register controls the format of a data character. The contents of the LCR can be read precluding the need to store line characteristics in system memory. Table 8 contains the contents of the Line Control register.

Table 8Line Control Register

Bit	Function	Logic 1	Logic 0	
0	Word length select Bit 0			
1	Word length select Bit 1			
2	Stop bit select	1.5 or 2 stop bits	1 stop bit	
3	Parity enable	Enabled	Disabled	
4	Even parity select	Even parity	Odd parity	
5	Stick parity	Enabled	Disabled	
6	Set break	Enabled	Disabled	
7	Divisor latch access bit			

Bit 0-1 The number of bits in each serial character is programmed according to the following states.

LCR(1)	LCR(0)	Word length
0	0	5 bits
0	1	6 bits
1	0	7 bits
1	1	8 bits

- Bit 2 Specifies the number of stop bits in each character transmitted. If Bit 2 = 0, one stop bit is generated or checked in the transmitted data. If Bit 2 = 1 when a 5-bit word is selected, 1.5 stop bits are generated. If Bit 2 = 1 when a 6-, 7- or 8-bit word is selected, two stop bits are generated. The receiver checks the first stop bit only regardless of the number of stop bits selected.
- Bit 3 When high, generates and checks a parity bit between the last data word bit and stop bit of the serial data.
- Bit 4 When parity is enabled (Bit 3 = 1), and Bit 4 = 0, odd parity is selected. When parity is enabled and Bit 4 = 1, even parity is selected.
- Bit 5 When parity is enabled and Bit 5 = 1, a parity bit is transmitted and received in the opposite state from the state indicated by Bit 4. Parity can therefore be forced to a known state and the receiver can check the parity bit in a known state.
- Bit 6 When set to 1, serial output is forced to the spacing (logic 0) state. The break is disabled when this bit is set to 0. Bit 6 acts only on serial output and has no effect on the transmitting logic. Bit 6 enables the CPU to alert a terminal in a computer system. If the following sequence is used, no erroneous or extraneous characters are transmitted because of the break.
 - 1. Load an all zeros, pad character, in response to Line Status register Bit 5.
 - 2. Set break in response to the next Line Status register Bit 5.
 - 3. Wait for the transmitter to become idle (Line Status register Bit 6), and clear break when normal transmission must be restored.

Bit 7 Must be set high to access the Divisor latches DLL and DLM of the Baud rate generator during a read or write operation. This bit must be input low to access the Receiver buffer, the Transmitter holding, or the Interrupt enable registers.

Modem Control Register (MCR)(HEX 3FC or 2FC, R/W)

The Modem Control Register controls the interface with the modem or data set. This register can be read or written. Table 9 contains Modem Control register bit definitions.

Table 9	Modem Control Registe	r
---------	-----------------------	---

Bit	Function			
0	Data terminal ready (DTR). When set to 1, the Data terminal ready [DTR0#(1)] output is forced to a logic 0. When this bit is reset to a logic 0, DTR0#(1) output is forced to a logic 1.			
1	Request to send (RTS). When set to 1, the Request to send [RTS0#(1)] output is forced to a logic 0. When this bit is reset to a logic 0, RTS0#(1) output is forced to a logic 1.			
2	Not used.			
3	Interrupt enable. When set high, Serial port interrupt (SIRQ3, SIRQ4) output is enabled.			
4	LoopbackThis bit provides a local loopback feature to perform diagnostic testing of the channel. When set high, SOUT0(1) is set to the marking state (logic 1), and the receiver data input Serial Input [SIN0(1)] is disconnected. The output of the Transmitter Shift register is looped back into the Receiver Shift register input. The four modem control inputs are disconnected. Modem control outputs are connected to the four modem control inputs internally. Modem control output pins are forced to the high (inactive state). In the diagnostic mode, data transmitted is received immediately so the processor can verify the transmit and receive data paths of the selected serial port.			
5-7	0			

Line Status Register (LSR) (HEX 3FD or 2FD, W/R)

The Line Status Register is usually the first register read by the CPU to determine the cause of an interrupt or to poll the status of the serial port interface. Refer to Table 10 for bit definitions.

Table 10Line Status Register

Bit	Function	Logic 1	Logic 0	
0	Data ready (DR)	Ready	Not ready	
1	Overrun error (OE)	Error	No error	
2	Parity error (PE)	Error	No error	
3	Framing error (FE)	Error	No error	
4	Break interrupt (BI)	Break	No break	
5	Transmitter holding register empty (THRE)	Empty	Not empty	
6	Transmitter empty (TEMT)	Empty	Not empty	
7	Not used			

- Bits 1-4 are the error conditions that produce a Receiver Line Status interrupt (priority 1 interrupt in the Interrupt Identification register). This interrupt is enabled by setting the Interrupt Enable register Bit 2 to 1. Bits 1-4 are cleared when the Line Status register is read.
- Bits 1-3 are three error flags that provide the status of an error condition detected in the receiver circuitry: Overrun error, Framing error, and Parity error. Error flags are set high by an error condition when stop bits are received.
- Bit 0 This bit is set high when an incoming character is received and transferred into the Receiver Buffer register or the FIFO. It will reset to low after reading all of the data in the RBR or the FIFO.
- Bit 1 Overrun error means that the Receiver Buffer register was not read by the CPU before the next character was transferred into the Receiver Buffer register, overwriting the previous character. This bit is reset when the CPU reads the contents of the Line Status register.
- Bit 2 A parity error means that the last character received had a parity error based on the programmed and calculated parity of the received character (Line Control register Bit 4).
- Bit 3 A framing error means that the last character received had incorrect (low) stop bits (caused when the required stop bit is absent or by a stop bit too short to be detected). This bit is high when the stop bit following the last data bit or parity bit is detected as a zero bit (spacing level). This bit is reset low when the CPU reads the contents of the Line Status register.
- Bit 4 This bit indicates that the last character received was a break character. A break character is defined as an invalid but complete data character, including parity and stop bits. This bit is set high when the received data input is held in the spacing (logic 0) state for a longer time than a full word transmission time (start bit + data bits + parity + stop bits). Bit 4 is reset when the CPU reads the contents of the Line Status register.
- Bit 5 This bit indicates that the Transmitter Holding register is empty and can receive another character. If the interrupt is enabled (Interrupt Enable register Bit 1), this bit when active causes an interrupt. The interrupt is cleared when the Interrupt Identification register is read. Bit 5 is set high when a character is transferred from the Transmitter Holding register into the Transmitter Shift register. This bit is reset low when the CPU loads the Transmitter Holding register. Bit 5 is NOT reset when the CPU reads the Line Status register.
- Bit 6 This bit is set high when the Transmitter Holding register and the Transmitter Shift register are both empty. When a character is loaded into the Transmitter Holding register, this bit is set low and remains low until the character is transferred out of SOUT0(1) (Serial output pin). Bit 6 is NOT reset when the CPU reads the Line Status register.
- Bit 7 This bit is always zero.

Modem Status Register (MSR)(HEX 3FE or 2FE, R/W)

The Modem Status Register provides the CPU with the status of the modem input lines from the modem or peripheral devices. The CPU can read the serial port modem signal inputs by accessing the data bus interface of the ACC2087. Four bits in this register indicate if the modem inputs have changed since the last read of the Modem status register. These bits are set high when a control input from the modem changes state. When the CPU reads the Modem Status register, these bits are reset low.

The CTS0#(1), DSR0#(1), RI0#(1) and RLSD0#(1) signals are the modem input lines for the channel. Bits 4 through 7 are status indications of these lines. If the modem status interrupt in the Interrupt Enable register Bit 3 is enabled, a change of state in a modem input signals is reflected by the modem status bits in the IIR register and an interrupt is generated. The Modem Status register is a priority 4 interrupt. Refer to Table 11 for bit definitions. Note that the state of the status bit is an inverted version of the actual input pin.

Table 11Modem Status Register

Bit	Function					
0	Delta clear to send. Indicates that CTSO#(1) input to the serial port interface has changed state since					
	the last time it was read by the CPU.					
1	Delta data set ready. Indicates that DSR0#(1) input to the serial port interface has changed state					
	since the last time it was read by the CPU.					
2	Trailing edge of ring indicator. Indicates that RI0#(1) input to the serial port interface has changed					
	state since the last time it was read by the CPU. Low to high transitions on Bit 6 do not activate this					
	bit.					
3	Delta data carrier detect. Indicates that RLSD0#(1) input to the serial port interface has changed					
	state since the last time it was read by the CPU.					
4 Clear to send. This bit is the complement of CTS0#(1) input from the modem. This i						
	serial port that the modem is ready to receive data from the transmitter output of the serial port. If					
	the serial port interface is in loop mode (Modem Control register Bit $4 = 1$), this bit is equivalent to					
	Modem Control register Bit 1 (request to send).					
5	Data set ready. This bit is the complement of the DSR0#(1) input from the modem to the serial port.					
	This input tells the CPU that the modem is ready to provide received data to the serial port receiver					
	circuitry. If the channel is in loop mode (Modem Control register Bit $4 = 1$), this bit is equivalent to					
	Modem Control register Bit 0 (data terminal ready).					
6	Ring indicator. This bit is the complement of the RIO#(1) pin. If the channel is in loop mode					
	(Modem Control register Bit 4 = 1), this bit is not connected in the Modem Control register.					
7	Data carrier detect. This bit is the complement of receiver line detect signal input and is equivalent					
	to Modem control register Bit 3.					

Modem status inputs reflect the modem input lines with any change of status. Reading the Modem Status register clears the delta modem status indications but does not affect the status bits. The status bits reflect the state of the input pins regardless of mask control signals. If bits 0-3 are true, and a state change occurs during a read operation, the state change is not reflected in the Modem Status register. If bits 0-3 are false, the state change is indicated after the read.

Setting status bits is inhibited for the Line Status register and Modem Status register during status read operations. If a status condition is generated during a CPU read, the status bit is not set until the trailing edge of the read.

If a status bit is set during a read operation, and the same status condition occurs, that status bit is cleared at the trailing edge of the read instead of being set again.

Scratch Register (SR) (HEX 3FF or 2FF, R/W)

The Scratch Register is an 8-bit Read/Write register. This register does not affect either channel in the serial port. It is used by programmers to hold data temporarily. Table 12 contains bit definitions.

Table 12	Scratch Register
----------	------------------

Bit	Function
0	Data Bit 0
1	Data Bit 1
2	Data Bit 2
3	Data Bit 3
4	Data Bit 4
5	Data Bit 5
6	Data Bit 6
7	Data Bit 7

Transmitting

The serial port interface transmitting function includes the Transmitter Holding register, Transmitter Shift register, and the associated control logic. Bits 5 and 6 in the Line Status Register indicate the status of the Transmitter Holding register and the Transmitter Shift register. To transmit a 5- to 8-bit word, the word is written to the Transmitter Holding register through SD0-SD7. The microprocessor performs a write operation only if it is transmitted.

Bit 5 of the Line Status register is high when the word is automatically transferred from the Transmitter Holding register to the Transmitter Shift register when the start bit is transmitted.

When the transmitter is idle, Bits 5 and 6 of the Line Status register are high. The first word written causes Bit 5 to be reset to zero. After the transfer, Bit 5 return high. Bit 6 remains low while the data word is transmitted. If a second character is transmitted to the Transmitter Holding register, Bit 5 of the Line Status register is reset low. Because the data word cannot be transferred from the Transmitter Holding register to the Transmitter Shift register until its empty, Bit 5 of the Line Status register remains low until the word is completely transmitted. When the last word is transmitted out of the Transmitter Shift register, Bit 6 of the Line Status register is set high. Bit 5 of the Line Status register is set high one transfer time later.

Receiving

Serial asynchronous data is input into SIN0(1) (Serial Input pin). The idle state of the line providing the input into the SIN pin is high. Start bit detection circuitry continually searches for a high to low transition. When a transition is detected, a counter is reset. Count is the 16X clock to 7 1/2, which is the center of the start bit. If the SIN signal is still low at the mid-bit sample of the start bit, the start bit is considered valid. By verifying the start bit, the receiver is prevented from assembling a false data character caused by a low going noise spike on the Serial Input pin.

The Line Control register determines the number of data bits in a character, the number of stop bits, if parity is used, and the polarity of parity. The Line Status register provides status for the receiver to the Receiver Buffer register. The data received (indicated by Bit 0 of the Line Status register) is set high. The CPU reads the Receiver Buffer register through SD0-SD7. This read resets Bit 0 of the Line Status register. If a character is not read before a new character transfer from the Receiver Status register to the Receiver Buffer register, the overrun error status bit is set (Line Status register Bit 1). The parity check looks for even or odd parity on the

parity bit which precedes the first stop bit. The parity error is set in Line Status register Bit 2 if an error is detected. If the stop bit is not high, a framing error is indicated by Line Status register Bit 3.

The center of the start bit is defined as clock count 7 1/2. If the data received by the Serial Input pin is a symmetrical square wave, the center of the data cells occurs within \pm 3.125% of the mid-point. This is a 46.875% error margin. The start bit can begin as much as one 16X clock cycle before it is detected.

Baud Rate Generator

The Baud Rate generator generates clocking for the UART function and provides standard ANSI/CCITT bit rates.

An external clock into CLK provides the oscillator driving the Baud Rate generator.

The Divisor Latch registers DLL and DLM, and external frequency determine the data rate. The bit rate is selected by programming the two divisor latches. When DLL is set to 1, and DLM is set to 0, the divisor divides by 1 (provides maximum baud rate for a given input frequency at the CLK input). Table 13 shows the baud rate for 1.8432 Clock.

Baud Rate	Divisor
50	2304
75	1536
110	1047
134.5	857
150	768
300	384
600	192
1200	96
1800	64
2000	58
2400	48
3600	32
4800	24
7200	16
9600	12
19200	6
38400	3
56000	2

Table 13Baud Rates for 1.8432 MHz Clock

Resetting

The RESET# input must be held low for 500 ns to reset the serial port circuits to an idle mode until initialization. A low state on the RESET# signal causes the following events.

- 1. Initializes the transmitter and receiver internal clock counters.
- 2. Clears the Line Status register except Bits 5 and 6 which are set. Also clears the Modem Control register. All discrete lines, memory elements and logic associated with these registers are also cleared or turned off. The Line Control register, Divisor latches, Receiver Buffer register and Transmitter Buffer register are not affected.

After the rest condition is removed, the serial port remains idle until programmed. A hardware reset sets Bits 5 and 6 of the Line Status register. When interrupts are enabled, Bit 5 activates the interrupt. Refer to Table 14 for summary of reset effects.

Table 14Reset Summary

Register/Signal	Reset Control	Reset
Interrupt Enable Register	Reset	All bits low (0-3 forced and 4-7
		permanent)
Interrupt Identification Register	Reset	Bit 0 is high, Bits 1-2 low
		Bits 3-7 are permanently low
Line Control Register	Reset	All bits low
Modem Control Register	Reset	All bits low
Line Status Register	Reset	Bits 0-4 and 7 are low, Bits 5-6
		high
Modem Status Register	Reset	Bits 0-3 low, Bits 4-7 input
		signal
Serial Output (SOUT)	Reset	High
Interrupt (Receiver line status)	Read LSR/Reset	Low
Interrupt (Receiver data available)	Read RBR/Reset	Low
Interrupt (THRE)	Read IIR/Write THR/Reset	Low
Interrupt (Modem Status)	Read MSR/Reset	Low
RTS#	Reset	High
DTR#	Reset	High

2.33 Parallel Port Interface

The parallel port interface in the ACC2087 provides compatibility for a Centronics type printer. Its configuration register allows the parallel port to be configured in PS/2 type bi-directional parallel port and Extended Capabilities Port (ECP) modes. Table 15 lists the registers associated with the parallel port interface. The address map of the parallel port is shown below:

Data Port	=	Base Address + 00H
Status Port	=	Base Address + 01H
Control Port	=	Base Address + 02H

The microprocessor reads information on the parallel bus through Read Data register. The read and write functions of a register are controlled by the state of the read pin (IOR#) and write pin (IOW#).

The microprocessor reads the status of the printer in the five most significant bits of the Read Status register. Table 16 contains the bit definitions for this register.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Data								
Read	BUSY#	ACK#	PE	SLCT	ERROR#	1	1	1
Status								
Read	1	1	1	IRQENB	SLIN	INIT#	AUTOF	STROBE
Control							D	
Write	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Data								
Write	1	1	0	IRQENB	SLIN	INIT#	AUTOF	STROBE
Control							D	

Table 15 Parallel Port Interface Register Summary

Table 16Read Status Register

Bit	Function
0	1
1	1
2	1
3	Error
4	Printer select
5	Paper Empty
6	Acknowledge
7	Printer busy

The Read Control Register is for reading the state of the control lines. The Write Control Register sets the state of the control lines. Table 17 contains the bit definitions for the Write Control Register.

Table 17Write Control Register

Bit	Function
0	Strobe to inform the printer of the presence of a valid byte on the parallel port
1	Autofeed the paper
2	Initialize the printer
3	Select IN
4	Interrupt enable
5	Direction
6	Must be set to 1
7	Must be set to 1

Decoder

The parallel port address decoder selects registers according to the states of the signals listed in Table 18.

Control Signals					
IOR#	IOW#	CSPA#	*A1	AO	Register Selected
0	1	0	0	0	Read Data register
0	1	0	0	1	Read Status register
0	1	0	1	0	Read Control register
0	1	0	1	1	Invalid
1	0	0	0	0	Write Data register
1	0	0	0	1	Invalid
1	0	0	1	0	Write Control register
1	0	0	1	1	Invalid

Table 18 Address Decoder Register Selection

* CSPA# is an internal signal to parallel port logic.

ACC Micro[™].

The ECP mode is also supported by the ACC ACC2087 with a 16bytes FIFO. The address map and ECP register configuration of the ECP are shown below:

Address Map: (Base Address = 278h or 378h)

Data Port	:	Base Address + 000h
ECPAFIFO	:	Base Address + 000h
DSR	:	Base Address + 001h
DCR	:	Base Address + 002h
ECPCFIFO	:	Base Address + 400h
ECPDFIFO	:	Base Address + 400h
TFIFO	:	Base Address + 400h
CNFGA	:	Base Address + 400h
CNFGB	:	Base Address + 401h
ECR	:	Base Address + 402h

ECP Register Configuration:

ECPAFIFO - ECP FIFO Address / RLE (Mode 011)

Bit	Description
7	Write only. This bit is used to indicate data type.
	When set to 1, bits [6:0] are a ECP address.
	When set to 0, bit field [6:0] is a run length. It is used to indicate how many times the next data will
	be appeared. (for example: $[6:0] = 0$ is 1 time, $[6:0] = 1$ is 2 times, $[6:0] = 2$ is 3 times, etc.
6-0	Write only. This is a ECP address or run length encode (RLE) as described above.

DSR - Device Status Register (Mode All)

Bit	Description
7	Read only. nBUSY. This indicates a inverted version of parallel port BUSY signal.
6	Read only. nACK. This indicates a version of parallel port nACK signal.
5	Read only. PERROR. This indicates a version of parallel port PERROR signal.
4	Read only. SELECT. This indicates a version of parallel port SELECT signal.
3	Read only. nFAULT. This indicates a version of parallel port nFAULT signal.
2-0	Reserved.

DCR - Device Control Register (Mode All)

Bit	Description
7-6	Reserved.
5	Read/Write. Direction.
	When set to 0, DMA and data are written to the peripheral. The drivers are enabled.
	When set to 1, if it is in standard parallel port mode (mode 000 or 010), this bit has no effect. If it is
	in ECP mode, the drivers is tri-stated and it sets the direction so that data will be read from the
	peripheral.
4	Read/Write. When set to 0, it disables the nACK interrupt. When set to 1, it enables an interrupt on
	the rising edge of nACK.
3	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the SELECTIN signal low
	regardless of the hardware state machine even in ECP mode. Software should make sure that bit 3 is
	set to 0 prior to entering ECP mode.
2	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the nINIT signal active
	regardless of the hardware state machine.
1	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the AUTOFD signal low
	regardless of the hardware state machine even in ECP mode. Software should make sure that bit 1 is
	set to 0 prior to entering ECP mode.
0	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the STROBE signal low
	regardless of the hardware state machine even in ECP mode. Software should make sure that bit 0 is
	set to 0 prior to entering ECP mode.

CFIFO - Parallel Port Data FIFO (Mode 011)

This mode is only defined for forward direction. The hardware standard parallel port protocol is used to transmit the bytes written or DMAed, from the system to this FIFO, to the peripheral. Transfers to the FIFO are bytes aligned.

ECPDFIFO - ECP Data FIFO (Mode 011)

When DCR (Device Control Register) bit 5 is set to 0, the hardware ECP parallel port protocol is used to transmit the bytes written or DMAed, from the system to this FIFO, to the peripheral. Transfer to the FIFO are bytes aligned. When DCR bit 5 is set to 1, data from the peripheral are read under automatic hardware handshake from ECP into the FIFO.

TFIFO - Test Mode (Mode 110)

Data may be read, written or DMAed to or from the system to this FIFO in any direction.

Data in the TFIFO will not be transmitted to the parallel port lines using a hardware protocol handshake, However, data in the TFIFO may be displayed on the parallel port data lines.

The TFIFO will not stall when overwritten or underrun. Data will simply be re-written or over-run. The full and empty bits must always keep track of the correct FIFO state. The TFIFO will transfer data at the maximum ISA rate so that software may generated performance metrics.

Data PWords are always read from the head of TFIFO regardless of the value of the direction bit. The FIFO size and interrupt threshold can be determined by writing PWords and checking the full and service interrupt bits.

CNFGA - Configuration Resister A (Mode 111)

This is a read only register.

CNFGB - Configuration Register B (Mode 111)

Bit	Description
7	Reserved. Always 0.
6	Read only. Its value on the ISA interrupt line determines the possible conflicts. Default 1.
5-0	Reserved. Always 0.

ECR - Extended Control Register

Bit	Description
7-5	Read/Write.
	When set to 000, the standard parallel port mode is selected. In this mode the FIFO is reset and
	common collector drivers are used on the control lines. Setting the direction bit will not tri-state the
	output drivers in this mode.
	When set to 001, the PS/2 parallel port mode is selected. This is the same as the standard parallel
	mode except that direction may be used to tri-state the data lines and reading the data register returns
	the value on the data lines and not the value in the data register.
	When set to 010, the parallel port FIFO mode is selected. This is the same as the standard parallel
	port mode except that PWords are written or DMAed to the FIFO. FIFO data is automatically
	transmitted using the standard parallel port protocol. Note that this mode is only useful when
	direction is 0. All drivers have active pull-ups.
	When set to 011, the ECP parallel port mode is selected. In the forward direction PWords placed
	into the ECPDFIFO and bytes written to the ECPAFIFO are placed in a single FIFO and transmitted
	automatically to the peripheral using ECP protocol. In the reverse direction bytes are moved from
	the ECP parallel port and packed into PWords in the ECPDFIFO.
	When set to 110, the test mode is selected.
	When set to 111, configuration register A,B are accessible at 0x400 and 0x401.
	When set to 100, it is reserved.

Section 3

3.1 2087 Pin Description

Table 3-1 Clock Interface

Pin Name	Pin #	Туре	Description
CLKSRC	70	Ι	System clock source. It is an input clock from the CMOS oscillator or clock chip.
SYSCLK	34	0	Peripheral or AT bus clock. This clock can be derived from either X14M or CLKSRC to provide a system clock source for the AT Bus.
CLKI	48	Ι	System input clock. It in an input clock buffer from either CLKX1 or CLKX2 feedback to CLKI.
X14M	141	Ι	14.318 MHz crystal input.
CLKX1	51	0	CLKX1 = CLKSRC divided by 2.
CLKX2	49	0	CLKX2 = CLKSRC divided by 1.

Table 3-2Reset Interface

Pin Name	Pin #	Туре	Description
PWRGD	77	Ι	"Power Good" signal from the power supply. It must be
			stabled for at least 1ms.
CPURST	30	0	CPU reset output.
RESETDRV	213	0	System reset. Active high. This reset signal is for the bus
			devices to reset or initialize system logic upon power-up or
			during a low line voltage. This signal is deasserted at phase 2.

Table 3-3 CPU Interface

Pin Name	Pin #	Туре	Description
ADS#	74	I/O	ADS# is driven directly by the CPU ADS# pin. It is asserted in T1 of the CPU bus cycle.
M/-IO	41	I/O	When high, it is indicates current bus cycle is a memory access cycle. It is an I/O cycle when it is low.
D/-C	42	I/O	It indicates whether the current bus cycle is a data or control cycle.
W/-R	43	I/O	It indicates whether the current bus cycle is a read or write cycle.
RDY#	37	I/O	This is a ready signal to CPU. It becomes an input in local bus cycle.
BRDY#	44	0	It indicates to the CPU the data for (read/write) cycle is ready.
HITM# FLUSH#	93	Ι	Asserted by the CPU to indicate a snoop cycle hit a modified line and needs to be written back.
EADS#	98	0	When this pin is pulled low during power on, it indicates a valid external address has been driven onto the processor address pins to be used for an inquire cycle.
LA20		Ι	If this pin is pulled high during power on, it becomes the AT slot A20 signal through a 245 transceiver.
GA20	92	0	It is used to force the CPU to mask off A20 in real mode applications.
PHOLD	35	0	CPU hold request.
/KTGOE	58	0	This pin is the cache tag output enable signal /KTOEN.

Table 3-3 CPU Interface contd..

Pin Name	Pin #	Туре	Description
HLDA	128	I	It indicates that the CPU has granted the control of the bus in
			response to PHOLD.
KEN#	36	0	It indicates that the current cycle is cacheable.
SMIACT#	134	Ι	It indicates by the CPU that it is in system management mode
SMIADS#			after SMI# being served by the CPU.
SMI#	126	0	It is used to invoke the system management mode (SMM).
STPCLK#	125	0	It indicates a request to stop the CPU clock for power
			management control.
SUSPACK#	228	Ι	This suspend acknowledge signal is used to support Cyrix
			CPU.
A2-A25, A31	59-68	I/O	These are input during CPU cycles. These become output
	72,73		during cache cycle.
	78-90		
D0-15	153-162	I/O	CPU data bus.
	164-169		
BE#[3:0]	94-97	I/O	These are used to indicate which byte lanes the CPU cycle is
			accessing
NMI	32	0	Non-Maskable Interrupt. It connects to the NMI of the CPU.
INTR	40	0	Interrupt indicates a valid interrupt request is asserted.
NPERR	75	I/O	Numeric Coprocessor Error. It indicates a coprocessor error.
IGNNE#	39	0	Ignore Error.
CPUBZY#			
BLAST#	76	Ι	It indicates the last transfer of a multiple transfer cycle.
NPEREQ			
BS16#		0	It indicates to the CPU that it requests a 16-bit data bus
			transfer (not a 32-bit transfer).
/READYO	127	Ι	This is a multifunction pin, when Register 1B, bit 4 is set to
/LBA			one, this pin becomes the /LBA pin to sense the existence of
			local bus peripherals . When set to zero, this pin is the
			Coprocessor Ready input to 2087.

Pin Name	Pin #	Туре	Description
PWRCNTL0	57	0	In notebook mode, this is a power control pin.
KWEB		I/O	In desktop mode, this pin becomes cache write enable for
			bank B.
PWRCNTL1	56	0	In notebook mode, this is a power control pin.
KOEB		0	In desktop mode, this pin becomes cache output enable for
			bank B.
PWRCNTL2	52	0	In notebook mode, this is a power control pin.
MDLATCH		0	In desktop mode, this pin becomes MD latch to support
			posted write function.
PWRCNTL3	150	0	In notebook mode, this is a power control pin.
DAC2		0	In desktop mode, this pin becomes DAC2.
PWRCNTL4	203	0	In notebook mode, this is a power control pin.
DRQ1		Ι	In desktop mode, this pin becomes DMA request 1.
PWRCNTL5	204	0	In notebook mode, this is a power control pin.
DRQ3		Ι	In desktop mode, this pin becomes DMA request 3.
PWRCNTL6	206	0	In notebook mode, this is a power control pin.
DRQ6		Ι	In desktop mode, this pin becomes DMA request 6.
PWRCNTL7	207	0	In notebook mode, this is a power control pin.
DRQ7		Ι	In desktop mode, this pin becomes DMA request 7.
ACPWR	151	Ι	In notebook mode, this is an AC power input. ACPWR is a
PAR0		I/O	active high pin.
			In desktop mode, this pin becomes parity check 0.
ALARM	152	Ι	In notebook mode, this is an alarm input. ALARM is a active
PAR1		I/O	high pin.
			In desktop mode, this pin becomes parity check 1.
LBAT1#	173	Ι	In notebook mode, this is a low battery input. LBAT# is a
PAR2		I/O	active low pin.
			In desktop mode, this pin becomes parity check 2.

Table 3-4 Power Management / Cache / DRAM / AT Multiplex Interface

EXTSYS#	174	Ι	In notebook mode, this is an external system event.
			EXTSYS# is a active low pin.
PAR3		I/O	In desktop mode, this pin becomes parity check 3.
EXTSMI1	130	Ι	In notebook mode, this is a external SMI signal. EXTSMI1
			is a low to high edge triggered.
IOCHK		Ι	In desktop mode, this pin becomes AT bus IO check signal.
STPGNT#	225	0	In notebook mode, this pin output a zero in grant bus cycle.
IRQ13		Ι	In desktop mode, this pin becomes interrupt 13.
SUSPMOD#	227	0	In notebook mode, this pin indicates that the system enters
IRQ15		Ι	suspend mode.
			In desktop mode, this pin becomes interrupt 15.
DACK0	148	I/O	In notebook mode, this is DMA acknowledge 0.
DAC0		0	In desktop mode, this pin becomes DAC0.
DACK5	149	I/O	In notebook mode, this is DMA acknowledge 5.
DAC1		0	In desktop mode, this pin becomes DAC1.

Table 3-4 Power Management / Cache / DRAM / AT Multiplex Interface contd..

Note: The DAC1-DAC2 's strapping condition during power-on will set the ACC2087 to either desktop or notebook mode.

PIN#	DESKTOP MODE DAC2 = 0, DAC1 = 0	NOTEBOOK MODE1 DAC2 = 0, DAC1 = 1	NOTEBOOK MODE2 DAC2 = 1, DAC1 = 0
151	PAR0	ACPWR	ACPWR
152	PAR1	ALARM	ALARM
173	PAR2	BATLOW	BATLOW
174	PAR3	EXTSYS	EXTSYS
55	KWEA	KWE	KWE
54	KOEA	KOE	KOE
57	KWEB	PWRCNTL0	PWRCNTL0
56	KOEB	PWRCNTL1	PWRCNTL1
52	MDLATCH	PWRCNTL2	PWRCNTL2
225	IRQ13	STPGNT	STPGNT
227	IRQ15	SUSPEND	SUSPEND
148	DAC0	DACK0	DAC0
149	DAC1	DACK5	DAC1
150	DAC2	PWRCNTL3	DAC2
203	DRQ1	PWRCNTL4	DRQ1
204	DRQ3	PWRCNTL5	DRQ3
206	DRQ6	PWRCNTL6	DRQ6
207	DRQ7	PWRCNTL7	DRQ7
130	IOCHK	EXTSMI1	IOCHK

Table 3-5 Dedicated Power Management Interface

Pin Name	Pin #	Туре	Description
EXTSMI0	137	Ι	This pin indicates a external SMI input. EXTSMI0 is a low
			to high edge triggered.
SRBTN#	138	Ι	This pin is the suspend/resume input button. It is a low to
			high edge triggered.

 Table 3-6 Dedicated Cache Interface

Pin Name	Pin #	Туре	Description
DTYWE#	38	0	This pin is used as a dirty bit write back enable or tag ram
KTGWE#			write enable for level 2 write back cache implementation.
KRMOE#	54	I/O	This pin indicates cache output enable for SRAM. Active
			low.
KRMWE#	55	I/O	This pin indicates cache write enable. Active low.
TGLA2	45	0	This pin is toggles Address bit 2.
TGLA3	46	0	This pin is toggle Address bit 3.
TAG0	101	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA0			When in memory cycle, this pin is DRAM Address bit 0.
ROMCS#			When in AT bus cycle, this pin is ROM output enable.
TAG1	102	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA1			When in memory cycle, this pin is DRAM Address bit 1.
CS8042#			When in AT cycle, this pin is keyboard chip select.
TAG2	103	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA2			When in memory cycle, this pin is DRAM Address bit 2.
RTCDS#			When in AT cycle, this pin is Real Time Clock DS
TAG3	105	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA3			When in memory cycle, this pin is DRAM Address bit 3.
RTCWR#			When in AT cycle, this pin is Real Time Clock WR.
TAG4	106	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA4			This pin is DRAM Address bit 4. In AT cycles, HCS0# is
HCS0#			active for addresses 1F0h-1F7h or 170h-177h.
TAG5	107	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA5			This pin is DRAM Address bit 5. In AT cycles, HCS1# is
HCS1#			active for addresses 3F6h-3F7h or 376h-377h.
TAG6	108	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA6			In DRAM cycles, this pin is DRAM Address bit 6. In AT
IENH#			cycles, this pin is IDE Bus Transceiver High Byte Enable.
TAG7	109	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA7			In DRAM cycles, this pin is DRAM Address bit . In AT
IENL#			cycles, this pin is IDE Bus Transceiver Low Byte Enable.
TAG8	110	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA8			In DRAM cycle this pin is DRAM Address bit 8. In AT
WRPWRCLT1#			cycle, this pin will be asserted low when configuration
			register 24h is written.
TAG9	113	I/O	This pin is a multiplexed pin. In cache cycle this is TAG IO.
MA9			In DRAM cycle this pin is DRAM Address bit 9. In AT
RDIDX21#			cycle, this pin will be asserted when configuration register
			with index 21h is read.
MA10	114	I/O	This pin is a multiplexed pin. This pin is DRAM Address bit
DIRTY			10. In cache cycles, this pin becomes the dirty bit of Write
			Back Cache to indicate whether the data in the SRAM is
			clean or not.

Table 3-7 DRAM Interface

Pin Name	Pin #	Туре	Description
RAS0#-	119,120	0	DRAM row address strobe for DRAM Banks 0-3.
RAS3#	122,124		
CAS0#-	115-118	0	DRAM column address strobe. These signals are one for
CAS3#			each byte and are shared for all banks.
WEN#	99	0	This pin indicates DRAM write enable.
MDIR#	53	0	This pin is used as the MD bus direction control for posted
			write operation.

Table 3-8 AT Bus Interface

Pin Name	Pin #	Туре	Description
IRQ5	219	Ι	Interrupt request from AT expansion bus. Active high.
IRQ7	220	Ι	Interrupt request from AT expansion bus. Active high.
RTCINT#	221	Ι	Interrupt from RTC.
IRQ9-11	222-224	Ι	Interrupt request from AT expansion bus. Active high.
IRQ14	226	Ι	Interrupt request from AT expansion bus. Active high.
DRQ0	202	Ι	DMA Request line. Active high.
DRQ5	205	Ι	DMA Request line. Active high.
SA0, SA1	132,133	I/O	System Address Bit. SA0-SA1 are the least significant bits of
			the bus address.
SBHE#	208	I/O	System Bus High Byte Enable. Active low. When HLDA is
			inactive, SBHE# will act as an output pin which is decoded
			from the byte enable signals BE#0-3 from CPU. When
			HLDA is active, SBHE# will act as an output in DMA mode
			or input pin in Master mode. In Master mode, SA0 and SA1
			are used to decode the byte enable signal.
BALE	200	0	Address latch enable.
MEMR#	209	I/O	AT Bus Memory Read command. Active low. When HLDA
			is inactive, MEMR# will act as an output pin, and it is
			activated only when the current bus cycle is an AT memory
			read cycle that is not referenced to the local DRAM. When
			HLDA is active, MEMR# will be an output in DMA mode
			and will act as an input pin in master mode driven by the bus
			master. Moreover, for an aligned 16-bit memory transfer
			with an 8-bit device, MEMR# will be activated twice before
			the end of the current cycle.

 Table 3-8 AT Bus Interface contd..

Pin Name	Pin #	Туре	Description
MEMW#	212	I/O	AT Bus Memory Write Command. Active low. When HLDA is inactive, MEMW# will act as an output pin, and it is activated only when the current bus cycle is an AT memory write cycle that is not referenced to the local DRAM. When HLDA is active, MEMW# will be an output in DMA mode and will act as an input pin in master mode driven by the bus master. Moreover, for an aligned 16-bit memory transfer with an 8-bit device, MEMW# will be activated twice before the end of the current cycle.
IOR#	198	I/O	I/O read strobe. AT Bus I/O Read Command. Active low. When HLDA is inactive, IOR# acts as an output signal and is active in AT bus I/O read cycle. When HLDA is active, IOR# will be an output in DMA mode and will act as an input pin in master mode driven by the bus master.
IOW#	199	I/O	I/O write strobe. AT Bus I/O Write Command. Active low. When HLDA is inactive, IOW# acts as an output signal and is active in AT bus I/O write cycle. When HLDA is active, IOW# will be an output in DMA mode and will act as an input pin in master mode driven by the bus master.
SMEMR#	215	0	System Bus Memory Read Command. Active low. SMEMR# is active if the current bus cycle is an AT memory read cycle with address location below the first megabyte. SMEMR# is derived from MEMR# and is tristated when accessed above 1M location. It needs an external pull high resistor.
SMEMW#	216	0	System Bus Memory Write Command. Active low. SMEMW# is active if the current bus cycle is an AT memory write cycle with address location below the first megabyte. SMEMW# is derived from MEMW# and is tristated when accessed above 1M location. It needs an external pull high resistor.
MEMCS16#	136	I/O	It is an input to indicate memory 16-bit chip select. In DMA and AT master cycle, it is an output if local bus function is enabled otherwise.
ZWS#	139	Ι	Zero wait state. Active low. This signal is driven low when an AT bus device wants to complete the AT bus cycle in zero wait state.
IOCS16#	135	I/O	In normal mode, it is an input to indicate I/O 16-bit chip select. In DMA and AT master cycle, it is an output if local bus function is enabled otherwise.

 Table 3-8 AT Bus Interface contd..

Pin Name	Pin #	Туре	Description
IOCHRDY	131	I/O	I/O channel Ready from Expansion bus. Active high. IOCHRDY is used by slow device to extend the access cycle time. 2087 will sample IOCHRDY by 16 MHz. A sample low data will insert wait state into the current bus cycle. Note that if the current cycle is an aligned 16-bit data transfer with an 8-bit device, the cycle will split into 2 subcycles each of which needs to sample a high state of IOCHRDY before terminating the subcycle. After the second sample high state of IOCHRDY, the whole cycle will also be terminated. In DMA and AT master cycle, it is an output.
AEN	201	0	Bus hold acknowledge. When asserted, I/O devices ignore the address bus to allow DMA transfers to take place. Active high.
REF#	214	I/O	Refresh Cycle. Active Low. This signal goes to slot to indicate that a refresh cycle is ongoing. The slot memory can use this for refresh.
MASTER#	129	Ι	AT Bus Master Input. Active low. MASTER# indicates to 2087 that the current bus cycle is controlled by a bus master from the expansion slot.
SPEAKER	229	0	Output to drive speaker.
TC	217	0	When high, it indicates the terminal count of any DMA channel is reached.
RTCAS	218	0	Address strobe for 146818 Real Time Clock. Falling edge causes address to be latched in 146818.
ENMAX# ROM8	147	I/O	MA bus MUX enable. This pin also selects 16 bit ROM or 8 bit ROM on power up. It is pulled high for 8 bit ROM and pulled low for 16 bit ROM.
XDIR#	197	0	This is the XD Bus direction control.
SD0-15	175-182 184,185 187-192 195	I/O	System data bus.
SDDIR#	196	0	This pin is the transceiver direction control for D16-D21 and SD0-SD15.

2087

Table 3-9 Keyboard/Mouse Interface				
Pin Name	Pin #	Туре	Description	
ENSDL#	171	I/O	This pin enables the transceiver for SD0-SD7 and D16-D23. When	
ENKBD			pulled up, this pin enables the internal keyboard and when pulled	
			down, this pin disables the internal keyboard.	
ENSDH#	172	I/O	This pin enables the transceiver for SD8-SD15 and D24-D31. When	
M486			pulled high, this pin is the 486 CPU mode select and when pulled	
			low, this pin is the 386 CPU mode select.	
KBCLK	145	I/O	When internal keyboard is enabled, it works as keyboard controller	
KBRST#			clock pin. Otherwise it works as keyboard reset input.	
KBDATA	144	I/O	When internal keyboard is enabled, it works as keyboard data pin.	
KGA20			Otherwise it works as keyboard GA20 input.	
MSCLK	143	I/O	When internal keyboard is enabled, it works as mouse clock pin and	
KBINT			the keyboard interrupt is generated by internal keyboard controller.	
			Otherwise it works as keyboard interrupt input.	
MSDATA	142	I/O	When internal keyboard is enabled, it works as mouse data pin and	
IRQ12			the mouse interrupt IRQ2 is generated by internal keyboard	
			controller. Otherwise it works as IRQ12 input.	

Table 3-9 Keyboard/Mouse Interface

Table 3-10 FDC Interface

Pin Name	Pin #	Туре	Description
X24M	7	Ι	24MHz input for FDC
MO0# DRQ2#	250	I/O	When internal floppy disk is enabled, the MOTOR ON 0 output and the DRQ2 is generated by internal FDC. Otherwise it is DRQ2 input. (open drain) 24mA.
MO1# DACK2#	251	0	When internal floppy disk is enabled, the MOTOR ON1 output and the DACK2# is generated by internal FDC. Otherwise is is DACK2# output. (Open drain) 24mA.
DS0 IRQ6	247	I/O	When internal floppy disk enable, it works as disk select 0 output and the IRQ6 is generated by internal FDC. Otherwise it works as IRQ6 input. Open drain (24mA)
DS1 ENFDC	249	I/O	Pull high to enable internal floppy disk controller. Disk select 1 output. 24mA open drain.
FDCWE#	4	0	Write Enable. When set to 0, causes a write operation to the floppy disk drive. An open drain output. 24ma.
FDCDIR#	5	0	Direction of the head stepper motor. An open drain output. Logic $1 = $ outward motion. Logic $0 = $ inward motion. 24ma.
HEAD#	8	0	Head select. Open drain output. Determines which disk drive head is active. Logic $1 = \text{Side } 0$. Logic $0 = \text{Side } 1$. 24ma.
WRDATA#	252	0	Write Data. Logic low open drain. Writes precompensated serial data to the selected FDD. An open drain output. 24ma.
STEP#	3	0	STEP# output pulses. Active low open drain output. Produces a pulse at a programmable rate to move the head to another cylinder. 24ma.
INDEX#	256	Ι	Active low Schmitt input from the disk drive. Senses the head positioning over the beginning of a track marked by an index hole. TTL Schmitt trigger.
TRK0#	255	Ι	Track 0. Active low Schmitt input from the disk drive. Signals that the head is positioned over the outermost track. TTL Schmitt trigger.

2087

Table 3-10 FDC Interface contd..

Pin Name	Pin #	Туре	Description				
WP#	254	Ι	Write Protected. Active low Schmitt input from the disk				
			drive indicates that the diskette is write protected. TTL				
			Schmitt trigger.				
RDDATA#	1	Ι	Read data input. Signals read from the FDD to the				
			microprocessor. TTL Schmitt trigger.				
DSKCHG#	253	Ι	Diskette change. This signal is active low at power-on and				
			when the diskette is removed. It remains active until a				
			STEP# pulse is received with the diskette in place.				
RWC#	2	0	Reduced write current. 24ma.				
			1: 500KB				
			0: 250, 300KB				

Table 3-11 COM1 Interface

Pin Name	Pin #	Туре	Description			
TX1	245	I/O	Pull high to enable internal COM1 otherwise it will disable			
IRQ4			internal COM1. When enable, it works as serial data out and			
ENCOM1			IRQ4 is generated by internal COM1. Otherwise it works as			
			IRQ4 input.			
DTR1#	244	0	Data Terminal Ready. 4ma.			
RTS1#	243	0	Request to Send. 4ma.			
RX1	242	Ι	Serial Data In.			
CTS1#	24	Ι	Clear to Send.			
DSR1#	23	Ι	Data Set Ready.			
DCD1#	22	Ι	Data Carrier Detected.			
RI1#	246	Ι	Ring Indicator.			

Table 3-12 COM2 Interface

Pin Name	Pin #	Туре	Description
TX2	10	I/O	Pull high to enable internal COM2. Serial data out and IRQ3
IRQ3			is generated by internal COM2. Otherwise it works as IRQ3
ENCOM2			input.
DTR2#	11	0	Pull high to enable parallel port. Data Terminal Ready.
ENLPT			
RTS2#	12	0	Pull high to enable internal IDE. Otherwise it works as
ENIDE			Request to Send. 4ma.
RX2	13	Ι	Serial Data In.
CTS2#	14	Ι	Clear to Send.
DSR2#	15	Ι	Data Set Ready.
DCD2#	16	Ι	Data Carrier Detected.
RI2#	9	Ι	Ring Indicator.

ACC Micro[™].

Pin Name Description Pin # Туре ID7 231 I/O IDE Data Bus bit 7. 12 ma. STB# 233 I/O Parallel port Strobe. 12 ma. ATFD# 235 I/O Parallel port Autofeed. 12 ma. Parallel port Initialize. 12 ma. INIT# 236 I/O 232 SLIN# I/O Parallel port Select. 12 ma. LPTERR# 29 Ι Parallel port Error. LPTBZY 25 Ι Parallel port Busy. Parallel port Selected. SLCT 26 Ι PE 27 I Parallel port End of Paper. LPTACK# 28 Ι Parallel port Acknowledge Signal from printer PD0-PD7 18-21 I/O Parallel port data bus. 12 ma. 237, 239-241

Table 3-13 IDE and LPT1 Interface

3.2 2087 Numerical Pin List

Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name	Pin #	Pin Name
1	RDDATA#	61	A4	121	GND	181	SD5
2	RWC#	62	A5	122	RAS2#	182	SD6
3	STEP#	63	A6	123	VCC	183	VCC
4	FDCWE#	64	A7	124	RAS3#	184	SD7
5	FDCIR#	65	A8	125	STPCLK#	185	SD8
6	GND	66	A9	126	SMI#	186	GND
7	X24M	67	A10	127	LBA#	187	SD9
8	HEAD#	68	A11	128	HLDA	188	SD10
9	R12#	69	GND	129	MASTER#	189	SD11
10	TX2	70	CLKSRC	130	EXTSMI1	190	SD12
11	DTR2#	71	VCC	131	IOCHRDY	191	SD13
12	RTS2#	72	A12	132	SA0	192	SD14
13	RX2	73	A13	133	SA1	193	VCC
14	CTS2#	74	ADS#	134	SMIACT#	194	GND
15	DSR2#	75	NPERR	135	IOCS16#	195	SD15
16	DCD2#	76	NPEREQ	136	MEMCS16#	196	SDDIR#
17	VCC	77	PWRGD	137	EXTSMI0	197	XDIR#
18	PD0	78	A14	138	SRBTN#	198	IOR#
19	PD1	79	A15	139	ZWS#	199	IOW#
20	PD2	80	A16	140	GND	200	BALE
21	PD3	81	A17	141	X14M	201	AEN
22	DCD1#	82	A18	142	MSDATA	202	DRQ0
23	DSR1#	83	A19	143	MSCLK	203	PWRCTL4
24	CTS1#	84	A20	144	KBDATA	204	PWRCTL5
25	LPTBZY	85	A21	145	KBCLK	205	DRQ5
26	SLCT	86	A22	146	VCC	206	PWRCTL6
27	PE	87	A23	147	ENMAX#	207	PWRCTL7
28	LPTACK#	88	A24	148	DAC0	208	SBHE#
29	LPTERR#	89	A25	149	DAC1	209	MEMR#
30	CPURST	90	A31	150	PWRCNTL3	210	GND
31	ENABUS#	91	GND	151	ACPWR	210	VCC
32	NMI	92	GA20	152	ALARM	212	MEMW#
33	GND	93	HITM#	152	D0	212	RESETDRV
34	SYSCLK	94	BE0#	155	D1	213	REF#
35	PHOLD	95	BE1#	155	D2	215	SMEMR#
36	KEN#	96	BE2#	155	D3	215	SMEMW#
37	RDY#	97	BE3#	150	D4	217	TC
38	DTYWE#	98	LA20	158	D5	218	RTCAS
39	CPUBZY#	99	WEN#	159	D5	219	IRQ5
40	INTR	100	VCC	160	D7	220	IRQ7
40	M/-IO	100	MA0, TAG0	161	D8	220	RTCINT#
42	D/-C	101	MA1, TAG1	162	D9	222	IRQ9
43	W/-R	102	MA2,TAG2	163	GND	223	IRQ10
44	BRDY#	105	GND	164	D10	223	IRQ10 IRQ11
45	TGLA2	105	MA3, TAG3	165	D10	225	STPGNT#
46	TGLA3	105	MA4, TAG4	166	D12	226	IRQ14
40	VCC	100	MA5, TAG5	167	D12 D13	220	SUSPMOD#
47	CLKI	107	MA6, TAG6	168	D13	228	SUSPACK#
48	CLKX2	108	MA0, TAG0 MA7, TAG7	169	D14	229	SPEAKER
50	GND	110	MA8, TAG8	170	VCC	230	GND
51	CLKX1	110	GND	170	ENSDL#	230	ID7
52	PWRCTL2	1112	VCC	172	ENSDL# ENSDH#	231	SLIN#
53	MDIR#	112	TMA9, TAG9	172	LBAT#	232	STB#
54	KRMOE#	113	DIRTY	173	EXTSYS#	233	GND
55	KRMUE#	114	CAS0#	174	SD0	234	ATFD#
	PWRCTL1	115	CAS0# CAS1#	175	SD0	235	INIT#
56							
57	PWRCTL0	117	CAS2#	177	SD2	237	PD4
58	KTGOE#	118	CAS3#	178	GND	238	VCC
59	A2	119	RAS0#	179	SD3	239	PD5
60	A3	120	RAS1#	180	SD4	240	PD6

ACC Micro[™].

2087 Numerical Pin List contd...

Pin #	Pin Name						
241	PD7	245	TX1	249	DS1	253	DSKCHG#
242	RX1	246	RI1#	250	MO0#	254	WP#
243	RTS1#	247	DS0	251	MO1#	255	TRK0#
244	DTR1#	248	GND	252	WRDATA#	256	INDEX#

3.3 2087 Desktop vs. Notebook Multiplexed Pin Summary

Note:

Notebook Mode : During power on, a pull-down on DAC0 and a pull-up on DAC1 will configure the ACC2086 to notebook mode.

Desktop Mode : During power on, a pull-down on both DAC0 and DAC1 will configure the ACC2086 to desktop mode.

$\mathbf{DAC0} = 0$	$\mathbf{DAC0} = 0$
DAC1 = 0	DAC1 = 1
PAR0	AC POWER
PAR2	BAT LOW
PAR3	EXT SYS
KWE EVEN	KWE
KOE EVEN	KOE
KWE ODD	PWRCTL0
KOE ODD	PWRCTL1
KA3 EVEN	KA3
KA3 ODD	KA2
MD LATCH	PWRCTL2
IRQ13	STOP GNT
IRQ15	SUSPEND
DAC0	DACK0
DAC1	DACK5
DAC2	PWRCTL3
DRQ1	PWRCTL4
DRQ3	PWRCTL5
DRQ6	PWRCTL6
DRQ7	PWRCTL7
IO CHK	EXTSMI1

3.4 2087 Pins Status For Various CPU Types

Note: The ACC 2087 supports level 1 write back and write through microprocessors.

Pin 58 (KTGOE)	Pin 147 (ENMAX#)	ROM	СРИ Туре
Pull down (0)	Pull down (0)	8 bit	P24D (Misc.)
Pull down (0)	Pull up (1)	8 bit	other write back
Pull up (1)	Pull down (0)	16 bit	Regular CPU
Pull up (1)	Pull up (1)	8 bit	Regular CPU

3.5	2087 Numerical Pin List with Multiplexed pins and Power Plane Summary
-----	---

Pin #	Voltage	Pin Name	Pin #	Voltage	Pin Name	Pin #	Voltage	Pin Name
1	5 V	RDDATA#	61	3.3 V	A4	121	3.3 V	GND
2	5 V	RWC#	62	3.3 V	A5	122	3.3 V	RAS2#
3	5 V	STEP#	63	3.3 V	A6	123	3.3 V	VCC
4	5 V	FDCWE#	64	3.3 V	A7	124	3.3 V	RAS3#
5	5 V	FDCIR#	65	3.3 V	A8	125	3.3 V	STPCLK#
6	5 V	GND	66	3.3 V	A9	126	3.3 V	SMI#
7	5 V	X24M	67	3.3 V	A10	127	3.3 V	LBA#, READY0#
8	5 V	HEAD#	68	3.3 V	A11	128	3.3 V	HLDA
9	5 V	R12#	69	3.3 V	GND	129	5 V	MASTER#
10	5 V	TX2, IRQ3, ENCOM2	70	3.3 V	CLKSRC	130	5 V	EXTSMI1, IOCHK
11	5 V	DTR2#, ENLPT	71	5 V	VCC	131	5 V	IOCHRDY
12	5 V	RTS2#, ENIDE	72	3.3 V	A12	132	5 V	SA0
13	5 V	RX2	73	3.3 V	A13	133	5 V	SA1
14	5 V	CTS2#	74	3.3 V	ADS#	134	5 V	SMIACT#, SMIADS#
15	5 V	DSR2#	75	3.3 V	NPERR	135	5 V	IOCS16#
16	5 V	DCD2#	76	3.3 V	NPEREQ, BLAST#	136	5V	MEMCS16#
17	5 V	VCC	77	3.3 V	PWRGD	137	5 V	EXTSMI0
18	5 V	PD0	78	3.3 V	A14	138	5 V	SRBTN#
19	5 V	PD1	79	3.3 V	A15	139	5 V	ZWS#
20	5 V	PD2	80	3.3 V	A16	140	5V	GND
21	5 V	PD3	81	3.3 V	A17	141	5 V	X14M
22	5 V	DCD1#	82	3.3 V	A18	142	5 V	MSDATA, IRQ12
23	5 V	DSR1#	83	3.3 V	A19	143	5 V	MSCLK, KBINT
24	5 V	CTS1#	84	3.3 V	A20	144	5 V	KBDATA, KGA20
25	5V	LPTBZY	85	3.3 V	A21	145	5 V	KBCLK, KBRST#
26	5 V	SLCT	86	3.3 V	A22	146	5V	VCC
27	5 V	PE	87	3.3 V	A23	147	5 V	ENMAX#
28	5 V	LPTACK#	88	3.3 V	A24	148	5 V	DAC0, DACK0
29	5V	LPTERR#	89	3.3 V	A25	149	5 V	DAC1, DACK5
30	3.3 V	CPURST	90	3.3 V	A31	150	5V	PWRCNTL3, DAC2

Pin #	Voltage	Pin Name	Pin #	Voltage	Pin Name	Pin #	Voltage	Pin Name
31	3.3 V	ENABUS#	91	3.3 V	GND	151	3.3 V	ACPWR, PAR0
32	3.3 V	NMI	92	3.3 V	GA20	152	3.3 V	ALARM, PAR1
33	3.3 V GND		93	3.3 V	HITM#, FLUSH#	153	3.3 V	D0
34	3.3 V	SYSCLK	94	3.3 V	BE0#	154	3.3 V	D1
35	3.3 V	PHOLD	95	3.3 V	BE1#	155	3.3 V	D2
36	3.3 V	KEN#	96	3.3 V	BE2#	156	3.3 V	D3
37	3.3 V	RDY#	97	3.3 V	BE3#	157	3.3 V	D4
38	3.3 V	DTYWE#, NA# KTWE#	98	3.3 V	LA20, EADS#	158	3.3 V	D5
39	3.3 V	CPUBZY#, IGNNE#	99	3.3 V	WEN#	159	3.3 V	D6
40	3.3 V	INTR	100	3.3 V	VCC	160	3.3 V	D7
41	3.3 V	M/-IO	101	3.3 V	MA0, TAG0, ROMCS#	161	3.3 V	D8
42	3.3 V	D/-C	102	3.3 V	MA1, TAG1, CS8042#	162	3.3 V	D9
43	3.3 V	W/-R	103	3.3 V	MA2,TAG2, RTCDS#	163	3.3 V	GND
44	3.3 V	BRDY#, CPUPEREQ	104	3.3 V	GND	164	3.3 V	D10
45	3.3 V	TGLA2	105	3.3 V	MA3, TAG3, RTCWR#	165	3.3 V	D11
46	3.3 V	TGLA3	106	3.3 V	MA4, TAG4, HCS0#	166	3.3 V	D12
47	3.3 V	VCC	107	3.3 V	MA5, TAG5, HCS1#	167	3.3 V	D13
48	3.3 V	CLKI	108	3.3 V	MA6, TAG6, IENH#	168	3.3 V	D14
49	3.3 V	CLKX2	109	3.3 V	MA7, TAG7, IENL#	169	3.3 V	D15
50	3.3 V	GND	110	3.3 V	MA8, TAG8	170	3.3 V	VCC
51	3.3 V	CLKX1	111	3.3 V	GND	171	3.3 V	ENSDL#, ENKBD
52	3.3 V	PWRCTL2, MDLATCH	112	3.3 V	VCC	172	3.3 V	ENSDH#, M486
53	3.3 V	MDIR#	113	3.3 V	MA9, TAG9 RDIDX21#	173	3.3 V	LBAT#, PAR2
54	3.3 V	KRMOE#	114	3.3 V	DIRTY, MA10	174	3.3 V	EXTSYS#, PAR3
55	3.3 V	KRMWE#	115	3.3 V	CAS0#	175	5 V	SD0
56	3.3 V	PWRCTL1, KOEB	116	3.3 V	CAS1#	176 5 V		SD1
57	3.3 V	PWRCTL0, KWEB	117	3.3 V	CAS2#	177	5 V	SD2
58	3.3 V	KTGOE#	118	3.3 V	CAS3#	178	5 V	GND
59	3.3 V	A2	119	3.3 V	RAS0#	179	5 V	SD3
60	3.3 V	A3	120	3.3 V	RAS1#	180	5 V	SD4

ACC Micro™____

Pin #	Voltage	Pin Name	Pin #	Voltage	Pin Name	Pin #	Voltage	Pin Name
181	5 V	SD5	206	5 V	PWRCTL6,	231	5 V	ID7
					DRQ6			
182	5 V	SD6	207	5 V	PWRCTL7,	232	5 V	SLIN#
					DRQ7			
183	5 V	VCC	208	5 V	SBHE#	233	5 V	STB#
184	5 V	SD7	209	5 V	MEMR#	234	5 V	GND
185	5 V	SD8	210	5 V	GND	235	5 V	ATFD#
186	5 V	GND	211	5 V	VCC	236	5 V	INIT#
187	5 V	SD9	212	5 V	MEMW#	237	5 V	PD4
188	5 V	SD10	213	5 V	RESETDRV	238	5 V	VCC
189	5 V	SD11	214	5 V	REF#	239	5 V	PD5
190	5 V	SD12	215	5 V	SMEMR#	240	5 V	PD6
191	5 V	SD13	216	5 V	SMEMW#	241	5 V	PD7
192	5 V	SD14	217	5 V	TC	242	5 V	RX1
193	5 V	VCC	218	5 V	RTCAS	243	5 V	RTS1#
194	5 V	GND	219	5 V	IRQ5	244	5 V	DTR1#
195	5 V	SD15	220	5 V	IRQ7	245	5 V	TX1, IRQ4,
								ENCOM1
196	5 V	SDDIR#	221	5 V	RTCINT#	246	5 V	RI1#
197	5 V	XDIR#	222	5 V	IRQ9	247	5 V	DS0, IRQ6
198	5 V	IOR#	223	5 V	IRQ10	248	5 V	GND
199	5 V	IOW#	224	5 V	IRQ11	249	5 V	DS1, ENFDC
200	5 V	BALE	225	5 V	STPGNT#,	250	5 V	MO0#, DRQ2#
					IRQ13			
201	5 V	AEN	226	5 V	IRQ14	251	5 V	MO1#, DACK2
202	5 V	DRQ0	227	5 V	SUSPMOD#, IRQ15	252	5 V	WRDATA#
203	5 V	PWRCTL4,	228	5 V	SUSPACK#	253	5 V	DSKCHG#
		DRQ1						
204	5 V	PWRCTL5,	229	5 V	SPEAKER	254	5 V	WP#
		DRQ3						
205	5 V	DRQ5	230	5 V	GND	255	5 V	TRK0#
						256	5 V	INDEX#

2087 Numerical Pin List with Multiplexed pins and Power Plane Summary contd...

Section 4

4.1 ACC2087 Register Settings

The configuration registers in the ACC2087 are programmed with an indirect addressing scheme using I/O addresses F2 and F3. I/O address F2 contains the write/read configuration index register. F2 selects the corresponding configuration register accessed at I/O address F2. To write a value of "E8" into configuration register 2Ah, the configuration index register at I/O address F2 must first be written with a value ao "2a," then register at I/O address F3 with a value of :E8."

All reserved and unused bits should be written as zero unless otherwise indicated as one or x (don't care).

Memory Configuration	ation and ROM Setu	p - Register 0h
----------------------	--------------------	-----------------

Bit	R/W	Default	Function
7-5	R/W	0	When set to one this bit enables remap memory within the 640 KB to 1 MB range
			to memory address above the actual installed memory size.
6	R/W	0	When set to zero ROM BIOS will be located in 0F0000-0FFFFF. When set to one
			ROM BIOS will be extended from 0E0000-0FFFFF.
5	R/W	0	When set to zero ROM BIOS will be located in 0F0000-0FFFFF. When set to one
			ROM BIOS will be extended from 0E0000-0FFFFF.
4	R/W	0	When set to one this bit enables ROM to include C0000-C7FFF for video BIOS.
3-0	R/W	0	These bits are memory configuration bits 3-0. These four bits plus bits 1 and 0 of
			Register 12h, set the memory option. Refer to the following table for memory
			options.

Memory Options

Option	Memory Configuration 5 4 3 2 1 0	Bank 0	Bank 1	Bank 2	Bank 3	Total Memory
1	000000	256K				1M
2	000100	256K	256K			2M
3	000111	256K	256K	256K		3M
4	001001	256K	256K	256K	256K	4M
5	010000	1M				4M
6	010001	256K	1M			5M
7	010010	256K	256K	1M		6M
8	010011	256K	256K	256K	1 M	7M
9	010100	1M	1M			8M
10	010101	256K	1M	1M		9M
11	010110	256K	256K	1M	1M	10M
12	010111	1M	1M	1M		12M
13	011000	256K	1M	1M	1M	13M
14	011001	1M	1M	1M	1M	16M
15	100000	4M				16M
16	100001	1M	4M			20M
17	100010	1M	1M	4M		24M
18	100011	1M	1M	1M	4M	28M

Memory Options continued...

Option	Memory Configuration 5 4 3 2 1 0	Bank 0	Bank 1	Bank 2	Bank 3	Total Memory
19	100100	4M	4M			32M
20	100101	1M	4M	4M		36M
21	100110	1M	1M	4M	4M	40M
22	100111	4M	4M	4M		48M
23	101000	1M	4M	4M	4M	52M
24	101001	4M	4M	4M	4M	64M
25	110000	512K				2M
26	110001	512K	512K			4M
27	110010	512K	512K	512K		6M
28	110011	512K	512K	512K	512K	8M
29	110100	512K	1M			6M
30	110101	512K	512K	1M		8M
31	110110	512K	512K	1M	1M	12M
32	110111	512K	4M			18M
33	111000	512K	512K	4M		20M
34	111001	512K	512K	4M	4M	36M
35	000010	256K	256K	4M		18M
36	000110	256K	256K	4M	4M	34M
37	000001	256K	4M			17M
38	111100	2M				8M
39	111101	2M	2M			16M
40	111110	2M	1M			12M
41	111111	2M	4M			24M

* Memory configuration bits 5 and 4 are located in Register 12h, bits 1 and 0.

FP Dram Setup - Register 1h

Bit	R/W	Default	Function
7-5	R	Х	Reserved.
4	R/W	0	When set to one this bit disables RAS time out. When set to zero this bit enables
			RAS time out.
3-0	R	Х	Reserved.

Shadow RAM Setup - Register 2h

Bit	R/W	Default	Function	
7	R/W	1	This bit must be set to one.	
6	R/W	0	When set to one this bit enables shadow area to be cacheable.	
5	R/W	0	When set to one this bit places the shadow segment into read only, write protect	
			mode.	
4	R/W	0	When set to one this bit enables shadow segment F0000-FFFFF.	
3	R/W	0	When set to one this bit enables shadow segment E0000-EFFFF.	
2	R/W	0	When set to one this bit enables shadow segment D0000-DFFFF.	
1	R/W	0	When set to one this bit enables shadow segment C8000-CFFFF.	
0	R/W	0	When set to one this bit enables shadow segment C0000-C7FFF.	

Bit	R/W	Default	Function		
7	R	Х	Reserved.		
6	R/W	0	When set to one this bit enables CAS before RAS AT refresh.		
5	R	Х	Reserved.		
4	R/W		When set to one this bit disables parity check.		
3	R/W	0	When set to one the numeric processor operates in 1 wait state. When set to zero the numeric processor operates in 2 wait states.		
2	R/W	0	When set to one this bit disables the numeric processor's sequencer.		
1	R/W	0	When set to one this bit disables access to the Weitek 3167 coprocessor. All access to Weitek will become AT Bus cycles.		
0	R/W	0	When set to one this bit disables access to the 387 processor. All access to 387 will become AT Bus cycles.		

DRAM, Coprocessor and Parity Setup - Register 3h

Cache Setup - Register 4h

Bit	R/W	Default	Function		
7	R/W	0	When set to one this bit enables post write.		
6	R/W	0	When set to one this bit enables memory write 0 wait for 486 with no cache operation in page hit cycle. When set to zero this bit enables memory write 1 wait for 486 with no cache operation in page hit cycle.		
5	R/W	0	When set to one this bit enables cache read 1 wait state. When set to zero this bit enables cache read zero wait state.		
4	R/W	0	When set to one this bit enables DRAM read burst mode.		
3	R/W	0	When set to one this bit enables cache read burst mode to update the 486 internal cache.		
2,1	R/W	0	These two bits set the cache line size as follows: Bit Line Size 2 1 0 0 0 32 1 0 32 0 1 64 1 1 128		
0	R/W	0	When set to one this bit enables the 2087 cache controller.		

Power Up Select and Slow Refresh - Register 5h

Bit	R/W	Default	Function		
7	R	0	This is a read only bit. When read as one, this bit indicates an 8-bit ROM is		
			installed. When read as zero, this bit indicates a 16-bit ROM is installed.		
6	R	0	This is a read only bit. When read as one, it indicates 386 mode is selected. When		
			read as zero, it indicates 486 mode is selected.		
5	R	0	This is a read only bit. When read as zero it indicates Level 1 write through CPU.		
			When read as one it indicates Lever 1 write back CPU.		
4	R	Х	Reserved.		
3	R/W	0	When set to one this bit enables F3 to be read from the SD instead of XD.		

2087

Bit	R/W	Default	Function
2	R	Х	Reserved.
1-0	R/W	1	Bits 1 and 0 select the slow refresh divisor (Read/Write) as follows:
			Bits Divided by
			10
			0 0 1 (Default)
			01 2
			10 4
			11 8
			These bits must be set to one.

Power Up Select and Slow Refresh - Register 5h

AT Bus Clock Source Select - Register 6h

Bit	R/W	Default	Function				
7-5	R/W	0	When Reg. 1Ah bit 0 is 1, these bits select the divisor from CLKSRC for the				
			digital delay time.				
			Bits				
			7 6 5 DMA Clock Source				
			0 0 0 3 (Default)				
			0 0 1 5				
			0 1 0 1.5				
			0 1 1 2.5				
			1 0 0 1				
			1 0 1 1				
			1 1 0 2				
			1 1 1 4				
4-0	R	0	Select clock source for AT Bus clock. The 2087 supports three clock sources for				
			the AT Bus clock. SYSCLK is half of the AT bus clock. When bit 4 is set at zero				
			(default), the SYSCLK is derived from X14M1 (14.318 MHz). When bits 4 and 3				
			are set at one, the SYSCLK is derived from X24M (24 MHz). When bit 4 is one				
			and bit 3 is zero, CLKSRC provides the clock source. In addition, bits 2-0 set a				
			divisor to divide down CLKSRC for the use of SYSCLK.				
			Bits				
			4 3 2 1 0 AT Bus clock source				
			0 X X X X X14M1, default.				
			1 1 X X X X24M				
			10000 CLKSRC/5				
			10001 CLKSRC/3				
			10010 CLKSRC/2.5				
			10011 CLKSRC/1.5				
			10100 CLKSRC/1				
			10101 CLKSRC/4				
			10110 CLKSRC/1				
			10111 CLKSRC/2				

Sleep Mode Control - Register 8h

Bit	R/W	Default	Function			
7-4	R	Х	Reserved.			
3	R/W	0	When set to one this bit enables sleep mode. If sleep mode is enabled, the system clock source will be switched from CLKSRC to AT bus clock which is divided down to a sleep mode frequency.			
2-0	R/W	0	These bits select the divisor to divide the AT bus clock source to the sleep modeBits Divisor Sleep2 1 0ModeClockClock0 0 0 1 (Default)16 MHz0 0 1 320.5 MHz0 1 0 640.25MHz0 1 1 1280.125 MHz1 0 0 28 MHz1 0 1 44 MHz1 1 0 82 MHz			
			1 1 1 1 6 1 MHz			

Non-cacheable range and DRAM setup - Register 9h

Bit	R/W	Default	Functi	on			
7-4	R/W	0	Bit 7	Bit 6	Bit 5	Bit 4	Non-cacheable range
			0	0	0	0	default
			1	0	0	0	address>32Mb
			1	1	0	0	address>16Mb
			1	1	1	0	address>8Mb
			1	1	1	1	address>4Mb
3-2	R	Х	Reserv	ed.			
1	R/W	0	When	set to on	e this bi	t enable	s 512K base memory. Default is zero (640K base
			memor	y).			- ```
0	R	х	Reserv	ed.			

DMA High Address 24, 25 Register 0Ah

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit will convert ROMOE to ROMCS for flash EPROM support.
6	R/W	0	When this bit is set to one EADS# is synchronized with CPU clock and activated for only one CPU Clock period for Level 1 write through CPU.
5	R/W	0	When set to zero this bit disables KEN (KEN is always deasserted) in 486 normal operation.
4	R	0	Reserved. Set to zero
3	R	1	Reserved. Must be set to one.

2087

DMA High Address 24, 25 Register 0Ah

Bit	R/W	Default	Function		
2	R/W	0	When set to one MA latches will be held until the last half clock of CAS to		
			increase the MA to CAS hold time.		
1	R/W	0	When set to one this bit enables the address bit 24 for non CPU cycle.		
0	R/W	0	When set to one this bit enables the address bit 24 for non CPU cycle.		

Page Mode Setup Register 0Bh

Bit	R/W	Default	Function			
7-6	R/W	2T	Set RAS precharge time.			
			Bits RAS precharge time			
			76			
			0 0 2T			
			01 3T			
			10 4T			
			11 5T			
5	R/W	0	When this bit is set to one the RAS to CAS delay is 3 cycles in write cycle. When			
			set to zero the RAS to CAS delay time is 2 cycles.			
4	R/W	0	When this bit is set to one the CAS precharge time is 2 cycles in write cycles.			
			When set to zero the CAS precharge time is one cycle.			
3-2	R/W	1T	These two bits define CAS width for read cycle time.			
			Bits CAS width in read cycle			
			32			
			00 1T			
			0 1 2T			
			10 3T			
			11 4T			
1-0	R/W	1T	These two bits define CAS width for write cycle.			
			Bits CAS width in write cycle			
			10			
1			0 0 1T			
1			0 1 2T			
			10 3T			
			11 4T			

Non-cacheable Range (Registers 0Ch-11h)

Non-cacheable block 1 Register 0Ch

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables non-cacheable block 1 address A17.
6	R/W	0	When set to one this bit enables non-cacheable block 1 address A16.
5	R/W	0	When set to one this bit enables non-cacheable block 1 address A15.

Non-cacheable block 1 Register 0Ch

Bit	R/W	Default	Functi	on	
4	R/W	0	When s	set to one this	bit enables non-cacheable block 1 address A14.
3-0	R/W	0	These bits enable set non-cacheable block 1 size as follows:		t non-cacheable block 1 size as follows:
			Non-ca	acheable Blo	ck 1 size select
			Bits	Addr. compared	Non-cacheable block size
			3210		
			0000	don't care	all cacheable (default)
			0001	14-25	16K
			0010	15-25	32K
			0011	16-25	64K
			0100	17-25	128K
			0101	18-25	256K
			0110	19-25	512K
			0111	20-25	1M
			1000	21-25	2M
			1001	22-25	4M
			1010	23-25	8M
			1011	24-25	16M
			1100	25	32M
			1101 -	1111	disable cache

Non-cacheable block 1 Register 0Dh

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables non-cacheable block 1address A25.
6	R/W	0	When set to one this bit enables non-cacheable block 1 address A24.
5	R/W	0	When set to one this bit enables non-cacheable block 1 address A23.
4	R/W	0	When set to one this bit enables non-cacheable block 1 address A22.
3	R/W	0	When set to one this bit enables non-cacheable block 1 address A21.
2	R/W	0	When set to one this bit enables non-cacheable block 1 address A20.
1	R/W	0	When set to one this bit enables non-cacheable block 1 address A19.
0	R/W	0	When set to one this bit enables non-cacheable block 1 address A18.

Non-cacheable block 2 Register 0Eh

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables non-cacheable block 2 address A17.
6	R/W	0	When set to one this bit enables non-cacheable block 2 address A16.
5	R/W	0	When set to one this bit enables non-cacheable block 2 address A15.

2087

Non-cacheable block 2 Register 0Eh

Bit	R/W	Default	Functi	on	
4	R/W	0	When s	set to one this	bit enables non-cacheable block 2 address A14.
3-0	R/W	0	These bits set non-cacheable block 2 size as follows:		
			Non-ca	acheable Blo	ck 2 size select
			Bits	Addr. compared	Non-cacheable block size
			3210 0000	don't care	all cacheable (default)
			0001	14-25	16K
			0010	15-25	32K
			0011	16-25	64K
			0100	17-25	128K
			0101	18-25	256K
			0110	19-25	512K
			0111	20-25	1M
			1000	21-25	2M
			1001	22-25	4M
			1010	23-25	8M
			1011	24-25	16M
			1100	25	32M
			1101 -	1111	disable cache

Non-cacheable block 3 Register 0Fh

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables non-cacheable block 2 address A25.
6	R/W	0	When set to one this bit enables non-cacheable block 2 address A24.
5	R/W	0	When set to one this bit enables non-cacheable block 2 address A23.
4	R/W	0	When set to one this bit enables non-cacheable block 2 address A22.
3	R/W	0	When set to one this bit enables non-cacheable block 2 address A21.
2	R/W	0	When set to one this bit enables non-cacheable block 2 address A20.
1	R/W	0	When set to one this bit enables non-cacheable block 2 address A19.
0	R/W	0	When set to one this bit enables non-cacheable block 2 address A18.

Non-cacheable block 3 Register 10h

Bit	R/W	Default	Functi	Function			
7	R/W	0	When	When set to one this bit enables non-cacheable block 3 address A17.			
6	R/W	0	When	When set to one this bit enables non-cacheable block 3 address A16.			
5	R/W	0	When	set to one this b	it enables non-cacheable block 3 address A15.		
4	R/W	0	When	When set to one this bit enables non-cacheable block 3 address A15.			
3-0	R/W	0	These	bits set non-cac	heable block 3 size.		
			Non-ca	acheable Block	a 3 size select		
			Bits	Addr. compared	Non-cacheable block size		
			3210				
			0000	don't care	all cacheable (default)		
			0001	14-25	16K		
			0010	15-25	32K		
			0011	16-25	64K		
			0100	17-25	128K		
			0101	18-25	256K		
			0110	19-25	512K		
			0111	20-25	1M		
			1000	21-25	2M		
			1001	22-25	4M		
			1010	23-25	8M		
			1011	24-25	16M		
			1100	25	32M		
			1101 -	1111	disable cache		

2087

Non-cacheable block 3 Register 11h

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables non-cacheable block 3 address A25.
6	R/W	0	When set to one this bit enables non-cacheable block 3 address A24.
5	R/W	0	When set to one this bit enables non-cacheable block 3 address A23.
4	R/W	0	When set to one this bit enables non-cacheable block 3 address A22.
3	R/W	0	When set to one this bit enables non-cacheable block 3 address A21.
2	R/W	0	When set to one this bit enables non-cacheable block 3 address A20.
1	R/W	0	When set to one this bit enables non-cacheable block 3 address A19.
0	R/W	0	When set to one this bit enables non-cacheable block 3 address A18.

DRAM, Rom Size, and Turbo Pin Control - Register 12h

Bit	R/W	Default	Function			
7	R/W	0	When set to one the RAS to CAS delay time is 3 cycles for read cycles. When set			
			to zero the RAS to CAS delay time is 2 cycles.			
6	R/W	0	When set to one the CAS precharge time is 2 cycles in read cycle.			
5	R/W	0	This bit in conjunction with bit 6, Register 0h sets the ROM size for middle BIOS.			
			Reg. 12h Reg. 0h Middle			
			Bit 5 Bit 6 ROM size			
			0 0 Disable (default)			
			0 1 64K (FF0000 - FFFFFF)			
			1 0 256K (FC0000-FFFFFF)			
			1 1 512K (F80000-FFFFFF)			
4	R/W	0	When set to one this bit enables the Turbo pin (pin 75) to switch the operation			
			speed between Turbo clock (CLKSRC) and Sleep mode clock (defined by Register			
			8h, bits 2-0). When set to zero Turbo pin will toggle the operation speed between			
			Turbo clock (CLKSRC) and Normal clock.			
3	R	х	Reserved.			
2	R/W	0	When set to one this bit enables 4Mx4 DRAM supported option.			
1-0	R/W	0	These two bits are memory configuration bits 5 and 4. Refer to memory			
			configuration table of Register 0h.			

DRAM Bank Relocate Control Register 13h

Bit	R/W	Default	Function
7	R/W	0	SELBNK31
6	R/W	0	SELBNK30
5	R/W	0	SELBNK21
4	R/W	0	SELBNK20
3	R/W	0	SELBNK11
2	R/W	0	SELBNK10

Bit	R/W	Default	Function			
1	R/W	0	SELBNK01			
0	R/W	0	SELBNK00			
			SELBNK01	SELBNK00	RAS0# redirect to bank #	
			0	0	0 (default)	
			0	1	1	
			1	0	2	
			1	1	3	
			SELBNK11	SELBNK10	RAS1# redirect to bank #	
			0	0	1 (default)	
			0	1	2	
			1	0	3	
			1	1	0	
			SELBNK21	SELBNK20	RAS2# redirect to bank #	
			0	0	2 (default)	
			0	1	3	
			1	0	0	
			1	1	1	
			SELBNK31	SELBNK30	RAS3# redirect to bank #	
			0	0	3 (default)	
			0	1	0	
			1	0	1	
			1	1	2	

DRAM Bank Relocate Control Register 13h

AT Bus Cycle Control - Register 14h

Bit	R/W	Default	Function	
7	R/W	0	When set to one this bit disables BS16# output.	
6	R/W	0	When set to one this bit enables cache write hit cycle zero wait state.	
5	R	Х	Reserved.	
4	R/W	0	When set to one this bit enables 8 bit cycle, 0 wait state.	
3	R/W	0	When set to one this bit enables 16 bit cycle, 0 wait state.	
2-1	R	Х	Reserved.	
0	R/W	0	When set to one this bit disables AT Bus 32 bit cycle.	

AT Bus Control - Register 15h

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enable AT bus hold time.
6	R/W	0	When set to one this bit enable slow I/O recovery time. Default is zero.
5	R/W	0	16 bit I/O Recovery control bit 2.
4	R/W	0	16 bit I/O Recovery control bit 1.
3	R/W	0	16 bit I/O Recovery control bit 0.

AT Bus Control - Register 15h

Bit	R/W	Default	Functi	on				
2	R/W	0	8 bit I/	8 bit I/O Recovery control bit 2.				
1	R/W	0			ery conti			
0	R/W	0	8 bit I/	O Recov	ery contr	rol bit (0.	
				oit I/O a				
			Bit 5	Bit 4	Bit 3		5=0 Bit 6=1	
						I/O	Recovery time	
			0	0	0	0	0(default)	
			0	0	1	1	1	
			0	1	0	2	5	
			0	1	1	3	9	
			1	0	0	4	13	
			1	0	1	5	17	
			1	1	0	6	21	
			1	1	1	7	25	
			In 8 bi	t I/O ac	cess			
			Bit 2	Bit 1	Bit 0		5=0 Bit 6=1 Recovery time	
			0	0	0	0	0 (default)	
			0	0	1	1	1	
			0	1	0	2	5	
			0	1	1	3	9	
			1	0	0	4	13	
			1	0	1	5	17	
			1	1	0	6	21	
			1	1	1	7	25	
				The unit cycle.	of I/O Re	ecovery	y time is 8 MHz	

AT Bus Refresh and DRAM Setup - Register 16h

Bit	R/W	Default	Function	
7	R	1	Reserved. Must be set to one.	
6	R/W	0	When set to one this bit enables 0 wait ROM cycle.	
5-4	R/W	0	These two bits are the AT refresh burst count control bits.	
			Bit Rate per refresh request	
			54	
			x 0 1 (Default)	
			01 2	
			11 4	

2087

Register 16h

Bit	R/W	Default	Function
3-2	R/W	0	These two bits extend the CAS width for write cycle by activating CAS earlier.
			Bit CAS Width Extension
			32
			0 x No extension. (Default)
			1 1 1/2 cycle earlier
1-0	R/W	0	These two bits extend the CAS width for read cycle by activating CAS earlier.
			Bit CAS Width Extension
			10
			0 x No extension. (Default)
			1 1 1/2 cycle earlier

Suspend Mode Control - Register 17h

Bit	R/W	Default	Function
7-3	R	Х	Reserved.
2	R	0	Reserved. Must be set to zero.
1	R/W	0	When set to one this bit forces the data level to one and drives data out during 5- Volt Suspend mode.
0	R	0	Reserved.

L2, DRAM, and ISA Control - Register 18h

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables X-2-2-2 cache read burst cycle.
6	R/W	0	When set to one this bit adds one extra wait state for ISA cycle.
5	R/W	0	When set to one this bit adds one wait state for DRAM and ISA off cycles.
4	R/W	0	If Level 2 write back is implemented cache write wait state will be set to one. If
			Level 2 write through is implemented post write wait state will be set to one.
3	R	Х	Reserved.
2	R	Х	Reserved.
1	R/W	0	When set to one this bit enables hidden burst refresh.
0	R/W	0	When set to one this bit disables AT standard refresh.

DRAM Setup - Register 19h

Bit	R/W	Default	Function
7-6	R/W	0	These two bits define the burst refresh RAS active cycle width. Default is 4T.
, 0	10 11	Ũ	Bits Cycle width
			7 6
			00 5T
			01 4T
			10 3T
			11 2T
5-4	R/W	0	These two bits define the burst refresh RAS precharge cycle width. Default is 4T.
			Bits Cycle width
			54
			0 0 4T
			0 1 3T
			10 2T
			11 1T
3	R	0	Reserved.
2-0	R/W	0	These three bits define the burst refresh count. Default is 1.
			Bits Burst number
			210
			000 1
			001 2
			010 3
			011 4
			100 5
			101 6
			110 7
			111 8

ADS#, L2, and AT Bus Setup - Register 1Ah

Bit	R/W	Default	Function
7	R/W	0 or 1	When set to one this bit enables ADS# delay. Default is one for 486 systems, zero
			for 386 systems.
6	R/W	0	When set to one this bit disables 486 internal cache. When set to zero this bit
			enables 486 internal cache.
5	R	Х	Reserved.
4-3	R/W	0	Enable cache always hit or miss for initialization.
			Bit 4 Bit 3
			X 0 Normal
			1 1 Always hit
			0 1 Always miss
2	R	Х	Reserved.
1	R/W	2 cycle	When set to one the DMA delay line is 3 cycle times. When set to zero the DMA
		times	delay line is 2 cycle times.
0	R/W	0	When set to one this bit enables fast DMA and uses CPU clock to generate RAS
			and CAS. When set to zero DMA uses AT bus clock source.

Register 1Bh

Bit	R/W	Default	Function			
7-5	R	Х	Reserved.			
4	R/W	0	When set to o	one this bit enable	es the local bus.	
3	R/W	0	When set to	one this bit disa	bles RAS3 output. When set to zero this bit enables	
			RAS3 output			
2	R/W	0	When set to	one this bit disal	bles RAS2 output. When set to zero this bit enables	
			RAS2 output			
1	R/W	0	When set to	one this bit disal	bles RAS1 output. When set to zero this bit enables	
			RAS1 output			
0	R/W	0	This bit worl	ks in conjunction	with Register 1Ch, bit 3 to set the turbo or normal	
			speed accord	ling to the follo	wing table through software (integrated keyboard)	
			control:	-		
			Reg. 1Ch	Reg. 1Bh	System	
			bit 3	bit 0	Speed	
			0	0	Normal	
			0	1	Turbo	
			1	0	Turbo	
			1	1	Normal	

Register 1Ch

Bit	R/W	Defaul	Function
		t	
7-4	R	0	Reserved.
3	R	0	This bit reads the status of the turbo pin to allow the integrated keyboard to control the turbo and normal speed.
2-0	R	0	Reserved. These are read only version ID bits.

Register 1Dh

Bit	R/W	Defaul	Function
		t	
7	R/W	0	When set to one the internal keyboard is enabled. Default is controlled by
			ENSOL# or ENKBD# pulling high (enable internal keyboard), or pulling low
			(disable internal keyboard).
6	R	Х	Reserved.
5	R/W	0	When set to one this is the color select signal for internal keyboard.
4	R/W	0	When set to one this is the signal for Keyboard/Mouse swap.
3-1	R	Х	Reserved.
0	R/W	0	When set to one this bit enables the dirty bit check. This bit is always non-dirty.

Register 1Eh

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit disables DRAM page mode operation in write back
			mode.
6-4	R/W	0	Cache size control bit.
			Bit Cache size
			654
			0 0 0 32K
			0 0 1 64K
			0 1 0 128K
			0 1 1 256K
			1 X X 512K
3	R/W	0	When set to one this bit enables the L-2 write back cache mode.
2-0	R/W	0	Cacheable DRAM range control bit.
	10	0	In 32-K cache
			Bit Cacheable DRAM range
			0 0 0 0-3FFFFF or single tag
			0 0 1 0-7FFFF
			0 1 1 0-FFFFFF
			1 1 1 0-1FFFFFF
			In 64-K cache
			Bit Cacheable DRAM range
			0 0 0 0-7FFFFF or single tag
			0 0 1 0-FFFFFF
			0 1 1 0-1FFFFFF
			1 1 1 0-3FFFFFF
			In 128-K cache
			Bit Cacheable DRAM range
			0 0 0 0-FFFFFF or single tag
			0 0 1 0-1FFFFFF
			0 1 1 0-3FFFFFF
			In 256-K cache
			Bit Cacheable DRAM range
			0 0 0 0-1FFFFFF or single tag
			0 0 1 0-3FFFFFF
			In 512-K cache
			Bit Cacheable DRAM range
			0 0 0 All the time, and it uses only single tag.
			Note: If the DRAM size is larger than cacheable DRAM size, it should use
			Register 9, bit 7-4 to specify the non-cacheable DRAM range.

Register 1Fh

Bit	R/W	Default	Function
7	R	Х	Reserved.
6	R	0	Reserved. This bit must be zero.
5	R/W	0	When set to one this bit enables SMM segment 3000h.
4	R/W	0	When set to one along with bit 0 set to one, this will enable SMM for Intel CPU.
3	R/W	0	When set to one this bit enables DMA Local Bus.
2	R/W	0	When set to one this bit enables SMM segment F000h.
1	R/W	0	When set to one this bit enables SMM segment 6000h.
0	R	х	Reserved.

Stop Clock Protocol Register 20h

Bit	R/W	Default	Function	Function						
7	R/W	0	When set to one this bit is clock recovery time select bit 1, STPSEL1.							
6	R/W	0	When set to o	one this bit is clo	ck recovery tim	e select bit 0, STP	SEL0. Default is			
			zero.							
					Low 7	Fime Duty Cycle				
			STPSEL1	STPSEL0	$\mathbf{EN} = 1$	$\mathbf{EN} = 0$				
			0	0	4.5 us	1 ms				
			0	1	9.5 us	2 ms				
			1	Х	18.5 us	4 ms				
5	R/W	0	When set to a	one this bit disabl	es clock recove	ry time, i.e., STPC	LK# is deasserted			
			immediately a	after STPGRNT#	is asserted.					
4	R/W	0	When set to	one this bit ena	bles recovery t	ime in microsecor	nds. Default is in			
			millisecond ra	ange.						
3	R/W	0	Default is zer	0.						
2	R/W	0	When set to one this bit enables alternative de-turbo.							
1	R/W	0	This bit bypasses the TURBO pin and Reg. 1B bit 0. When set to one, along with							
			Register 20h bit 2 having been set to 1, system will be at normal mode.							
0	R/W	0	When set to c	one this bit enabl	les Stop Clock P	rotocol.				

Power Control Register 2 Register 24h

Bit	R/W	Default	Function
7-0	R/W	FF	Power control bit 8-15. External hardware latch is required to use these bits as
			power control bit for power devices.

Local Bus Registers (25h-26h)

Local Bus Control Register 25h

Bit	R/W	Default	Function
7	R/W	0	When set to one ADS# will be used instead of EADS# for DMA Memory Write.
			Both ADS# and EADS# active during memory write.
6-4	R	х	Reserved.

89

Local Bus Control Register 25h

Bit	R/W	Default	Function
3	R/W	0	This option is available only if bit 1 is set to one. When set to one, this bit enables checking LBA at T2. To block LBA at both T1 and T2, bit 1 and this bit must both
			be set to one.
2	R/W	0	When set to one, this bit enables checking LBA at T1.
1	R/W	0	When this bit is set to one LBA will be blocked if not detected before the end of second T2.
0	R/W	0	When set to one, this bit enables the internal latch of LBA signal.

Local Bus Control Register 26h

Bit	R/W	Default	Function							
7	R	0	Reserved. This	Reserved. This bit must be set to zero.						
6	R/W	0	When set to on	e KEN# is deass	erted during SM	IACT#.				
5	R/W	0	When set to on	e FLUSH# is ass	serted after leavi	ng SMM.				
4	R/W	Х	When set to on	e this bit tri-state	es BS16# during	Local Bus cycles.				
3	R/W	0	When set to or status of .	When set to one a warning tone from PMC will be generated irrespective of the status of .						
2	R/W	0		When set to one both keyboard reset and fast reset are blocked from SMI# active till 32 CPU clocks after SMIACT# is deasserted.						
1	R/W	0			-	w periodically in SMM. The low ,6 and 7 as listed below: ity Cycle				
			STPSEL1	STPSEL0	$\mathbf{EN} = 1$	$\mathbf{EN} = 0$				
			0	0	1/32	1/32				
			0	1	1/16	1/16				
			1	0	1/8	1/8				
			1	1	1/4	1/4				
			Period Time pe	er cycle 35.6 us	s 7.76 ms					
0	R	Х	Reserved.							

Power Control Registers (27h-29h)

Power Control Register 0 Register 27h

Bit	R/W	Default	Function
7-0	R	FF	Power control bit 7-0. External hardware latch is required to use these bits as
			power control for power devices.

Power Control Register 1 Register 28h

Bit	R/W	Default	Function
7	R/W	0	When set to one this bit enables ROM to include D8000-DFFFF.
6	R/W	0	When set to one this bit enables ROM to include D0000-D7FFF.
5	R/W	0	When set to one this bit enables ROM to include C8000-CFFFF.
4	R/W	0	When set to one this bit enables local video RAM to include B0000-BFFFF.
3	R/W	0	When set to one this bit enables local video RAM to include A0000-AFFFF.
2	R/W	0	When set to one one more wait state will be inserted before the start of AT Bus
			cycle.
1-0	R/W	0	When set to one AT Bus 16 (8) Bit Read cycle will be one wait state less after the
			Bus command. Default is 0. One more wait state is inserted after the Bus
			command to guarantee the data hold time to CPU in high speed operation.

Power Control Register 1 Register 29h

Bit	R/W	Default	Function
7	R	0	Reserved.
6	R/W	0	When set to one the CPU will run at turbo speed if SELSPEED (reg. 29, bit 5) is set to one. When set to zero the CPU will run at normal speed if SELSPEED is set to one. If SELSPEED is set to zero, this bit will not affect the CPU speed.
5	R/W	0	When set to one SOFTTURB (reg. 29, bit 6) will determine the CPU speed, irrespective of any hardware or software current setting.
4	R/W	0	When set to one any local bus memory cycle will trigger VRAM timers if EXTVRAM (reg. 5c, bit 7) is not set to one.
3	R	Х	Reserved.
2	R/W	0	When set to one TURBO becomes SUSPACK# (from CPU).
1	R	Х	Reserved.
0	R/W	0	When set to one Registers 54-5F and 76-7F can be accessed.

High Speed Throttle Register 2Ah

Bit	R/W	Default	Functi	on		
7	R/W	0	When	set to on	e the higl	h speed throttle mode will be enabled.
6-4	R/W	0	These	bits selec	t the hig	h speed throttle duty cycle
			Bit 6	Bit 5	Bit 4	Turbo: normal
			0	0	0	Disabled (Default)
			0	0	1	7:1
			0	1	0	6:2
			0	1	1	5:3
			1	0	0	4:4
			1	0	1	3:5
			1	1	0	2:6
			1	1	1	1:7
3	R	Х	Reserv	ed.		

High Speed Throttle Register 2Ah

Bit	R/W	Default	Functi	Function				
2	R/W	0	A low	A low to high transition of this bit will assert STPCLK# till INTR occurs.				
1-0	R/W	0	Select	Select the high speed throttle clock				
			Bit 1	Bit 1 Bit 0 Clock Selected				
			0	0	32ms (Default)			
			0	1	1/4 sec			
			1	0	2 sec			
			1	1	16 sec			

Low Speed Throttle Register 2Bh

Bit	R/W	Default	Functi	on			
7	R/W	0	When	When set to one the low speed throttle mode will be enabled.			
6-4	R/W	0	These	These bits select the low speed throttle duty cycle			
			Bit 6	Bit 5	Bit 4	Normal: STPCLK# keep asserted	
			0	0	0	Disabled (Default)	
			0	0	1	7:1	
			0	1	0	6:2	
			0	1	1	5:3	
			1	0	0	4:4	
			1	0	1	3:5	
			1	1	0	2:6	
			1	1	1	1:7	
3	R	Х	Reserv	ed.			
2	R	0	Reserv	ed. This	s bit must	be set to zero.	
1-0	R/W	0	These	bits selec	ct the low	y speed throttle clock.	
			Bit 1	Bit 0	Clock	selected	
			0	0	4ms		
			0	1	32ms		
			1	0	1/4 sec		
			1	1	2 sec		

Miscellaneous Register 2Ch

Bit	R/W	Default	Function
7	R	0	Reserved. Set to zero
6	R/W	0	When set to one, HOLD will be asserted when STPCLK# is asserted.
5	R/W	0	When set to one, FLUSH# will be asserted when CPURDY# is asserted if the CPU
			runs at normal speed.
4	R/W	0	When set to one, CLKSRC will be stopped in suspend mode.
3	R/W	0	When set to one, the pin leakage control function will be enabled in suspend mode.
2	R/W	0	When set to one, internal modules will have their clocks stopped to save power if
			the functions of the modules are not in use.
1	R/W	0	When set to one the AT bus module will be stopped if there is no AT bus cycle.
0	R	Х	Reserved.

Scratch Register Register 2Dh, 2Eh

2087 provides two scratch registers that allow system designer to save some flags in these registers instead of saving in RTC or system RAM.

Register 2Fh

Bit	R/W	Default	Function				
7	R/W	0	When set to one this bit selects new SMM base address mapping.				
			Segment 3000h map to segment B000h.				
			Segment 6000h map to segment A000h.				
			Segment C000h map to segment A000h.				
			Segment D000h map to segment B000h.				
			Segment F000h map to segment B000h.				
6	R/W	0	When set to one segment D0000h-DFFFFh becomes SMM space.				
5	R/W	0	When set to one segment C0000h-CFFFFh becomes SMM space.				
4	R/W	0	When set to one segment D8000h-DFFFFh becomes part of ROM BIOS.				
3-2	R	0	Reserved.				
1	R/W	0	When set to one D0000h-DFFFFh becomes Local RAM.				
0	R	0	When set to one C0000h-CFFFFh becomes Local RAM.				

Local Bus IDE Setup - Register 30h

Bit	R/W	Default	Func	tion			
7-4	R/W	0	These	e bits s	et the	comma	and width for local IDE read cycle
							Command width
			0	0	0	0	1
			0	0	0	1	2
			0	0	1	0	3
			0	0	1	1	4
			0	1	0	0	5
			0	1	0	1	6
			0	1	1	0	7
			0	1	1	1	8
			1	0	0	0	9
			1	0	0	1	10
			1	0	1	0	11
			1	0	1	1	12
			1	1	0	0	13
			1	1	0	1	14
			1	1	1	0	15
			1	1	1	1	16
3	R/W	0	When	n set to	one B	ALE i	s driven out during local bus IDE cycle.
2	R/W	0	When	n set to	one 3	82 bit 1	ocal IDE cycle is supported. When set to zero only 16 bit
			local	IDE cy	cle is	suppor	rted.
1	R/W	0	When	n set to	one I	DE dri	ve 1 access will be local bus cycle.
0	R/W	0	When	n set to	one I	DE dri	ve 0 access will be local bus cycle.

Local Bus IDE Setup - Register 31h

Bit	R/W	Default	Functi	Function						
7-4	R/W	1	These	bits set tl	ne recove	ery time t	for local IDE cycle. Default must be one.			
			Bit 7	Bit 6	Bit 5	Bit 4	Recovery time			
			0	0	0	0	1			
			0	0	0	1	2			
			0	0	1	0	3			
			0	0	1	1	4			
			0	1	0	0	5			
			0	1	0	1	6			
			0	1	1	0	7			
			0	1	1	1	8			
			1	0	0	0	9			
			1	0	0	1	10			
			1	0	1	0	11			
			1	0	1	1	12			
			1	1	0	0	13			
			1	1	0	1	14			
			1	1	1	0	15			
			1	1	1	1	16			
3-0	R/W	1	These				h for local IDE write cycles. Default must be one.			
			Bit 3	Bit 2	Bit 1	Bit 0	Command width			
			0	0	0	0	1			
			0	0	0	1	2			
			0	0	1	0	3			
			0	0	1	1	4			
			0	1	0	0	5			
			0	1	0	1	6			
			0	1	1	0	7			
			0	1	1	1	8			
			1	0	0	0	9			
			1	0	0	1	10			
			1	0	1	0	11			
			1	0	1	1	12			
			1	1	0	0	13			
			1	1	0	1	14			
			1	1	1	0	15			
			1	1	1	1	16			

Local IDE and HITM# Setup - Register 32h

D:4	D/W	Default	Emotion
Bit	R/W		Function
7-6	R/W	0	When set to one these bits selects HITM# sample time.
			Bits HITM# Sample Time
			7 6
			0 0 2 clocks
			0 1 4 clocks
			1 X 3 clocks
5	R	0	Reserved.
4	R	1	When this bit is set to zero Register 31h, bits 3-0 will set the command width for
			both Local Bus IDE read and write cycles. When this bit is set to one then Register
			30h, bits 7-4 controls local IDE read cycle width; and Register 31h, bits 3-0
			controls local IDE write cycle width.
3-2	R/W	0	When set to one these bits define the hold time for local IDE cycles.
			Bits Hold time (cycles)
			3 2
			0 0 0
			0 1 1
			1 0 2
			1 1 3
1-0	R/W	0	When set to one these bits define the setup time for local IDE cycles.
			Bits Setup time (cycles)
			1 0
			0 1 2
			1 0 3

Thermal Control - Register 33h

Bit	R/W	Default	Function				
7	R/W	0	When set to one this bit enables low satuate bit 3.				
6	R/W	0	When set to one this bit enables low satuate bit 2.				
5	R/W	0	When set to one this bit enables low satuate bit 1.				
4	R/W	0	When set to one this bit enables low satuate bit 0.				
3-2	R	0	Reserved.				
1	R/W	0	When set to one this bit enables two segment counting.				
0	R/W	0	When set to one this bit enables temperature control.				

Thermal Control - Register 34h

Bit	R/W	Default	Function						
7	R/W	0	When set to one this bit enables low limit bit 3.						
6	R/W	0	When set to one this bit enables low limit bit 2.						
5	R/W	0	When set to one this bit enables low limit bit 1.						
4	R/W	0	When set to one this bit enables low limit bit 0.						
3	R/W	0	When set to one this bit enables high limit bit 3.						
2	R/W	0	When set to one this bit enables high limit bit 2.						
1	R/W	0	When set to one this bit enables high limit bit 1.						
0	R/W	0	When set to one this bit enables high limit bit 0.						

Thermal Control - Register 35h

Bit	R/W	Default	Function						
7	R	0	When set to one this bit enables temperature emulation counter bit 17.						
6	R	0	When set to one this bit enables temperature emulation counter bit 16.						
5	R	0	When set to one this bit enables temperature emulation counter bit 15.						
4	R	0	When set to one this bit enables temperature emulation counter bit 14.						
3	R	0	When set to one this bit enables temperature emulation counter bit 13.						
2	R	0	When set to one this bit enables temperature emulation counter bit 12.						
1	R	0	When set to one this bit enables temperature emulation counter bit 11.						
0	R	0	When set to one this bit enables temperature emulation counter bit 10.						

Thermal Control - Register 36h

Bit	R/W	Default	Function							
7	R	0	When set to one this bit enables temperature emulation counter bit 9.							
6	R	0	When set to one this bit enables temperature emulation counter bit 8.							
5	R	0	When set to one this bit enables temperature emulation counter bit 7.							
4	R	0	When set to one this bit enables temperature emulation counter bit 6.							
3	R	0	When set to one this bit enables temperature emulation counter bit 5.							
2	R	0	When set to one this bit enables temperature emulation counter bit 4.							
1	R	0	When set to one this bit enables temperature emulation counter bit 3.							
0	R	0	When set to one this bit enables temperature emulation counter bit 2.							

DRAM and Cache Setup - Register 37h

Bit	R/W	Default	Function					
7-4	R	0	Reserved.					
3	R	0	Reserved. This bit must be set to zero.					
2	R	0	When set to zero DRAM burst write is enabled.					
1	R	0	When set to zero cache burst write is enabled.					
0	R	0	When set to one along with Reg. 37 bit 1 set to one, cache burst write x-2-2-2 cycles is enabled.					

Note: The cache burst write is only supported with write back implementation.

Doze Mode Count Register 54h

Bit	R/W	Default	Functi	Function					
7-6	R/W	0	These I	bits set tl	he time p	eriod that the CPU will be returned to turbo speed after any			
			interru	pt ackno	wledge c	ycle.			
			Bit 7	Bit 6	Time p	period			
			0	0	1 ms (c	1 ms (default)			
			0	1	4 ms	4 ms			
			1	0	16 ms	16 ms			
			1	1	64 ms				
5-3	R/W	0				at period for system event doze timer.			
			Bit 5	Bit 4	Bit 3	Timeout			
			0	0	0	Disable (default)			
			0	0	1	1/32 sec			
			0	1	0	1/16 sec			
			0	1	1	1/8 sec			
			1	0	0	1/4 sec			
			1	0	1	1/2 sec			
			1	1	0	1 sec			
			1	1	1	2 sec			
2-0	R/W	0				at period for VRAM doze timer			
			Bit 2	Bit 1	Bit 0	Timeout			
			0	0	0	Disable (default)			
			0	0	1	1 ms			
			0	1	0	2 ms			
			0	1	1	4 ms			
			1	0	0	8 ms			
			1	0	1	16 ms			
			1	1	0	32 ms			
			1	1	1	64 ms			

HDD and GCS Count Register 55h

Bit	R/W	Default	Functi	Function						
7-4	R/W	0	These	bits set tl	he timeou	ıt period	for GCS local standby idle timer			
			Bit 7	Bit 6	Bit 5	Bit 4	Timeout			
			0	0	0	0	Disable (default)			
			0	0	0	1	1 min			
			0	0	1	0	2 min			
			0	0	1	1	3 min			
			0	1	0	0	4 min			
			0	1	0	1	5 min			
			0	1	1	0	6 min			
			0	1	1	1	7 min			
			1	0	0	0	8 min			
			1	0	0	1	9 min			
			1	0	1	0	10 min			
			1	0	1	1	11 min			
			1	1	0	0	12 min			
			1	1	0	1	13 min			
			1	1	1	0	14 min			
			1	1	1	1	15 min			
3-0	R/W	0					for HDD local standby idle timer			
			Bit 3	Bit 2	Bit 1	Bit 0	Timeout			
			0	0	0	0	Disable (default)			
			0	0	0	1	1 min			
			0	0	1	0	2 min			
			0	0	1	1	3 min			
			0	1	0	0	4 min			
			0	1	0	1	5 min			
			0	1	1	0	6 min			
			0	1	1	1	7 min			
			1	0	0	0	8 min			
			1	0	0	1	9 min			
			1	0	1	0	10 min			
			1	0	1	1	11 min			
			1	1	0	0	12 min			
			1	1	0	1	13 min			
			1	1	1	0	14 min			
			1	1	1	1	15 min			

LCD Count Register 56h

Bit	R/W	Default	Functi	Function							
7-4	R/W	0	These	bits set tl	ne timeou	ut period	for VRAM idle timer				
			Bit 7	Bit 6	Bit 5	Bit 4	Timeout				
			0	0	0	0	Disable (default)				
			0	0	0	1	1/8 sec				
			0	0	1	0	2/8 sec				
			0	0	1	1	3/8 sec				
			0	1	0	0	1/2 sec				
			0	1	0	1	5/8 sec				
			0	1	1	0	3/4 sec				
			0	1	1	1	7/8 sec				
			1	0	0	0	1 sec				
			1	0	0	1	8 sec				
			1	0	1	0	16 sec				
			1	0	1	1	24 sec				
			1	1	0	0	32 sec				
			1	1	0	1	40 sec				
			1	1	1	0	48 sec				
			1	1	1	1	56 sec				
3-0	R/W	0	These	bits set tl	ne timeou		for keyboard idle timer				
			Bit 3	Bit 2	Bit 1	Bit 0	Timeout				
			0	0	0	0	Disable (default)				
			0	0	0	1	1 min				
			0	0	1	0	2 min				
			0	0	1	1	3 min				
			0	1	0	0	4 min				
			0	1	0	1	5 min				
			0	1	1	0	6 min				
			0	1	1	1	7 min				
			1	0	0	0	8 min				
			1	0	0	1	9 min				
			1	0	1	0	10 min				
			1	0	1	1	11 min				
			1	1	0	0	12 min				
			1	1	0	1	13 min				
			1	1	1	0	14 min				
			1	1	1	1	15 min				

Global Standby and Auto Suspend Register 57h

Bit	R/W	Default	Functi	on			
7-4	R/W	0	These	oits set th	ne timeou	ut period	for auto suspend idle timer
			Bit 7	Bit 6	Bit 5	Bit 4	Timeout
			0	0	0	0	Disable (default)
			0	0	0	1	1 min
			0	0	1	0	2 min
			0	0	1	1	3 min
			0	1	0	0	4 min
			0	1	0	1	5 min
			0	1	1	0	6 min
			0	1	1	1	7 min
			1	0	0	0	8 min
			1	0	0	1	9 min
			1	0	1	0	10 min
			1	0	1	1	11 min
			1	1	0	0	12 min
			1	1	0	1	13 min
			1	1	1	0	14 min
			1	1	1	1	15 min
3-0	R/W	0	These				for global standby idle timer
			Bit 3	Bit 2	Bit 1	Bit 0	Timeout
			0	0	0	0	Disable (default)
			0	0	0	1	1 min
			0	0	1	0	2 min
			0	0	1	1	3 min
			0	1	0	0	4 min
			0	1	0	1	5 min
			0	1	1	0	6 min
			0	1	1	1	7 min
			1	0	0	0	8 min
			1	0	0	1	9 min
			1	0	1	0	10 min
			1	0	1	1	11 min
			1	1	0	0	12 min
			1	1	0	1	13 min
			1	1	1	0	14 min
			1	1	1	1	15 min

S/R Button and Battery Low Count Register 58h

Bit	R/W	Default	Functi	ion			
7-4	R/W	0	These	bits set tl	he timeou	ut period	for battery low suspend warning timer
			Bit 7	Bit 6	Bit 5	Bit 4	Timeout
			0	0	0	0	Disable (default)
			0	0	0	1	30 ms
			0	0	1	0	60 ms
			0	0	1	1	90 ms
			0	1	0	0	120 ms
			0	1	0	1	150 ms
			0	1	1	0	180 ms
			0	1	1	1	210 ms
			1	0	0	0	240 ms
			1	0	0	1	290 ms
			1	0	1	0	300 ms
			1	0	1	1	330 ms
			1	1	0	0	360 ms
			1	1	0	1	380 ms
			1	1	1	0	420 ms
			1	1	1	1	450 ms
3-0	R/W	0	These				for S/R button suspend warning timer
			Bit 3	Bit 2	Bit 1	Bit 0	Timeout
			0	0	0	0	Disable (default)
			0	0	0	1	30 ms
			0	0	1	0	60 ms
			0	0	1	1	90 ms
			0	1	0	0	120 ms
			0	1	0	1	150 ms
			0	1	1	0	180 ms
			0	1	1	1	210 ms
			1	0	0	0	240 ms
			1	0	0	1	290 ms
			1	0	1	0	300 ms
			1	0	1	1	330 ms
			1	1	0	0	360 ms
			1	1	0	1	380 ms
			1	1	1	0	420 ms
			1	1	1	1	450 ms

Global Control 0 Register 59h

Bit	R/W	Default	Function				
7	R/W	0	When set to one the AC power SMI is enabled.				
6	R/W	0	When set to one the software SMI is enabled.				
5	R/W	0	When set to one the external SMI source 1 is enabled.				
4	R/W	0	When set to one the external SMI source 0 is enabled.				
3	R/W	0	When set to one the suspend mode is enabled. Default is 0.				
2	R/W	0	When set to one the global standby mode is enabled.				
1	R/W	0	When set to one the doze mode is enabled.				
0	R/W	0	When set to one the local standby mode is enabled.				

Global Control 1 Register 5Ah

Bit	R/W	Default	Function			
7	R/W	0	When set to one the SMI# will be deasserted.			
6	R/W	0	When set to one trigger signals of local standby and global standby idle timers will be disabled.			
5	R/W	0	When set to one a battery low status will generate a warning tone.			
4	R/W	0	When set to one the CPU clock will be returned to turbo speed for a period of time after any interrupt acknowledge cycle.			
3	R/W	0	When set to one the SMI# will be asserted if ENSFT (reg. 59, bit 6) is set.			
2	R/W	0	When set to one SUSPEND# will be asserted when IN5VSP (reg. 5D, bit 6) is set.			
1	R	0	Reserved.			
0	R/W	0	When set to one the CPU clock will be stopped at 0 HZ when IN5VSP (reg. 5D, bit 6) is set.			

HDD and GCS Local Standby Control Register 5Bh

Bit	R/W	Default	Function			
7	R/W	0	When set to one IRQ8 will not trigger doze mode VRAM timer.			
6	R/W	0	When set to one IRQ0 (timer ticker) will not trigger doze mode VRAM timer.			
5	R/W	0	When set to one doze mode system event timer will always be timed out, irrespective of the programmed count.			
4	R/W	0	When set to one doze mode VRAM timer will always be timed out, irrespective of the programmed count.			
3	R/W	0	When set to one any GCS access will generate an SMI.			
2	R/W	0	When set to one any HDD access will generate an SMI.			
1	R/W	0	When set to one GCS local standby is enabled.			
0	R/W	0	When set to one HDD local standby is enabled.			

2087

Bit	R/W	Default	Function			
7	R	0	Reserved.			
6	R/W	0	When set to one the VRAM idle timer will always be timed out in LCD local			
			standby mode, regardless of the programmed count.			
5	R/W	0	When set to one IRQ12 is selected as a trigger source of the LCD Keyboard idle			
			timer.			
4	R/W	0	When set to one IRQ4 is selected as a trigger source of the LCD Keyboard idle			
			timer.			
3	R/W	0	When set to one IRQ3 is selected as a trigger source of the LCD Keyboard idle			
			timer.			
2	R/W	0	When set to one IRQ1 is selected as a trigger source of the LCD Keyboard idle			
			timer.			
1	R/W	0	When set to one any selected IRQ trigger source of the LCD Keyboard idle timer			
			will generate an SMI.			
0	R/W	0	When set to one LCD local standby is enabled.			

LCD Local Standby Control Register 5Ch

Global Standby and Suspend Control Register 5Dh

Bit	R/W	Default	Function
7	R/W	0	When set to one SUSPEND# will be asserted.
6	R/W	0	Whenever there is a low to high transition: PMC will take over DRAM refresh, all unused internal clocks will be stopped, leakage control function will be activated, and SUSPEND# will be asserted if <i>ENSPOUT</i> (<i>reg. 5A, bit 2</i>) is set.
5	R	0	Reserved.
4	R/W	0	When set to one the battery low suspend mode will be enabled.
3	R/W	0	When set to one the suspend/resume button will be enabled.
2	R/W	0	When set to one auto suspend mode will be enabled.
1	R/W	0	When set to one the VRAM idle timer will always be timed out in global standby mode, regardless of the programmed count.
0	R/W	0	When set to one any break event will generate an SMI, and the auto suspend timer will be triggered if bit 2 is set.

GCS Low Byte Address Register 5Eh

Bit	R/W	Default	Function
7	R/W	0	SA7.
6	R/W	0	SA6.
5	R/W	0	SA5.
4	R/W	0	SA4.
3	R/W	0	SA3.
2	R/W	0	SA2.
1	R/W	0	SA1.
0	R/W	0	SA0.

GCS High Byte Address Register 5Fh

Bit	R/W	Default	Function
7	R/W	0	When set to one any IO read within the programmed GCS address range will
			trigger GCS local standby timer.
6	R/W	0	When set to one any IO write within the programmed GCS address range will
			trigger GCS local standby timer.
5-2	R/W	0	This field allows the masking of SA3-0 of the I/O address for device 0. Setting a
			bit in this field masks the corresponding signal from the I/O address comparison
1	R/W	0	SA9
0	R/W	0	SA8

Battery Timer Register 75h

Bit	R/W	Default	Function						
7-5	R	0	Reserved.						
4	R/W	0	When set to one system event will clear battery low timer.						
3-0	R/W	0	Bit 3	Bit 2	Bit 1	Bit 0	Timeout		
			0	0	0	0	Disable (default)		
			0	0	0	1	30 sec		
			0	0	1	0	60 sec		
			0	0	1	1	90 sec		
			0	1	0	0	120 sec		
			0	1	0	1	150 sec		
			0	1	1	0	180 sec		
			0	1	1	1	210 sec		
			1	0	0	0	240 sec		
			1	0	0	1	290 sec		
			1	0	1	0	300 sec		
			1	0	1	1	330 sec		
			1	1	0	0	360 sec		
			1	1	0	1	380 sec		
			1	1	1	0	420 sec		
			1	1	1	1	450 sec		

System Event (Registers 76h-78h) System Event 0 Register 76h

Bit	R/W	Default	Function			
7	R/W	0	When set to one IRQ10 is selected as a system event.			
6	R/W	0	When set to one IRQ9 is selected as a system event.			
5	R/W	0	When set to one IRQ7 is selected as a system event.			
4	R/W	0	When set to one IRQ6 is selected as a system event.			
3	R/W	0	When set to one IRQ5 is selected as a system event.			
2	R/W	0	When set to one IRQ4 is selected as a system event.			
1	R/W	0	When set to one IRQ3 is selected as a system event.			
0	R/W	0	When set to one IRQ1 is selected as a system event.			

ACC Micro[™]____

2087

System Event 1 Register 77h

Bit	R/W	Default	Function			
7	R/W	0	When set to one DRQ is selected as a system event.			
6	R/W	0	hen set to one ALARM is selected as a system event.			
5	R/W	0	When set to one RING# is selected as a system event.			
4	R/W	0	When set to one IRQ15 is selected as a system event.			
3	R/W	0	When set to one IRQ14 is selected as a system event.			
2	R/W	0	When set to one IRQ13 is selected as a system event.			
1	R/W	0	When set to one IRQ12 is selected as a system event.			
0	R/W	0	When set to one IRQ11 is selected as a system event.			

System Event 2 Register 78h

Bit	R/W	Default	Function			
7	R/W	0	When set to one EXTSYS# is selected as a system event.			
6	R/W	0	hen set to one any IO access to GCS address range is selected as a system event.			
5	R/W	0	Then set to one any access to HDD is selected as a system event.			
4	R/W	0	When set to one any access to IO address 3BC is selected as a system event.			
3	R/W	0	When set to one any access to IO address 278 is selected as a system event.			
2	R/W	0	When set to one any access to IO address 378 is selected as a system event.			
1	R/W	0	When set to one any access to IO address 2F8 is selected as a system event.			
0	R/W	0	When set to one any access to IO address 3F8 is selected as a system event.			

Break Event (Registers 79h-7Bh) Break Event 0 Register 79h

Bit	R/W	Default	Function			
7	R/W	0	When set to one IRQ10 is selected as a break event.			
6	R/W	0	Then set to one IRQ9 is selected as a break event.			
5	R/W	0	Then set to one IRQ7 is selected as a break event.			
4	R/W	0	When set to one IRQ6 is selected as a break event.			
3	R/W	0	When set to one IRQ5 is selected as a break event.			
2	R/W	0	When set to one IRQ4 is selected as a break event.			
1	R/W	0	When set to one IRQ3 is selected as a break event.			
0	R/W	0	When set to one IRQ1 is selected as a break event.			

Break Event 1 Register 7Ah

Bit	R/W	Default	Function			
7	R/W	0	Then set to one DRQ is selected as a break event.			
6	R/W	0	When set to one ALARM is selected as a break event.			
5	R/W	0	When set to one RING# is selected as a break event.			
4	R/W	0	When set to one IRQ15 is selected as a break event.			
3	R/W	0	When set to one IRQ14 is selected as a break event.			

ACC Micro[™]____

Break Event 1 Register 7Ah

Bit	R/W	Default	Function			
2	R/W	0	When set to one IRQ13 is selected as a break event.			
1	R/W	0	When set to one IRQ12 is selected as a break event.			
0	R/W	0	When set to one IRQ11 is selected as a break event.			

Break Event 2 Register 7Bh

Bit	R/W	Default	Function			
7	R/W	0	When set to one EXTSYS# is selected as a break event.			
6	R/W	0	hen set to one any IO access to GCS address range is selected as a break event.			
5	R/W	0	When set to one any access to HDD is selected as a break event.			
4	R/W	0	When set to one any access to IO address 3BC is selected as a break event.			
3	R/W	0	When set to one any access to IO address 278 is selected as a break event.			
2	R/W	0	When set to one any access to IO address 378 is selected as a break event.			
1	R/W	0	When set to one any access to IO address 2F8 is selected as a break event.			
0	R/W	0	When set to one any access to IO address 3F8 is selected as a break event.			

SMI Source Registers (7Ch-7Dh) SMI Source 0 Register 7Ch

Bit	R/W	Default	Function	
7	R/W	0	When set to one it indicates there is an SMI request to exit from the GSM.	
6	R/W	0	Then set to one it indicates there is an SMI request to enter the GSM.	
5	R/W	0	When set to one it indicates there is an SMI request to exit from the LCD LSM.	
4	R/W	0	When set to one it indicates there is an SMI request to enter the LCD LSM.	
3	R/W	0	When set to one it indicates there is an SMI request to exit from the GCS LSM.	
2	R/W	0	When set to one it indicates there is an SMI request to enter the GCS LSM.	
1	R/W	0	When set to one it indicates there is an SMI request to exit from the HDD LSM.	
0	R/W	0	When set to one it indicates there is an SMI request to enter the HDD LSM.	

SMI Source 1 Register 7Dh

Bit	R/W	Default	Function	
7	R/W	0	When set to one it indicates SMI request from the high to low transition of AC	
			power.	
6	R/W	0	When set to one it indicates SMI request from the low to high transition of AC	
			power.	
5	R/W	0	When set to one it indicates there is an SMI request from external source 1.	
4	R/W	0	When set to one it indicates there is an SMI request from external source 0.	
3	R/W	0	When set to one it indicates there is an software SMI request.	
2	R/W	0	When set to one it indicates there is a battery low SMI request.	
1	R/W	0	When set to one it indicates there is an SMI request from suspend button.	
0	R/W	0	When set to one it indicates there is an auto suspend SMI request.	

ACC Micro[™]___

External SMI Timer Register 7Eh

Bit	R/W	Default	Functi	on			
7-4	R/W	0			riod for e	xternal S	SMI warning timer 1.
			Bit 7	Bit 6	Bit 5	Bit 4	Time-out
			0	0	0	0	Disable (default)
			0	0	0	1	30 ms
			0	0	1	0	60 ms
			0	0	1	1	90 ms
			0	1	0	0	120 ms
			0	1	0	1	150 ms
			0	1	1	0	180 ms
			0	1	1	1	210 ms
			1	0	0	0	240 ms
			1	0	0	1	290 ms
			1	0	1	0	300 ms
			1	0	1	1	330 ms
			1	1	0	0	360 ms
			1	1	0	1	380 ms
			1	1	1	0	420 ms
			1	1	1	1	450 ms
3-0	R/W	0					SMI warning timer 0.
			Bit 3	Bit 2	Bit 1	Bit 0	Time-out
			0	0	0	0	Disable (default)
			0	0	0	1	30 ms
			0	0	1	0	60 ms
			0	0	1	1	90 ms
			0	1	0	0	120 ms
			0	1	0	1	150 ms
			0	1	1	0	180 ms
			0	1	1	1	210 ms
			1	0	0	0	240 ms
			1	0	0	1	290 ms
			1	0	1	0	300 ms
			1	0	1	1	330 ms
			1	1	0	0	360 ms
			1	1	0	1	380 ms
			1	1	1	0	420 ms
			1	1	1	1	450 ms

External SMI Control Register 7Fh

Bit	R/W	Default	Function			
7-2	R	0	Reserved.			
1	R/W	0	When set to one a low to high transition of EXTSMI1# will generate an SMI immediately, regardless of the programmed count of the external SMI warning timer.			
0	R/W	0	When set to one a low to high transition of EXTSMI0# will generate an SMI immediately, regardless of the programmed count of the external SMI warning timer.			

ACC Micro[™]____

Register Index, BEh

Bit	R/W	Default	Function				
7	R/W	1	PIRQ 5 polarity.				
			1 = active high; default				
			0 = active low				
6	R/W	1	When set to zero this bit enables ECP. When set to one this bit disables ECP.				
5	R	0	Reserved				
4	R/W	0	Primary Parallel Port Disable				
			1 = Disabled, 0 = Enabled				
			Power-up default is set by pin 96				
3	R/W	0	Primary Parallel Port Power Down				
			1 = Power Down. Default = 0.				
2	R/W	0	FDC redirect to Parallel Port				
			1 = Enable. 0 = Disable.				
1	R	0	Enable 2nd FDD connect to printer port				
			$1 = \text{Enable}. \ 0 = \text{Disable}$				
0	R	0	Reserved				

Register Index, BFh

Bit	R/W	Default	Function
7-0	R/W	9E	The 8 most significant address bits of the primary parallel port (A9-2). Default 9E
			(LPT2, at 278-27B)

Register Index, DBh

Bit	R/W	Default	Function
7	R/W	1	SIRQ4 polarity.
			1 = active high; default
			0 = active low
6	R/W	1	SIRQ3 polarity.
			1 = active high; default
			0 = active low
5	R/W	0	Clock input to serial port for baud rate generator.
			1 = disable
			0 = enable
4	R/W	0	Primary serial port disable
			1 = Disabled, $0 = $ Enabled
			Power-up default is set by pin 93
3	R/W	0	Primary serial port power down
			1 = Power down, $0 = $ Enabled
			Power-up default is set by pin 93

2087

ACC Micro[™]_____

Register Index, DBh

Bit	R/W	Default	Function
2	R	0	Reserved.
1	R/W	0	Secondary serial port disable
			1 = Disabled
			0 = Enabled, Default
0	R/W	0	Secondary serial port power down
			1 = Power down, $0 = $ Enabled
			Power-up default is set by pin 97

Register Index, DCh

Bit	R/W	Default	Function
7-1	R/W	0	The MSB of the Primary Serial Port Address (bits A9-3). Default = FE (COM1, at
			3F8-3FF).
0	R/W	0	When this bit is set to 1, A2 of primary parallel port is decoded.

Register Index, DDh

Bit	R/W	Default	Function
7-1	R/W	0	The MSB of the Secondary Serial Port Address (bits A9-3). Default = BE (COM2,
			at 2F8-2FF).
0	R	0	Reserved.

Interrupt Request Source Register Index, DEh

Bit	R/W	Default	Functi	ion	
7-6	R/W	11	IRQ3	source	
			Bit 7	Bit 6	
			0	0	Disable
			0	1	Parallel port
			1	0	UART1
			1	1	UART2
5-4	R/W	10	IRQ4 s	source	
			Bit 5	Bit 4	
			0	0	Disable
			0	1	Parallel port
			1	0	UART1
			1	1	UART2

Bit	R/W	Default	Funct	ion	
3-2	R/W	00	IRQ7	source	
			Bit 3	Bit 2	
			0	0	Disable
			0	1	UART2
			1	0	Parallel port
			1	1	UART1
1-0	R/W	10	IRQ5	source	
			Bit 1	Bit 0	
			0	0	Disable
			0	1	UART2
			1	0	Parallel port
			1	1	UART1

Interrupt Request Source Register Index, DEh

FIFO threshold for ECP (Bit 3-0) Register Index, DFh

Bit	R/W	Default	Funct	tion					
7-6	R	0	Reser						
5-4	R/W	0	ECP I	DRQ se	election				
			Bit 5	Bit 4					
			0	0	Ι	DRQ0			
			0	1		DRQ1			
			1	0		Disable			
			1	1	Ι	DRQ3			
3-0	R/W	0	ECP I	FIFO th		1 setting			
						Bit 0	Read Threshold	Write Threshold	
			0	0	0	0	15	1	
			0	0	0	1	14	2	
			0	0	1	0	13	3	
			0	0	1	1	12	4	
			0	1	0	0	11	5	
			0	1	0	1	10	6	
			0	1	1	0	9	7	
			0	1	1	1	8	8	
			1	0	0	0	7	9	
			1	0	0	1	6	10	
			1	0	1	0	5	11	
			1	0	1	1	4	12	
			1	1	0	0	3	13	
			1	1	0	1	2	14	
			1	1	1	1	1	15	

ACC Micro[™]_____

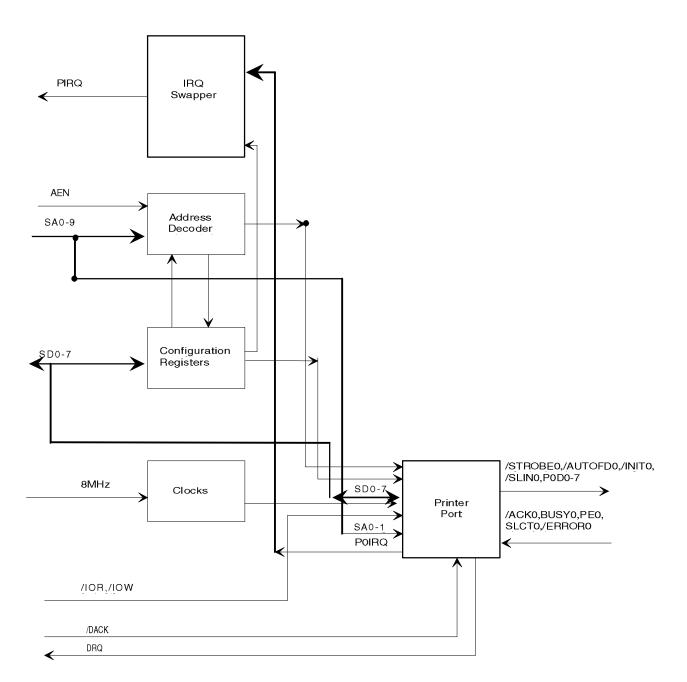
Register Index, FBh

Bit	R/W	Default	Function
7	R	0	Reserved.
6	R/W	0	0 = no swap (default); $1 = FDC$ drive 0 and 1 swap
5-4	R	0	Reserved.
3	R/W	0	FDC Clock disable; 0 = enable (default); 1 = disable
2	R	0	Reserved.
1	R/W	0	FDC disable. $0 = enable; 1 = disable.$ Power-up default is set by pin 94.
0	R/W	0	FDC address. 0 = Primary (default); 1 = Secondary.

Register Index, FEh

Bit	R/W	Default	Function
7-4	R	0	Reserved.
3	R/W	0	1 = Primary and Secondary IDE support (both 1F0 and will generate chip select to IDE). 0 = Only 1 port is decoded
2	R/W	0	IDE XT selected. $0 = IDE AT$ interface (default); $1 = IDE XT$ interface.
1	R/W	0	IDE disable, $1 = IDE$ disabled; $0 = IDE$ enabled. Power up default is set by pin 10.
0	R/W	0	Secondary IDE. $1 =$ secondary; $0 =$ primary.

Section 5 2087 Upgrade Advanced Parallel Port


Section 5.1 Description

ACC Micro's 2087 Upgrade is the enhanced Parallel Port Data Processor. It provides a parallel port solution for the PC/XT and PC/AT systems. The 2087 Upgrade supports one bi-directional parallel port with Enhanced Parallel Port (EPP) / Extended Capability Port (ECP) modes. The 2087 Upgrade does not need any extra TTL for board level application, it will reduce system application cost and design cycle.

Section 5.2 Features

- Supports one Enhanced Parallel Port (EPP) / Extended Capability Port (ECP) modes.
- Programmable configuration register to eliminate hardware jumpers.
- ECP/EPP/BPP/SPP mode selectable.
- Hardware or software configuration of ports.
- Zero TTL for board level application.
- Low power consuming CMOS design.

Section 5.3 Block Diagram

Section 5.4 Programmable Configuration Registers

Configuration registers in the 2087 are programmed with an indirect addressing scheme using I/O addresses F2 and F3. I/O address F2 contains the write-only configuration index register. F2 selects the corresponding configuration register accessed at I/O address F3.

Bit	Func	ction	l			
7-4	<u>b7</u>	b6	b5 b4	Read Threshold	Write Threshold	
	0	0	0 0	15	1	
	0	0	0 1	14	2	
	0	0	1 0	13	3	
	0	0	1 1	12	4	
	0	1	0 0	11	5	
	0	1	0 1	10	6	
	0	1	1 0	9	7	
	0	1	1 1	8	8	
	1	0	0 0	7	9	
	1	0	0 1	6	10	
	1	0	1 0	5	11	
	1	0	1 1	4	12	
	1	1	0 0	3	13	
	1	1	0 1	2	14	
	1	1	1 0	1	15	
3-2	Rese	rved				
1-0	Paral	lel p	ort mode	selection		
	<u>b1</u>	b0				
	0	0	ECP/EF	PP		
	0	1	ECP			
	1	0	EPP			
	1	1	BPP/SP	Р		

Configuration Register Index, BE (R/W)

Configuration Register Index, BF (R/W)

Bit	Function
7-0	The 8 most significant address bits of the primary parallel port (A9-2).

Section 5.5 Parallel Port Interface

The parallel port interface in the 2087 provides compatibility for a Centronics type printer. Its configuration register allows the parallel port to be configured in PS/2 type bi-directional parallel port, Enhanced Parallel Port (EPP) and Extended Capabilities Port (ECP) modes. Table 1 lists the registers associated with the parallel port interface. The address map of the parallel port is shown below:

Data Port	=	Base Address + 00H
Status Port	=	Base Address + 01H
Control Port	=	Base Address + 02H

The microprocessor reads information on the parallel bus through Read Data register. The read and write functions of a register are controlled by the state of the read pin (/IOR) and write pin (/IOW).

The microprocessor reads the status of the printer in the five most significant bits of the Read Status register. Table 2 contains the bit definitions for this register.

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Read	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Data								
Read	/BUSY	/ACK	PE	SLCT	/ERROR	0	0	TMOUT
Status								
Read	0	0	PCD	IRQENB	SLIN	/INIT	AUTOF	STROBE
Control			= 1 Read				D	
			= 0 Write					
Write	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Data								
Write	0	0	0	IRQENB	SLIN	/INIT	AUTOF	STROBE
Control							D	

Table 1 Parallel Port Interface Register Summary

Table 2Read Status Register

Bit	Function
0	1
1	1
2	1
3	Error
4	Printer select
5	Paper Empty
6	Acknowledge
7	Printer busy

The Read Control Register is for reading the state of the control lines. The Write Control Register sets the state of the control lines. Table 3 contains the bit definitions for the Write Control Register.

Table 3Write Control Register

Bit	Function
0	Strobe to inform the printer of the presence of a valid byte on the parallel port
1	Autofeed the paper
2	Initialize the printer
3	Select IN
4	Interrupt enable
5	Direction
6	Must be set to 1
7	Must be set to 1

The Microprocessor can write a byte to the parallel bus through the Write Data Register. When parallel ports are set into extended mode (Bit 5, 2 of Register BE = 1), Control Bit 5 will control the direction of the parallel ports.

When set to 1, the parallel ports can receive data from external devices. When set to 0, the parallel ports are configured as the standard Centronics compatible parallel ports. Default is zero.

Decoder

The parallel port address decoder selects registers according to the states of the signals listed in Table 4. **Table 4** Address Decoder Register Selection

Control	Control Signals					
/IOR	/IOW	/CSPA	*A1	A0	Register Selected	
0	1	0	0	0	Read Data register	
0	1	0	0	1	Read Status register	
0	1	0	1	0	Read Control register	
0	1	0	1	1	Invalid	
1	0	0	0	0	Write Data register	
1	0	0	0	1	Invalid	
1	0	0	1	0	Write Control register	
1	0	0	1	1	Invalid	

* /CSPA is an internal signal to parallel port logic.

Enhanced Parallel Port (EPP)

Beside the extended parallel port mode, the 2087 also supports the enhanced parallel port mode for greater throughput. The address and data strobes can generate automatically to improve the transfer rate. The Status Register and Control Register are available in Standard and Enhanced Parallel Port mode. In addition to this, the address map for the EPP mode includes one address port and four data ports.

ACC Micro[™]

EPP Register Configuration:

Register	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
EPP Address Port	AD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 0	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 1	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 2	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
EPP Data Port 3	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0

The address map of the EPP is shown below: (Base Address = HEX 278 or 378)

EPP Address Port		= Base Address + 03H
EPP Data Port 0	=	Base Address + 04H
EPP Data Port 1	=	Base Address + 05H
EPP Data Port 2	=	Base Address + 06H
EPP Data Port 3	=	Base Address + 07H

To access the EPP register, set the Write Control Register bit 3, 1,0 to zero. Multiple EPP access cycles can be generated by software. When the parallel port is set to the compatible mode (Register BEh, bit 5 = 0), EPP cycle can be generated to the external device by issuing the read and write cycle to the EPP register. When it is set to the extended mode (Register BEh, bit 5 = 1), the EPP register returns the latch value for the read cycle in the forward direction which set by the Write Control Register (bit 5 = 1). There will be no EPP read cycle in this case. In the backward direction (Write Control Register bit 5 = 0), EPP write cycle is not available. Only the EPP register data will be updated.

Procedure to Select Peripheral Device or Registers for EPP Specification 1.9 (Read Cycle):

- 1) The host write a byte to the EPP address register. When /IOR goes low, EPP also pulls IOCHRDY low and wait for /WAIT to go low.
- 2) Once /WAIT goes low, EPP pulls /ADDRSTRB or /DATASTRB low to indicate PD0-PD7 is tristated.
- 3) The peripheral drives PD0-PD7 valid.
- 4) Peripheral pulls /WAIT low, indicating PD0-PD7 is valid. The phase of the cycle can be terminated.
- 5) The chip latches the data from the PData bus for SData bus then deasserts /ADDRSTRB or /DATASTRB to begin teminate the cycle. The chip then drives valid data onto the SData bus and pulls IOCHRDY high allowing the host to complete the read cycle.
- 6) PD0-PD7 tri-states by the peripheral and the chip may modify /WRITE and ready for next cycle.

Procedure to Select Peripheral Device or Registers for EPP Specification 1.9 (Write Cycle):

- 1) The host write a byte to the EPP address register. When /IOW goes low, EPP also pulls IOCHRDY low and wait for /WAIT to go low. EPP also places data on the SData bus.
- 2) Once /WAIT goes low, EPP pulls /ADDRSTRB or /DATASTRB low to indicate PData bus contains valid data.
- 3) Peripheral pulls /WAIT low, indicating PD0-PD7 is valid. The phase of the cycle can be terminated.
- 4) The chip latches the data from the PData bus for SData bus then deasserts /ADDRSTRB or /DATASTRB to begin teminate the cycle. The chip then drives valid data onto the SData bus and pulls IOCHRDY high allowing the host to complete the write cycle.
- 5) /WAIT asserts by the peripheral to acknowledge the termination of the cycle and the chip may modify /WRITE and ready for next cycle.

When the EPP mode is selected, the standard mode and extended modes are also available.

Extended Capability Port (ECP)

The ECP mode is also supported by the ACC 2087 with a 16bytes FIFO. The address map and ECP register configuration of the ECP are shown below:

Address Map: (Base Address = 278h or 378h)

Data Port	:	Base Address + 000h
ECPAFIFO	:	Base Address + 000h
DSR	:	Base Address + 001h
DCR	:	Base Address + 002h
ECPCFIFO	:	Base Address + 400h
ECPDFIFO	:	Base Address + 400h
TFIFO	:	Base Address + 400h
CNFGA	:	Base Address + 400h
CNFGB	:	Base Address + 401h
ECR	:	Base Address + 402h

ECP Register Configuration: ECPAFIFO - ECP FIFO Address / RLE (Mode 011)

Bit	Description
7	Write only. This bit is used to indicate data type.
	When set to 1, bits [6:0] are a ECP address.
	When set to 0, bit field [6:0] is a run length. It is used to indicate how many times the next data will
	be appeared. (for example: $[6:0] = 0$ is 1 time, $[6:0] = 1$ is 2 times, $[6:0] = 2$ is 3 times, etc.
6-0	Write only. This is a ECP address or run length encode (RLE) as described above.

Bit	Description
7	Read only. nBUSY. This indicates a inverted version of parallel port BUSY signal.
6	Read only. nACK. This indicates a version of parallel port nACK signal.
5	Read only. PERROR. This indicates a version of parallel port PERROR signal.
4	Read only. SELECT. This indicates a version of parallel port SELECT signal.
3	Read only. nFAULT. This indicates a version of parallel port nFAULT signal.
2-0	Reserved.

2087

DCR - Device Control Register (Mode All)

Bit	Description
7-6	Reserved.
5	Read/Write. Direction.
	When set to 0, DMA and data are written to the peripheral. The drivers are enabled.
	When set to 1, if it is in standard parallel port mode (mode 000 or 010), this bit has no effect. If it is
	in ECP mode, the drivers is tri-stated and it sets the direction so that data will be read from the
	peripheral.
4	Read/Write. When set to 0, it disables the nACK interrupt. When set to 1, it enables an interrupt on
	the rising edge of nACK.
3	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the SELECTIN signal low
	regardless of the hardware state machine even in ECP mode. Software should make sure that bit 3 is
	set to 0 prior to entering ECP mode.
2	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the nINIT signal active
	regardless of the hardware state machine.
1	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the AUTOFD signal low
	regardless of the hardware state machine even in ECP mode. Software should make sure that bit 1 is
	set to 0 prior to entering ECP mode.
0	Read/Write. When set to 0, this bit has no effect. When set to 1, it forces the STROBE signal low
	regardless of the hardware state machine even in ECP mode. Software should make sure that bit 0 is
	set to 0 prior to entering ECP mode.

CFIFO - Parallel Port Data FIFO (Mode 011)

This mode is only defined for forward direction. The hardware standard parallel port protocol is used to transmit the bytes written or DMAed, from the system to this FIFO, to the peripheral. Transfers to the FIFO are bytes aligned.

ECPDFIFO - ECP Data FIFO (Mode 011)

When DCR (Device Control Register) bit 5 is set to 0, the hardware ECP parallel port protocol is used to transmit the bytes written or DMAed, from the system to this FIFO, to the peripheral. Transfer to the FIFO are bytes aligned. When DCR bit 5 is set to 1, data from the peripheral are read under automatic hardware handshake from ECP into the FIFO.

TFIFO - Test Mode (Mode 110)

Data may be read, written or DMAed to or from the system to this FIFO in any direction.

Data in the TFIFO will not be transmitted to the parallel port lines using a hardware protocol handshake, However, data in the TFIFO may be displayed on the parallel port data lines.

The TFIFO will not stall when overwritten or underrun. Data will simply be re-written or over-run. The full and empty bits must always keep track of the correct FIFO state. The TFIFO will transfer data at the maximum ISA rate so that software may generated performance metrics.

Data PWords are always read from the head of TFIFO regardless of the value of the direction bit. The FIFO size and interrupt threshold can be determined by writing PWords and checking the full and service interrupt bits.

CNFGA - Configuration Resister A (Mode 111)

This is a read only register.

CNFGB - Configuration Register B (Mode 111)

Bit	Description
7	Reserved. Always 0.
6	Read only. Its value on the ISA interrupt line determines the possible conflicts. Default 1.
5-0	Reserved. Always 0.

ECR - Extended Control Register

Bit	Description
7-5	Read/Write.
	When set to 000, the standard parallel port mode is selected. In this mode the FIFO is reset and
	common collector drivers are used on the control lines. Setting the direction bit will not tri-state the
	output drivers in this mode.
	When set to 001, the PS/2 parallel port mode is selected. This is the same as the standard parallel
	mode except that direction may be used to tri-state the data lines and reading the data register returns
	the value on the data lines and not the value in the data register.
	When set to 010, the parallel port FIFO mode is selected. This is the same as the standard parallel
	port mode except that PWords are written or DMAed to the FIFO. FIFO data is automatically
	transmitted using the standard parallel port protocol. Note that this mode is only useful when
	direction is 0. All drivers have active pull-ups.
	When set to 011, the ECP parallel port mode is selected. In the forward direction PWords placed
	into the ECPDFIFO and bytes written to the ECPAFIFO are placed in a single FIFO and transmitted
	automatically to the peripheral using ECP protocol. In the reverse direction bytes are moved from
	the ECP parallel port and packed into PWords in the ECPDFIFO.
	When set to 110, the test mode is selected.
	When set to 111, configuration register A,B are accessible at 0x400 and 0x401.
	When set to 100, the EPP parallel port mode is selected.

Section 6 DC Specifications

2087 Rating Specifications

Absolute Maximum Ratings*

Parameter	Symbol	Condition	Min	Max	Unit
Power supply voltage	VDD	Ta=25° C	VSS-0.3	7.0	V
Input voltage	VI		VSS-0.3	VDD+0.5	V
Output voltage	VO		VSS-0.3	VDD+0.5	V
Operating temperature	Тор		0	70.0	°C
Storage temperature	Tstg		-65.0	150.0	°C

 Exposing the device to stress above these limits can cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods can affect device reliability.

Capacitance Limits

 $TA = +25^{\circ} C$, VDD = 3.3V or 5.0V

Parameter	Symbol	Min	Тур	Max	Unit	Test Condition
Input capacitance	CI		4.0		pF	fc = 1.0 MHz
Output capacitance	CO		6.0			
I/O capacitance	CIO		10.0		pF	

DC Specifications

$TA = 0^{\circ} C$ to $70^{\circ}C$, VDD = 5.0V + -5%

X14M#, X24M

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	1	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	3.5	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-1	1	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

SUSPACK

Parameter	Symbol	Min	Max	Unit	Test Condition
Schmitt trigger Input low voltage	VIL	0.6		V	VDD = 5.0V +/- 5%
Schmitt trigger Input High voltage	VIH		3	V	VDD = 5.0V +/- 5%
Input low current	IIL	-1	1	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

ZWS#, MASTER#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

READY0#, LBA#, RTCINT#, IRQ5, IRQ7, IRQ9-11, IRQ14, DRQ0, DRQ5, EXTSMI0, EXTSMI1, SRBTN#, INDEX#, TRK0#, WP#, RDDATA#, DSCKCHG#, RX1-2, CTS#1-2, DSR#1-2, DCD#1-2, RI#1-2, LPTERR#, LPTBZY, SLCT, PE, LPTACK#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

ACC Micro[™]____

CPUBZY#, MA486, SPRK, PWRCNTL3-7, STPGNT#, SUSPMOD#, RTCAS, XDIR#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA

SDDIR#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 2.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA

BALE, AEN, TC, STPCLK#, SMI#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -12.0 mA

DACK5#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA
Tristate leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

SMEMR#, SMEMW#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -12.0 mA
Tristate leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

ACC Micro[™]_____

DTR1#, RTS1#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 2.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA
Tristate leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

MO1#, DACK2#, FDCWE#, FDCIR#, HEAD#, WRDATA#, STEP#, RWC#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 24.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -24.0 mA
Tristate leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

DACK0#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -1.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

MEMCS16#, IOCS16#, IOCHRDY

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

SD0-SD15, SA0, SA1, SMIADS#, SMIACT#, MEMR#, MEMW#, IOR#, IOW#, REF#, S	BHE#
---	------

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

RESETDRV#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 8.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA
Tristate Leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

ENSDL#, ENSDH#, TX1, TX2, DTR2#, RTS2#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 2.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -1.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

MO0#, DRQ2, DS0, IRQ6, DS1, ENFDC

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 24.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -12.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

ACC Micro[™]_____

ID7#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 8.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

STB#, ATFD#, INIT#, SLIN#, PD0-PD7

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 5.0V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 5.0V + 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -6.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

TA = 0° C to 70° C, VDD = 3.3 V +/- 5%

PWRGD, TURBO

Parameter	Symbol	Min	Max	Unit	Test Condition
Schmitt trigger Input low voltage	VIL	0.6		V	VDD = 3.3V +/- 5%
Schmitt trigger Input High voltage	VIH		3.0	V	VDD = 3.3V +/- 5%
Input low current	IIL	-1	1	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

CLKSRC, CLKI, HLDA, NPEREQ

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 3.3V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 3.3V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

D/-C, NPERR#, ALARM, EXTSYS#, ACPWR, LBAT1

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 3.3V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 3.3V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD

CPURST, CLKx1, CLKx2, NA#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA

PWRCNTL0-1

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 8.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA

ACC Micro[™]_

PWRCNTL2, PHOLD, INTR, NMI, KTGOE, GA20, MDIR#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 2.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -1.0 mA

SYSCLK#, WEN#, RAS0#, RAS2#, CAS#0-3

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -6.0 mA

CPUPEREQ, BS16#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA
Tristate leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

RAS1#, RAS3#

Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -6.0 mA
Tristate leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

ADS#, M/-IO, W/-R, RDY#, NPBZY#, FLUSH#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 3.3V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 3.3V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

BE0#-BE3#, A2-A25, A31, LA20, D0-D15, KTGWE#

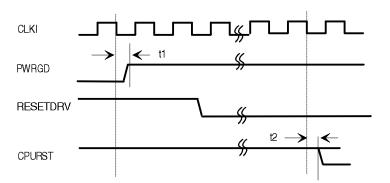
Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 3.3V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 3.3V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 4.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -2.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

ACC Micro[™]_____

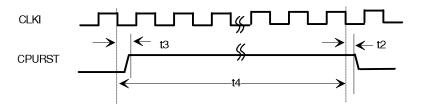
KRMOE#, KRMWE#

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 3.3V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 3.3V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 8.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

MA0-MA10

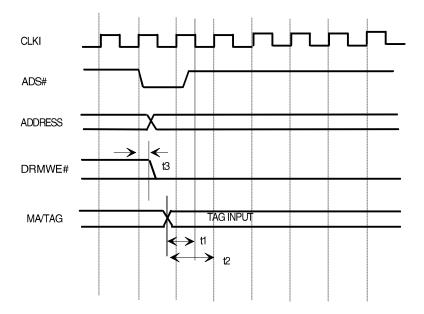

Parameter	Symbol	Min	Max	Unit	Test Condition
Input low voltage	VIL	VSS	0.8	V	VDD = 3.3V +/- 5%
Input high voltage	VIH	2	VDD	V	VDD = 3.3V +/- 5%
Input low current	IIL	-105	-25	uA	VIN = VSS
Input high current	IIH	-1	1	uA	VIN = VDD
Output low voltage	VOL		VSS+0.4	V	IOL = 12.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -6.0 mA
Tristate Leakage current	IOZ	-105	-25	uA	VOUT = VDD or VSS

TGLA2-TGLA3


Parameter	Symbol	Min	Max	Unit	Test Condition
Output low voltage	VOL		VSS+0.4	V	IOL = 8.0 mA
Output high voltage	VOH	VDD-0.4		V	IOH = -4.0 mA
Tristate Leakage current	IOZ	-1	1	uA	VOUT = VDD or VSS

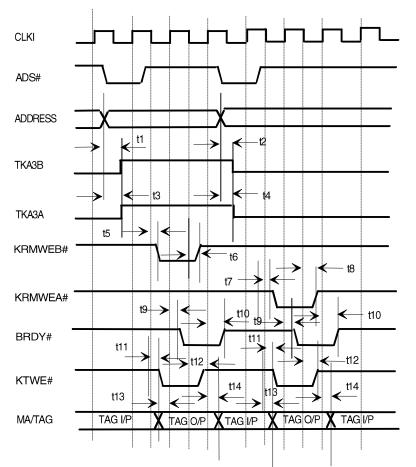
Section 7 2087 AC Specifications

Cold Reset


Warm Reset

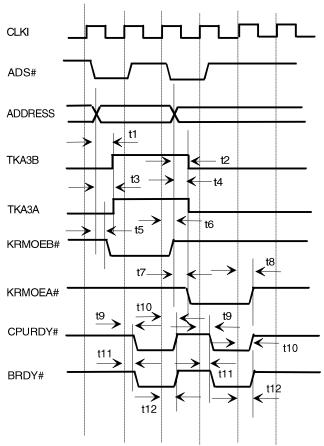
AC Specifications

The default load of output signal is 100 pf. The output load which is not 100 pf will specify in load item.

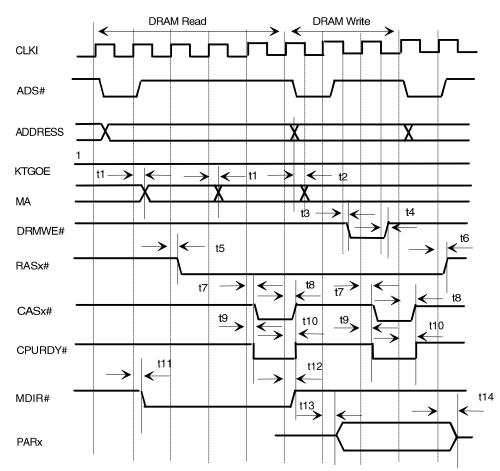

Symbol	Parameter	Min	Тур	Max	Units
t1	RESETDRV deactive from falling edge of CLKI	3		10	ns
t2	CPURST deactive from falling edge of CLKI	3		10	ns
t3	CPURST active from falling edge of CLKI	9			ns
t4	CPURST active period for warm reset		16us		

AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	In cache write, the TAG setup time for CLKI falling	3		10	ns
	edge for internal comparator				
t2	In cache read, the TAG setup time for CLKI rising	3		10	ns
	edge for internal comparator				
t3	DRMWE# activate from the rising edge of CLKI	3		9	ns


Cache Write Hit Timing

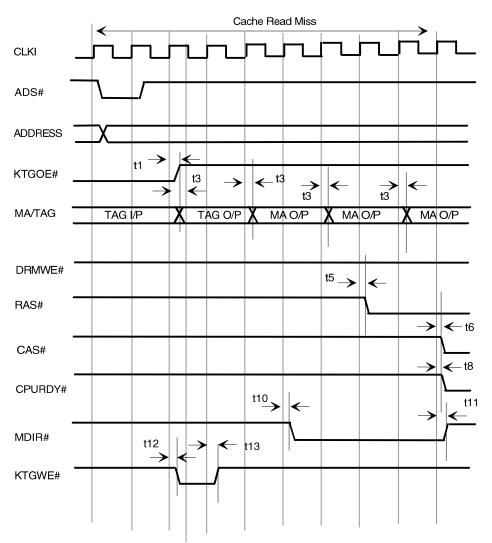
AC Specifications


Symbol	Parameter	Min	Тур	Max	Units
t1	TKA3B activate delay from Address	2		7	ns
t2	TKA3B deactivate delay from Address	3		9	ns
t3	TKA3A activate delay from Address	2		7	ns
t4	TKA3A deactivate delay from Address	3		9	ns
t5	KRMWEB# activate delay from CLKI falling edge	4		12	ns
t6	KRMWEB# deactivate delay from CLKI falling	4		11	ns
	edge				
t7	KRMWEA# activate delay from CLKI falling edge	3		12	ns
t8	KRMWEA# deactivate delay from CLKI falling	4		11	ns
	edge				
t9	CPURDY# activate delay from CLKI rising edge	5		16	ns
t10	CPURDY# deactivate delay from CLKI rising edge	5		16	ns
t11	KTGWE# activate delay from CLKI falling edge	5		14	ns
t12	KTGWE# deactivate delay from CLKI falling edge	4		13	ns
t13	TAG output delay from CLKI falling edge	6		17	ns
t14	TAG input delay from CLKI rising edge	5		16	ns

Cache Read Hit Timing

AC Specifications

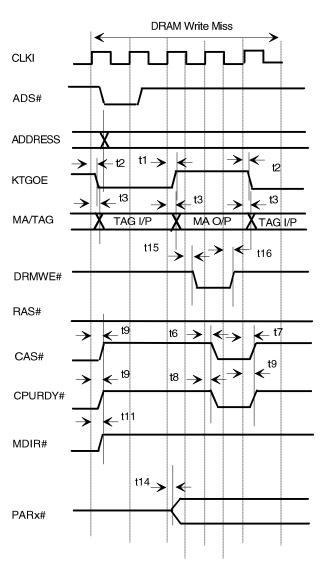
Symbol	Parameter	Min	Тур	Max	Units
t1	TKA3B activates from Address	2		7	ns
t2	TKA3B deactivates from Address	3		9	ns
t3	TKA3A activates from Address	2		7	ns
t4	TKA3A deactivates from Address	3		9	ns
t5	KRMOEB# activates from ADS# active	7		20	ns
t6	KRMOEB# deactivates from CLKI# rising edge	4		11	ns
t7	KRMOEA# activates from ADS# activate	7		21	ns
t8	KRMOEA# deactivate from CLKI rising edge	4		11	ns
t9	CPURDY# activates from CLKI rising edge	5		16	ns
t10	CPURDY# deactivates from CLKI rising edge	5		16	ns
t11	BRDY# activates from CLKI rising edge	5		16	ns
t12	CPURDY# deactivates from CLKI rising edge	5		15	ns



DRAM Access with Cache Disable

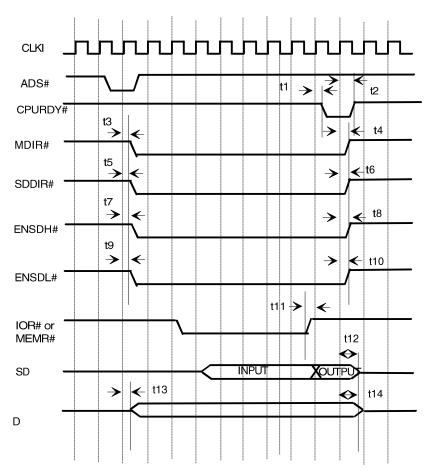
AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	MA delay from CLKI rising edge	6		18	ns
t2	MA delay from Address valid	6		19	ns
t3	DRMWE# active delay from CLKI falling edge	4		12	ns
t4	DRMWE# deactive delay from CLKI falling edge	4		11	ns
t5	RAS# active delay from CLKI rising edge	3		10	ns
t6	RAS# deactive delay from CLKI rising edge	3		10	ns
t7	CAS# activate delay from CLKI rising edge	3		10	ns
t8	CAS# deactivate delay from CLKI rising edge	3		10	ns
t9	CPURDY# activate delay from CLKI rising edge	6		18	ns
t10	CPURDY# deactivate delay from CLKI rising edge	6		18	ns
t11	MDIR# activate delay from CLKI rising edge	3		10	ns
t12	MDIR# deactivate delay from CLKI rising edge	3		9	ns
t13	PARx output from CLKI rising edge	7		20	ns
t14	PARx hold time from CLKI rising edge	7		22	ns


DRAM Access with Cache Enable 1 of 2

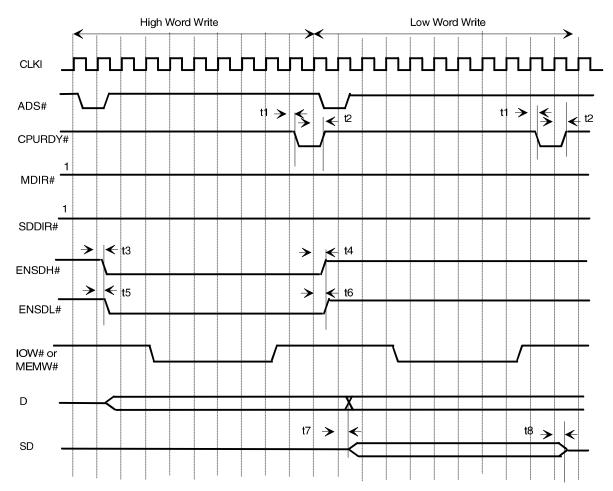
AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	KTGOE# deactive from CLKI rising edge	4		11	ns
t2	KTGOE# activate from CLKI rising edge	4		12	ns
t3	MA delay from CLKI rising edge	6		18	ns
t4	MA delay from Address valid	6		19	ns
t5	RAS# activate from CLKI rising edge	3		10	ns
t6	CAS# activate from CLKI rising edge	3		10	ns
t7	CAS# deactivate from CLKI rising edge	3		10	ns
t8	CPURDY# activate from CLKI rising edge	6		19	ns
t9	CPURDY# deactivate from CLKI rising edge	6		19	ns


DRAM Access with Cache Enable 2 of 2

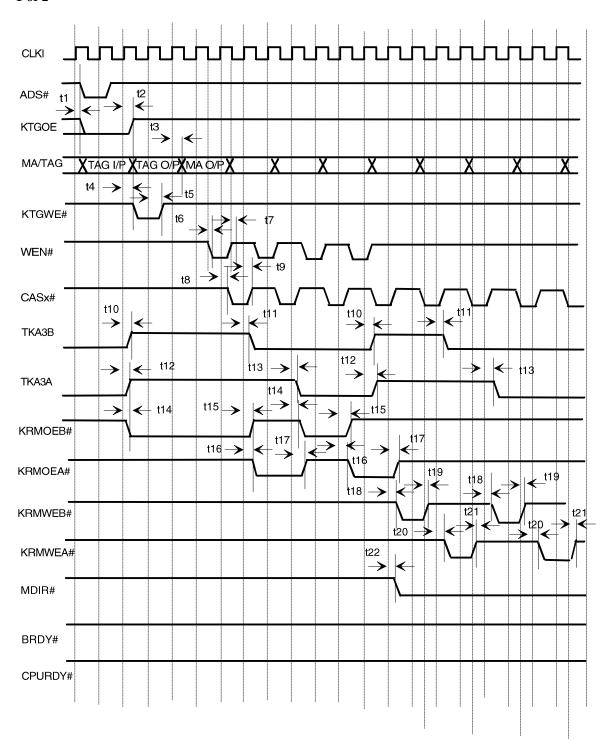
AC Specifications

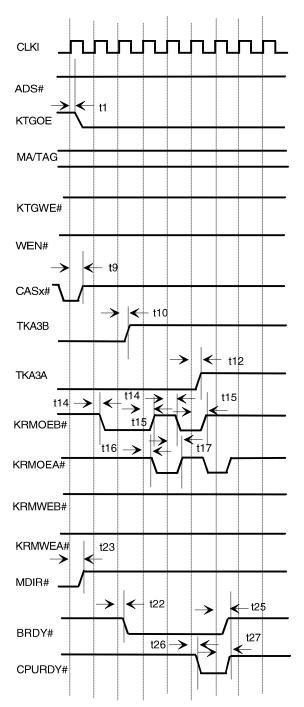
Symbol	Parameter	Min	Тур	Max	Units
t10	MDIR# activate from CLKI rising edge	3		10	ns
t11	MDIR# deactivate from CLKI rising edge	3		10	ns
t12	KTGWE# activate from CLKI rising edge	4		12	ns
t13	KTGWE# deactivate from CLKI rising edge	4		11	ns
t14	PARx output from CLKI rising edge	7		20	ns


AT Bus Read

AC Specifications

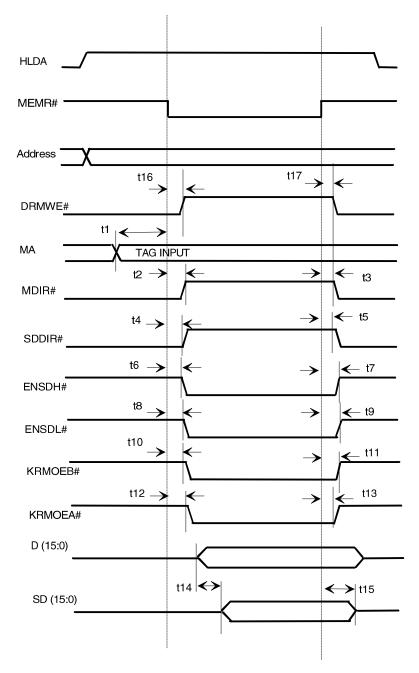
Symbol	Parameter	Min	Тур	Max	Units
t1	CPURDY# activate from CLKI rising edge	5		16	ns
t2	CPURDY# deactivate from CLKI rising edge	6		19	ns
t3	MDIR# activate from CLKI rising edge	3		10	ns
t4	MDIR# deactivate from CLKI rising edge	3		9	ns
t5	SDDIR# activate from CLKI rising edge	8		24	ns
t6	SDDIR# deactivate from CLKI rising edge	6		17	ns
t7	ENSDH# activate from CLKI rising edge	7		22	ns
t8	ENSDH# deactivate from CLKI rising edge	7		21	ns
t9	ENSDL# deactivate from CLKI rising edge	8		25	ns
t10	ENSDL# deactivate from CLKI rising edge	7		20	ns
t11	SD input hold time from command deactivate		0		ns
t12	SD hold time from CLKI2I rising edge	6		18	ns
t13	D becomes input from CLK2I rising edge	7		22	ns
t14	D hold time from CLK2I rising edge	6		19	ns


AT Bus Write

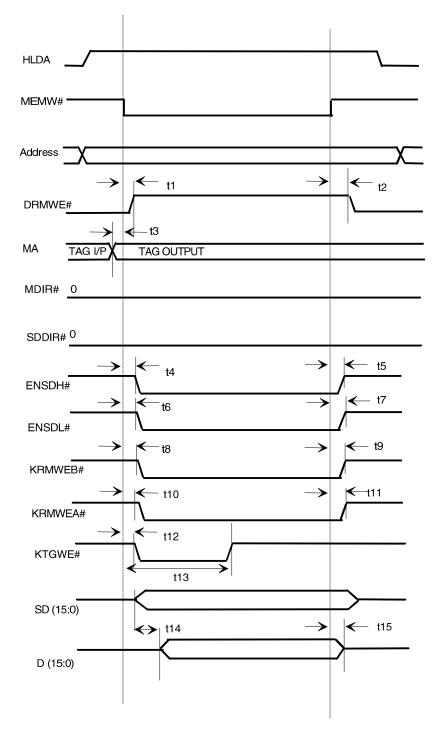

AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	CPURDY# activate from CLKI	5		16	ns
t2	CPURDY# deactivate from CLKI	6		19	ns
t3	ENSDH# activate from CLKI	7		22	ns
t4	ENSDH# deactivate from CLKI	7		21	ns
t5	ENSDH# activate from CLKI	8		25	ns
t6	ENSDL# deactivate from CLKI	7		20	ns
t7	SD becomes output from CLKI	20		60	ns
t8	LSD hold time from CLKI	7		22	ns

Cache Read Miss Dirty 1 of 2

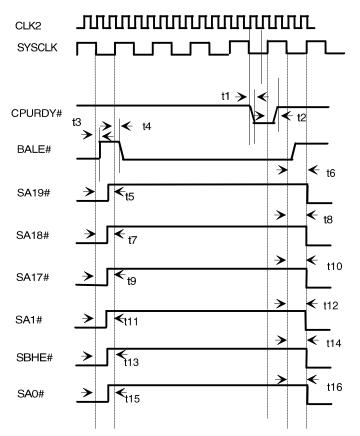


Cache Read Miss Dirty 2 of 2


Symbol	Parameter	Min	Тур	Max	Units
t1	KTGOE deactivate from CLKI rising edge	4		11	ns
t2	KTGOE activate from CLKI rising edge	4		12	ns
t3	MA/TAG valid from CLKI rising edge	6		17	ns
t4	KTGWE# activate from CLKI rising edge	5		14	ns
t5	KTGWE# deactivate from CLKI rising edge	4		13	ns
t6	WEN# activate from CLKI falling edge	4		12	ns
t7	WEN# deactivate from CLKI falling edge	4		11	ns
t8	CAS# activate from CLKI rising edge	3		10	ns
t9	CAS# deactivate from CLKI rising edge	3		9	ns
t10	TKA3B# activate from CLKI rising edge	5		16	ns
t11	TAK3B deactivate from CLKI rising edge	4		12	ns
t12	TKA2A activate from CLKI rising edge	5		16	ns
t13	TKA2A deactivate from CLK2 rising edge	4		12	ns
t14	KRMOEB# activate from CLKI rising edge	4		13	ns
t15	KRMOEB# deactivate from CLK2 rising edge	4		12	ns
t16	KRMOEA# activate from CLKI rising edge	4		12	ns
t17	KRMOEA# deactivate from CLKI rising edge	4		12	ns
t18	KRMWEB# activate from CLKI rising edge	6		17	ns
t19	KRMWEB# deactivate from CLKI rising edge	4		11	ns
t20	KRMWEA# activate from CLKI rising edge	6		17	ns
t21	KRMWEA# deactivate from CLKI rising edge	4		11	ns
t22	MDIR# activate from CLKI rising edge	5		14	ns
t23	MDIR# deactivate from CLKI rising edge	3		9	ns
t24	BRDY# activate from CLKI rising edge	5		16	ns
t25	BRDY# deactivate from CLKI rising edge	5		15	ns
t26	CPURDY# activate from CLKI rising edge	5		15	ns
t27	CPURDY# deactivate from CLKI rising edge	5		15	ns

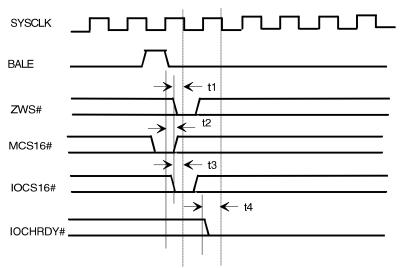
Cache Read Hit in DMA/Master Cycle

Symbol	Parameter	Min	Тур	Max	Units
t1	MA setup time from MEMR# for internal	3		9	ns
	comparator				
t2	MDIR# deactivates from MEMR#	3		8	ns
t3	MDIR# activates from #MEMR	3		9	ns
t4	SDDIR# deactivates from #MEMR	5		14	ns
t5	#SDDIR activates from #MEMR	5		15	ns
t6	ENSDH# activates from MEMR#	12		35	ns
t7	ENSDH# deactivates from MEMR#	6		18	ns
t8	ENSDL# activates from MEMR#	12		36	ns
t9	ENSDL# deactivates from MEMR#	6		18	ns
t10	KRMOEB# activates from MEMR#	4		12	ns
t11	KRMOEB# deactivates from MEMR#	3		10	ns
t12	KRMOEA# activates from MEMR#	4		12	ns
t13	KRMOEA# deactivates from MEMR#	3		10	ns
t14	SD delay from D bus	8		23	ns
t15	SD hold time from /MEMR	4		12	ns
t16	DRMWE# deactivates from MEMR#	3		9	ns
t17	DRMWE# activates from MEMR#	3		9	ns


Cache Write Hit in DMA/Master Cycle

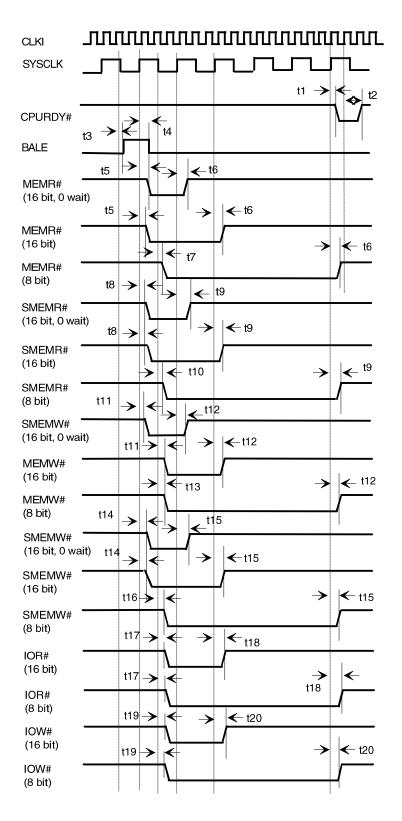
Symbol	Parameter	Min	Тур	Max	Units
t1	DRMWE# deactive from MEMW#	3		9	ns
t2	DRMWE# activate from MEMW#	3		9	ns
t3	MA setup time from MEMW# for internal	3		9	ns
	comparator				
t4	ENSDH# activate from MEMW#	12		35	ns
t5	ENSDH# deactivate from MEMW#	6		19	ns
t6	ENSDL# activate from MEMW#	12		36	ns
t7	ENSDL# deactivate from MEMW#	6		18	ns
t8	KRMWEB# activate from MEMW#	4		12	ns
t9	KRMWEB# deactivate from MEMW#	3		10	ns
t10	KRMWEA# activate from MEMW#	4		11	ns
t11	KRMWEA# deactivate from MEMW#	3		10	ns
t12	KTGWE# activate from MEMW#	4		13	ns
t13	KTGWE# activate period	60		120	ns
t14	D activate delay from SD	7		20	ns
t15	D hold time from MEMW#	3		10	ns

ACC Micro[™]


AT Bus Address Timing

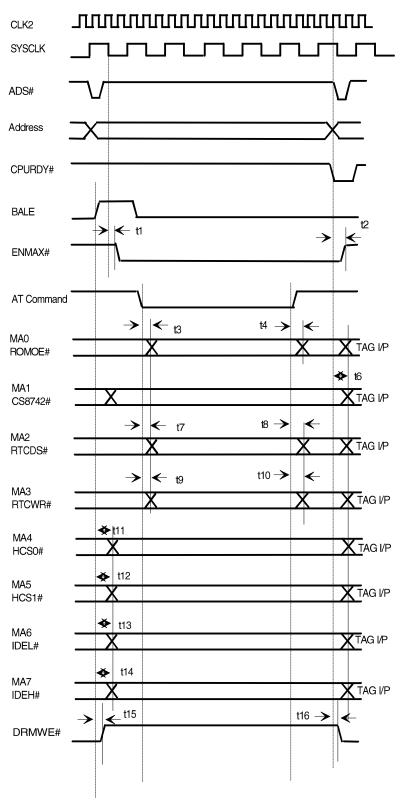
AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	BRDY# activate from CLKI rising edge	5		16	ns
t2	BRDY# deactivate from CLKI rising edge	6		19	ns
t3	BALE activate from CLKI rising edge	7		20	ns
t4	BALE deactivate from SYSCLK rising edge	3		8	ns
t5	SA19 goes high from BALE activate		6		ns
t6	SA19 goes low from BALE activate		10		ns
t7	SA18 goes high from BALE activate		5		ns
t8	SA18 goes low from BALE activate		9		ns
t9	SA17 goes high from BALE activate		4		ns
t10	SA17 goes low from BALE activate		9		ns
t11	SA1 goes high from BALE activate		5		ns
t12	SA1 goes low from BALE activate		9		ns
t13	SBHE# goes high from BALE activate		1		ns
t14	SBHE# goes low from BALE activate		5		ns
t15	SA0 goes high from BALE activate		0		ns
t16	SA0 goes low from BALE activate		2		ns


AT Bus Input Timing

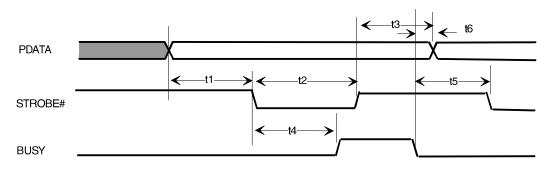
AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	ZWS# set tup time to SYSCLK falling edge		0		ns
t2	MCS16# hold time to BALE deactivate		0		ns
t3	IOCS16# setup time to SYSCLK falling edge		0		ns
t4	IOCHRDY# setup time to SYSCLK falling edge		0		ns


AT Bus Command Timing

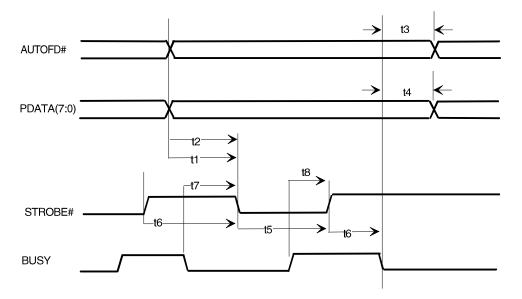
Symbol	Parameter	Min	Тур	Max	Units
t1	CPURDY# activate from CLKI rising edge	5		16	ns
t2	CPURDY# deactivate from CLKI rising edge	7		19	ns
t3	BALE activate from CLKI rising edge	7		20	ns
t4	BALE deactivate from SYSCLK	3		8	ns
t5	MEMR# activate from SYSCLK rising edge	3	14		ns
t6	MEMR# deactivate from SYSCLK rising edge		4		ns
t7	MEMR# activate from SYSCLK falling edge		4		ns
t8	SMEMR# activate from SYSCLK rising edge		30		ns
t9	SMEMR# deactivate from SYSCLK rising edge		16		ns
t10	SMEMR# activate from SYSCLK falling edge		20		ns
t11	MEMW# activate from SYSCLK rising edge		14		ns
t12	#MEMW deactivate from SYSCLK rising edge		4		ns
t13	MEMW# activate from SYSCLK falling edge		4		ns
t14	SMEMW# activate from SYSCLK rising edge		30		ns
t15	SMEMW# deactivate from SYSCLK rising edge		16		ns
t16	SMEMW# activate from SYSCLK falling edge		20		ns
t17	IOR# activate from SYSCLK falling edge		5		ns
t18	IOR# deactivate from SYSCLK rising edge		6		ns
t19	IOW# activate from SYSCLK falling edge		4		ns
t20	IOW# deactivate from SYSCLK rising edge		5		ns

ACC Micro™

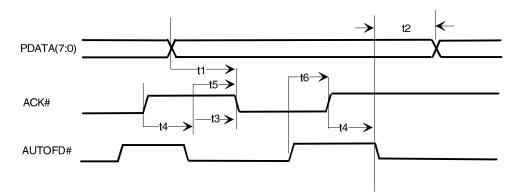

Multiplex Pin Timing

2087

Symbol	Parameter	Min	Тур	Max	Units
t1	ENMAX# activate from SYSCLK falling edge		13		ns
t2	ENMAX# deactivate from CLKI rising edge		15		ns
t3	ROMOE# activate from MEMR# activate		21		ns
t4	ROMOE# deactivate from MEMR# deactivate		12		ns
t5	CS8742# activate from BALE activate		20		ns
t6	Multiplex output becomes tag INPUT	5		15	ns
t7	RTCDS# activate from IOR# activate		13		ns
t8	RTCDS# deactivate from IOR# deactivate		12		ns
t9	RTCWR# activate from IOW# activate		13		ns
t10	RTCWR# deactivate from IOW# deactivate		11		ns
t11	HCS0# activate from BALE activate		20		ns
t12	HCS1# activate from BALE activate		20		ns
t13	IDEL# activate from BALE activate		20		ns
t14	IDEH# activate from BALE activate		20		ns
t15	DRMWE# activate from CLKI rising edge	4		12	ns
t16	DRMWE# deactivate from CLKI rising edge				ns


Parallel Port FIFO Timing

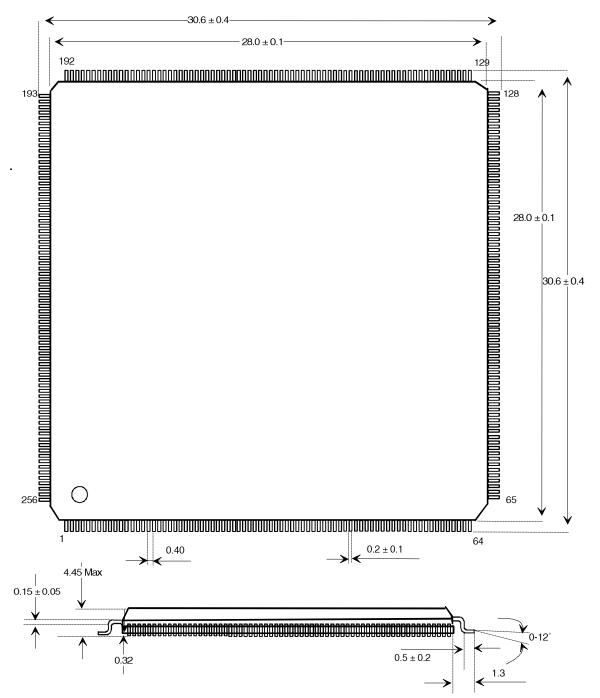
AC Specifications


Symbol	Parameter	Min	Тур	Max	Units
t1	DATA valid to STROBE# Active	600			ns
t2	STROBE# active pulse width	600			ns
t3	DATA hold from STROBE# inactive	450			ns
t4	STROBE# active to BUSY active			500	ns
t5	BUSY inactive to STROBE# active	680			ns
t6	BUSY inactive to PDATE invalid	80			ns

ECP Parallel Port Forward Timing

AC Specifications

Symbol	Parameter	Min	Тур	Max	Units
t1	AUTOFD# valid to STROBE# asserted	0		60	ns
t2	PDATA valid to STROBE# asserted	0		60	ns
t3	BUSY deasserted to AUTOFD# changed	80		180	ns
t4	BUSY deasserted to PDATA changed	80		180	ns
t5	STROBE# asserted to BUSY asserted	0			ns
t6	STROBE# deasserted to busy deasserted	0			ns
t7	BUSY deasserted to STROBE# asserted	80		200	ns
t8	BUSY asserted to STROBE# deasserted	80		180	ns



Symbol	Parameter	Min	Тур	Max	Units
t1	PDATA valid to ACK# asserted	0			ns
t2	AUTOFD# deasserted to PDATA changed	0			ns
t3	ACK# asserted to AUTOFD# deasserted	80		200	ns
t4	ACK# deasserted to AUTOFD# asserted	80		200	ns
t5	AUTOFD# asserted to ACK# asserted	0			ns
t6	AUTOFD# deasserted to ACK# deasserted	0			ns

ACC Micro[™]

Section 8 2087 Pin Diagram

256-pin PQFP Package

Sales Offices

ACC Microelectronics Headquarters

ACC Microelectronics Corporation 2500 Augustine Drive, Santa Clara, CA 95054 Phone: (408) 980-0622 Fax: (408) 980-0626

International Sales

Taiwan

ACC Taiwan Inc. 10-2 FL., No.77. Sec.4, Nan-King E. Rd., Taipei, Taiwan, R.O.C. Phone: (02) 719-9076 Fax: (02) 514-9127

Seper Technology Corp. 4th Fl., 75 Sec. 3, Ming-Sheng E. Rd., Taipei, Taiwan, R.O.C. Phone: (02) 506-3320 Fax: (02) 504-8081

Yosun Industrial Corporation 7F, No. 76, Sec. 1, Cheng Kung Road Nan Kang, Taipei, Taiwan Phone: (02) 788-1991 Fax: (02) 788-1996

Japan

Nippon IMEX Corp. 1-46-9 Matsubara Setagaya-Ku Tokyo, 156 Japan Phone: (33) 321-8000 Fax: (33) 325-0021

Korea

Intellect, Inc. Sonam Bldg. 3F, 1001-4, Dacchi-dong, Kangnam-Ku Seoul, Korea Phone: (2) 568-0501 Fax: (2) 558-0444

Connecticut

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Maine

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Massachusettes

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Minnesota

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076

New Hampshire

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

North Dakota

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076

Sales Offices

contd...

Rhode Island

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

South Dakota

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076

Vermont

Dynamic Sales 24 Ray Avenue Burlington, MA 01803 Phone: (617) 272-5676 Fax: (617) 273-4856

Wisconsin (Western)

D.A. Case Associates, Inc. 4620 West 77th Street #250 Minneapolis, MN 55435 Phone: (612) 831-6777 Fax: (612) 831-7076