

Intelligent Network Controller for Embedded System **S1S60000**Technical Manual



NOTICE No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material of ute to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from the Ministry of International Trade and Industry or other approval from anther government agency. ©SEIKO EPSON CORPORATION 2002, All rights reserved. All other product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

The information of the product number change

Starting April 1, 2001 the product number has been changed as listed below. Please use the new product number when you place an order. For further information, please contact Epson sales representative.

Configuration of product number

CONTENTS

1.	. DESCRIPTION									
	1.1	Features	1							
	1.2	Key Specifications	1							
	1.3	Block Diagram	2							
	1.4	Pin Description	3							
		1.4.1 Pin Layout	3							
		1.4.2 Pin Functions	4							
		1.4.2.1 Pin in Power Supply System	4							
		1.4.2.2 Host Interface Signals	4							
		1.4.2.3 MII Interface Signals	5							
		1.4.2.4 External Device Control Signals	6							
		1.4.2.5 General Purpose Input and Output Pins	7							
		1.4.2.6 Clock Generator Pins	7							
		1.4.2.7 Other Pins	9							
2.	HAF	RDWARE SPECIFICATIONS	10							
	2.1									
		2.1.1 ROM and Boot Address								
		2.1.2 RAM								
	2.2	Peripheral Circuits								
	2.3	•								
		2.3.1 Hardware Control Mode								
		2.3.2 Serial Emulation Mode								
	2.4	Power Supply	12							
		2.4.1 Operating Voltage								
	2.5	Power on Reset	12							
	2.6	OSC3 Clock	13							
3.	NFT	TWORK INTERFACE	14							
٥.	3.1	MII Interface								
	3.2									
		Communication Mode								
4.		ST INTERFACE								
		Control Signals								
	4.2	Host Interface Port								
		4.2.2 Status Port								
		4.2.3 Data Port								
	4.3	4.2.4 Flag PortHost Interface Type								
	4.3	• •								
	4.4	• •								
		· ·								
5.		RDWARE CONTROL								
	5.1	Control Approach								
		5.1.1 Control from Network	28							

		5.1.2	Control from Host Interface	31
		5.1.3	Control from External I ² C Master	31
		5.1.4	Control from Serial Interface	31
	5.2	Built-in	Registers	34
		5.2.1	REVID	35
		5.2.2	MAC0,MAC1,MAC2	35
		5.2.3	GENCR	36
		5.2.4	HIFCR	37
		5.2.5	I2CSADR	37
		5.2.6	12CCONF	38
		5.2.7	GPALT	39
		5.2.8	GPCFG	40
		5.2.9	GPDAT	40
		5.2.10	GPMSK	40
		5.2.11	EPMSK	41
		5.2.12	I2CMSK	41
		5.2.13	PMWAIT	41
		5.2.14	PHYMODE	42
		5.2.15	ANEGR	43
		5.2.16	IPADRH,IPADRL	44
		5.2.17	SNMSKH,SNMSKL	44
		5.2.18	DGWH,DGWL	44
		5.2.19	DADRnH,DADRnL	44
		5.2.20	PORT	44
		5.2.21	DPORT	44
		5.2.22	SERMODE	45
		5.2.23	TM OUT	45
	5.3	GPIO		46
	5.4	I2C		47
		5.4.1	Master Function	47
		5.4.2	Slave Function	49
	5.5	EEPRO	DM	52
		5.5.1	EEPROM Specification	52
		5.5.2	Data Stored	
		5.5.3	Transmission/Receiving Format	
		5.5.4	Automatic Read	
6.	POV	VER MA	NAGEMENT CONTROL	
7.			ONS ON IMPLEMENTATION	
8.	ELE		CHARACTERISTICS	
	8.1	Absolut	te Maximum Rating	56
	8.2	Recom	mended Operating Conditions	56
	8.3	DC Cha	aracteristics	57
	8.4	Current	t consumption	57
	8.5		aracteristics	
		8.5.1	Description of Symbols	57
			AC Characteristics Measuring Condition	
			AC Characteristics Table	

		8.5.4	AC Characteristics Timi	ning Chart	59
	8.6				
9.	PAC	KAGE	:		64
ΑP	PENI	DIX A	REFERENCE CIRCUIT	·	65
AΡ	PENI	DIX B	LIST OF PIN CHARACT	TERISTICS	68

EPSON iii

1. DESCRIPTION

S1S60000 is an intelligent network controller equipped with the built-in protocol processing function. Simplified commands and data from the host MPU enables S1S60000 to establish TCP/IP communication thanks to its capability of internally processing protocols for TCP/IP connection including ARP, ICMP, IP, TCP and UDP. MII (Media Independent Interface) is employed for interfacing the physical layer. Just adding PHY chip designed for MII allows you to realize 10BASE-T/100BASE-TX equipment operable on networks. S1S60000 is one of the network controllers best suited for converting your 8/16 bits MPU-featured equipment to ones workable on network without resorting to a high performance OS or protocol stacks provided by software vendors. It enables to establish direct connection with various types of CPUs without using additional logic circuits.

There is no trouble in using it on equipment not provided with a general-purpose bus or external bus such as PCI and ISA.

1.1 Features

- Internally processes protocols for up to L4 layer of OSI model.
- Realizes network connection with simple command operations.
- Eliminates license costs thanks to the unique protocol stack.
- General purpose I/O pins and I²C bus allows simpler hardware control without resorting to a host MPU.
- Allows adding or changing the protocols used through rewriting of the Flash ROM.

1.2 Key Specifications

• Protocol supported ARP, ICMP, IP, TCP, UDP, HTTP, DHCP, TFTP and SNMP.

• Interface with physical layer Media Independent Interface (Complied with Clause 22 of IEEE802.3)

10Base-T/Full duplex, 10Base-T/Half duplex and 100Base-TX/Half duplex

(100Base-TX/Half duplex is not supported)

• Effective transfer rate Approximately 2Mbps maximum.

• Host interface 8/16 bits parallel

• Directly connectable Includes SH-3/4, EPSON S1C33, MC68000, MC68030, Philips

type PR31500/PR31700, Toshiba TX3912, NEC VR4121, PC Card (PCMCIA) and

ISA.

• Endian Switching between little and big is possible.

• Host command system EPSON Standard Code for Network

• General purpose I/O 16 maximum (Directly controllable from the network. 8 out of 16 are shared

with the serial interface.)

•EEPROM I/F
• I²C bus

3-wire and 16-bit I/F compatible with 93C46/56/66 (partially usable by user)

Master function (Multi-master and 10bit slave supported. Fast/Normal

mode.)and slave function contained.

Core CPU
 Built-in Flash ROM
 Power supply
 EPSON S1C33240 50MHz
 128KB (1KB×128 blocks)
 +3.3V, (TBD)mA(Max.)

• Package QFP15-100pin

S1S60K series (EPSON Network Controller for Embedded System)is the general name for the network ICs equipped with the built-in protocol stack. S1S60000 is the first product of S1S60K series.

1.3 Block Diagram

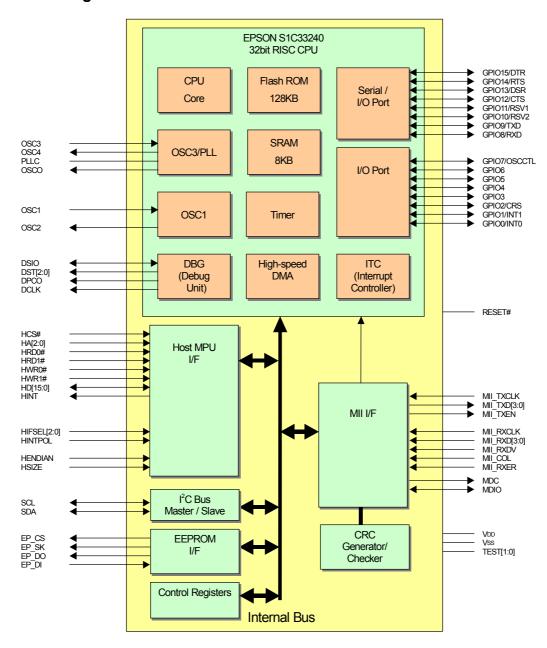
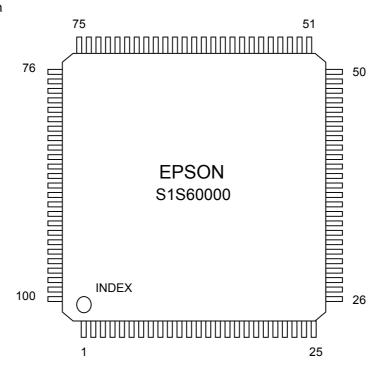



Figure 1.1 S1S60000 Block Diagram

1.4 Pin Description

1.4.1 Pin Layout QFP15-100pin

No.	Pin name	No.	Pin name	No.	Pin name	No.	Pin name
1	GPIO15/DTR	26	MII_COL	51	HA2	76	Reserve
2	GPIO14/RTS	27	MII_TXD3	52	Vss	77	Reserve
3	GPIO13/DSR	28	MII_TXD2	53	HD0	78	HIFSEL0
4	GPIO12/CTS	29	MII_TXD1	54	HD1	79	VDD
5	GPIO11/RSV1	30	MII_TXD0	55	HD2	80	PLLC
6	GPIO10/MODE	31	MII_TXEN	56	HD3	81	TEST0
7	GPIO9/TXD	32	VDD	57	HD4	82	HIFSEL1
8	GPIO8/RXD	33	MII_TXCLK	58	HD5	83	HIFSEL2
9	Vss	34	MII_RXER	59	HD6	84	Reserve
10	GPIO7/OSCCTL	35	MII_RXCLK	60	HD7	85	HINTPOL
11	GPIO6	36	MII_RXDV	61	VDD	86	TEST1
12	GPIO5	37	MII_RXD0	62	HD8	87	OSC4
13	GPIO4	38	MII_RXD1	63	HD9	88	Vss
14	GPIO3	39	MII_RXD2	64	HD10	89	OSC3
15	GPIO2/CRS	40	MII_RXD3	65	HD11	90	VDD
16	GPIO1	41	MDC	66	HD12	91	RESET#
17	GPIO0/INT0	42	MDIO	67	HD13	92	HENDIAN
18	VDD	43	OSC2	68	HD14	93	HSIZE
19	EP_CS	44	VDD	69	HD15	94	OSCO
20	EP_SK	45	Vss	70	Vss	95	DSIO
21	EP_DI	46	OSC1	71	HRD0#	96	DST0
22	EP_DO	47	VDD	72	HRD1#	97	DST1
23	SCL	48	HCS#	73	HWR0#	98	DST2
24	SDA	49	HA0	74	HWR1#	99	DPCO
25	Vss	50	HA1	75	HINT	100	DCLK

Figure 1.2 Pin Layout

1.4.2 Pin Functions

Following describes pins used on S1S60000. Symbol "#" added to a signal name indicates it a negative logic. Notations such as "[15:0]" indicate that the subject signal comprises two or more signal lines. For details of respective pins, refer to Appendix B List of Pin Characteristics.

1.4.2.1 Pin in Power Supply System

Table 1.1 List of Pins used in Power Supply System

Pin name	Pin No.	I/O	Function
VDD	18,32,44,47,61,79,90	_	Built-in logic power supply (+)
			Power pins. Be sure to supply +3.3V to every pin.
Vss	9,25,45,52,70,88	_	Power supply (-) GND
			Grounding pins. Be sure to ground every pin.

1.4.2.2 Host Interface Signals

It is the interface used to connect the host CPU. Every input pin including I/O contains a pull-up resister enabling 5V input of HCS#, HA [2:0], HD [15:0], HRD0#, HRD1#, HWR0# and HWR1#. The output is 3.3V CMOS 3-state output.

Table 1.2 List of Host Interface Signals

Pin name	Pin No.	I/O	Function
HCS#	48	I	Host Chip Select: It is the host interface access control signal. Access to the host interface is enabled as long as this signal remains low. This pin has a built-in pull-up resister enabling to accept 5V input.
HA[2:0]	51,50,49	I	Host Address: It is the host interface port select signal. It selects the port to be accessed while HCS# = Low. Following shows the selectable ports. 00x: Command port (write)/Status port (read) 01x: Data port (read/write) 1xx: Flag port (read only) These pins contain the pull-up resister enabling to accept 5V input. * HA0 is used for switching between the upper and lower bytes when the 8-bit interface is selected. It is disabled when the 16-bit interface is used.
HD[15:0]	69 to62, 60 to 53	I/O	Host Data: Data signal line of the host interface. When the 8-bit interface is selected, HDATA [7:0] alone is enabled and HDATA [15:8] is not driven. These pins contain the pull-up resister enabling to accept 5V input. Output is 3.3V CMOS output.
HRD0#	71	I	Host Read/Host Write: R/W control signal of the host interface. Its function varies depending
HRD1#	72	I	on status of HIFSEL [2:0]. For the detail, refer to "4. Host Interface".
HWR0#	73	I	These pins contain the pull-up resister enabling to accept 5V input.
HWR1#	74	I	
HINT	75	Tri	Host Interrupt: Interrupt line from S1S60000 to the host interface. Causes of interrupts are identifiable from contents of the flag port. Polarity of the interrupt is changeable by changing state of HINTPOL line at the reset. Since this signal is 3.3V/3-state output, be sure to externally connect a pull-up resister when HINTPOL=0 and a pull down resister when HINTPOL=1.
HIFSEL[2:0]	83,82,78	I	Host Interface Select: It is the host interface type select signal. These pins contain the pull-up resister. For the detail, refer to "4. Host Interface".

Pin name	Pin No.	I/O	Function
HINTPOL	85	I	Host Interrupt Polarity Select: It is the polarity select pin for HRQI and HDVI when they are active. 1:High active, 0:Low active State of this pin is acquired to HIFCR at reset. This pin contains the pull-up resister.
HENDIAN	92	I	Host Interface Endian Select: It is the endian type select pin. Appropriately selecting the type for a given MPU allows switching the upper/lower data on the command or status port. 1:Big Endian, 0:Little Endian State of this pin is acquired to HIFCR at reset. This pin contains the pull-up resister.
HSIZE	93	ı	Host Bus Size Select: It is the interface size select pin. It is used to specify the data bus size when accessing the port. 1:8bit, 0:16bit State of this pin is acquired to HIFCR at reset. This pin contains the pull-up resister.

1.4.2.3 MII Interface Signals

Table 1.3 List of MII Interface Signals

Pin name	Pin No.	I/O	Function
MII_RXCLK	35	I	MII Receive Clock: Receiving clock entered from PHY chip. It is the reference clock of MII_RXD [3:0], MII_RXDV. Its frequency is 2.5MHz for 10Base-T and 25MHz for 100Base-TX.
MII_RXD[3:0]	40 to 37	I	MII Receive Data: Receive data entered from PHY chip.
MII_RXDV	36	I	MII Receive Data Valid: Input signal from PHY chip. If it is high at the positive going edge of MII_RXCLK, MII_RXD [3:0] is valid.
MII_TXCLK	33	I	MII Transmit Clock: Transmit clock entered from PHY chip. It is the reference clock of MII_TXD [3:0], MII_TXEN. Its frequency is 2.5MHz for 10Base-T and 25MHz for 100Base-TX.
MII_TXD[3:0]	27 to 30	0	MII Transmit Data: Transmit data output to PHY chip.
MII_TXEN	31	0	MII Transmit Enable: Output signal to PHY chip. If it is high at the positive going edge of MII_TXCLK, MII_TXD[3:0] is valid.
MII_RXER	34	I	MII Receive Error: Input signal from PHY chip. This signal indicates that receive data contained an error. It is valid on 100Base-TX alone and ignored on 10Base-T.
MII_COL	26	I	MII Collision Detect: It indicates that collision of signals occurred during half duplex communication.
MDC	41	0	MII Management Interface Clock: It is the clock used to set up function of PHY chip as well as control it and read its status. This signal is output from S1S60000. MDIO pin sends or receives data in synchronization with this signal.

Pin name	Pin No.	I/O	Function
MDIO	42	I/O	MII Management Interface Data I/O
			This data is used to set up function of PHY chip as well as control it
			and read its status. Data for the function setup and control of PHY
			chip is sent from this pin to PHY chip in synchronization with MDC.
			When reading status of PHY chip, data from PHY chip is read from
			this pin in synchronization with MDC.
			This pin must be connected to a pull-up resister externally.
GPIO2/CRS	15	I	MII Carrier Sense
			When the alternate function of GPIO2 is selected, this pin functions as
			CRS input pin to enter state of the carrier in half-duplex
			communication. It is not used when half-duplex communication is
			not employed.

1.4.2.4 External Device Control Signals

Table 1.4 External Device Control Pins

Pin name	Pin No.	I/O	Function
EP_CS	19	0	EEPROM Chip Select:
			It is the EEPROM chip select pin.
EP_SK	20	0	EEPROM Serial Clock:
			It is the EEPROM clock pin.
EP_DI	21	I	EEPROM Data In:
			It is the EEPROM data input pin.
EP_DO	22	0	EEPROM Data Out:
			It is the EEPROM data output pin.
SCL	23	OD/I	I ² C Serial Clock:
			I ² C bus serial clock pin. When the master is selected, it is input
			signal and it becomes output signal when the slave is selected.
			Since output of this pin is open drain, a pull-up resister must be
			provided externally. Select an optimum pull-up resister value taking
		05"	into consideration of load on the bus as well as noises.
SDA	24	OD/I	
			I ² C bus data input/output pin. It is a bi-directional signal used to
			input or output data and ACK.
			Since output of this pin is open drain, a pull-up resister must be
			provided externally. Select an optimum pull-up resister value taking into consideration of load on the bus as well as noises.
			into consideration or load on the bus as well as noises.

1.4.2.5 General Purpose Input and Output Pins

Table 1.5 List of General Purpose Input and Output Pins

Pin name	Pin No.	I/O	Function
GPIO0/INT0	17	I/O	
GPIO1	16	I/O	I/O General Purpose I/O [7:0]:
GPIO2/CRS	15	I/O	General-purpose input/output pin. They accept 5V input. GPIO0 and 1 are used as the interrupt
GPIO3	14	I/O	pin to send interrupt notice to a previously specified destination.
GPIO4	13	I/O	GPIO2 is used as CRS input pin in half-duplex communication.
GPIO5	12	I/O	GPIO7 can be used as OSC control pin in the sleep mode. For the detail, refer to Chapter 5.3.
GPIO6	11	I/O	After the hardware reset, all pins are used for input only.
GPIO7/OSCCTL	10	I/O	
GPIO8/RXD	8	I/O	
GPIO9/TXD	7	I/O	I/O General Purpose I/O [15:8]:
GPIO10/MODE	6	I/O	General-purpose input/output pin for 3.3 V CMOS level and
GPIO11/RSV1	5	I/O	Schimitt input. They can be used as start-stop synchronous
GPIO12/CTS	4	I/O	serial terminals by setting GPLLT register. For details, refer to
GPIO13/DSR	3	I/O	Chapter 2.3.
GPIO14/RTS	2	I/O	After the hardware reset, all pins are used for input only.
GPIO15/DTR	1	I/O	

1.4.2.6 Clock Generator Pins

Table 1.6 List of Clock Generator Pins

Pin name	Pin No.	I/O	Function
OSC1	46	-	OSC1 clock pin
OSC2	43	0	When using the sleep mode in the power management, it is used to connect 32.768kHz crystal. S1S60000 in the sleep mode is operated with this clock. When the sleep mode is not used, connect OSC1 to Vss and open OSC2.
OSC3	89	ı	OSC3 clock pin (for oscillation of crystal/ceramics or input of
OSC4	87	0	external clock) Operating clock oscillation pin for S1S60000. Crystal transducer of 10 to 25MHz is connected. When entering external clock, input clock at 10 to 25MHz to OSC3 and make CSC4 open. * It is advised to use clock of 25MHz normally.
osco	94	0	OSC output pin It is used to generate buffered output of OSC3 input. Frequency of output from this pin is the same as that OSC3 input. Supplying clock to PHY chip from this pin helps reducing number of oscillators for PHY. Note: When supplying clock from this pin, be sure to use a crystal oscillator that can meet the frequency accuracy required by PHY chip. Normally, 50ppm maximum accuracy is required.
PLLC	80	_	PLL capacitor connecting pin It is the capacitor connecting pin used to double the OSC3 frequency with the internal PLL.

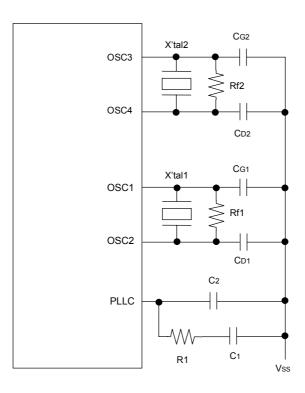


Figure 1.3 Clock Generator Connection Diagram

X'tal1	Crystal transducer	32.768kHz Ci (Max.) =34kΩ
C _G 1	Gate capacitance	10pF
C _D 1	Drain capacitance	10pF
Rf1	Feedback resistance	10ΜΩ
X'tal2	Crystal transducer	25MHz
CG2	Gate capacitance	10pF
CD2	Drain capacitance	10pF
Rf2	Feedback resistance	1ΜΩ
R1	Resister	4.7kΩ
C1	Capacitor	100pF
C2	Capacitor	5pF

1.4.2.7 Other Pins

Table 1.7 Other Pins

Pin name	Pin No.	I/O	Function
DSIO	95	I/O	These pins are used for communication with the debug tool ICD33.
DST[2:0]	98,97,96	0	ICD33 is mainly use for rewriting flash memory on S1S60000.
DPCO	99	0	It should not be connected to any equipment other than above.
DCLK	100	0	
RESET#	91	I	Hardware Reset Input: S1S60000 is reset as the low level is input. This pin contains the pull-up resister.
TEST1,TEST0	86,81	I	Test Input: Testing pins for this IC. They are made open when operated normally. They contain the pull-down resistor.
Reserve	77,76,84		These pins are reserved for future expansion. No equipment should be connected to these pins.

2. HARDWARE SPECIFICATIONS

2.1 Core CPU

Seiko Epson original 32 bits microcomputer S1C33240 or equivalent is employed for the core CPU. ADC, however, is not built in it.

CPU operating clock, always working identically with the internal bus, is initially set to twice the OSC3. Setting PSEN bit (11 bit) of GENCR register reduces it to 1/4 clock comparing when it operates normally. This arrangement helps reducing operating current.

2.1.1 ROM and Boot Address

S1S60000 contains a 128Kbytes flash ROM. After the reset, it is started from 0x0C00000, namely area 10 flash ROM area. Of these 128Kbytes, 127Kbytes are for the system firmware area, while the remaining 1Kbyte is for the user area. The user area ranges from 0xC1FC00 to 0xC1FFFF.

Rewriting in the system firmware is done from the debug serial pin and network by using a special tool and program. To rewrite in the user area, the debug serial pin or host interface can be used.

2.1.2 RAM

S1S60000 contains an 8Kbytes RAM. Device size of this built-in RAM is 32 bits enabling to read/write data of a byte, half-word or word in a single cycle. Since this RAM is exclusively used by S1S60000, user can't operate it

2.2 Peripheral Circuits

Among the peripheral blocks of the built-in core CPU S1C33240, S1S60000 uses the following built-in peripheral circuits. For details of respective peripheral circuits, refer to "S1C33 Family ASIC Macro Manual".

C33 core block

CPU 32-bit RISC type CPU S1C33000

BCU Bus control unit

ITC Interrupt controller

CLG Clock generator

DBG Functional block for debugging featured with ICD33 (In-Circuit Debugger for S1C33 Family)

• C33 peripheral circuits block

Pre-scaler Used to set the clock for peripheral circuits programmable

16 bits programmable timer

Serial interface

Input/output port

Elapsed timer

C33DMA block

HSDMA (high-speed DMA) 4-channel

The I/O memory map contained S1S60000 is essentially the same as that of S1C33240. For the detail, refer to "S1C33240 Technical Manual".

2.3 Serial Interface

GPIO [15:8] can be used as the serial interface when the GPALT register bit [15:8] is set.

2.3.1. Hardware Control Mode

GPIO10 can be used as the MODE signal line when the GPALT register bit [15:8] is set and GPIO [15:8] is used as a serial interface pin. While this signal is low, normal serial communication mode is set based on the GENCR register SERCONF bit (bit [10:8]) and SERMODE register settings. When this signal is high, the mode is switched to the hardware control mode via the serial interface. Note that the communication conditions in this mode are limited to the following:

Start-stop synchronous serial, 9,600 baud, 8-bit data, 1-stop bit, without parity and flow control.

For details on this mode, refer to Chapter 5.1.4.

Note: Avoid accessing the serial interface for at least 100ms after switching the mode.

2.3.2 Serial Emulation Mode

When GPALT register's bit [15:8] is set and GENCR register's SERCONF (bit [10:8])=010, the serial emulation mode is selected. Functions of respective pins are as shown in Table 2.1.

Table 2.1 Pin Functions when Start-Stop Synchronous Serial is selected

Pin	Pin	Name	In/Out	Function
GPIO15	1	DTR	0	Data Terminal Ready Indicates that data receiving is enabled. It is a high active signal.
GPIO14	2	RTS	0	Request to Send Indicates that data transmission is enabled. It is a high active signal.
GPIO13	3	DSR	I	Data Set Ready Indicates that transmission from outside is readied. It is a high active signal. If this signal is high and yet preparation for receiving is readied, S1S60000 causes DTR to be active.
GPIO12	4	стѕ	I	Clear to Send Indicates that the state is readied for receiving data from outside. It is a high active signal. If this pin goes low, transmission is temporarily suspended until it returns to high. The time from the stop up to the resumption of transmission is uncertain since this operation is controlled according to the interrupt-based software control. The external device side must make sure that sufficient margin is available on the buffer before turning on the control.
GPIO11	5	_	_	
GPIO10	6	MODE	I	Mode Select Used to switch over normal/hardware control modes. Be sure to set this pin to low in the normal mode.
GPIO9	7	TXD	0	Transmit Data Serial transmit data
GPIO8	8	RXD	I	Receive Sata Serial transmit data

TXD and RXD are start-stop synchronous serial pins to be transmitted/received by use of the serial I/F Ch.0 function of the built-in S1C33240. For details, refer to the serial I/F specifications in the technical manual for the S1C33240. Other control lines are controlled by the software. DSR and CTS signals are processed by internal interruptions.

In this mode, transmission data of the serial interface are transmitted to the preset destinations. This is useful when transmitting data from a device with a conventional RS232 interface to another device on the Ethernet.

[Establishing connection]

When GPIO [15:8] is set to start-stop synchronous serial, the S1S60000 performs processing equivalent to that of open command of the host interface, automatically. In Active Open (client operation), connection is made to the IP address and port of the destination preset to the EEPROM. When connection is terminated by the destination, reconnection is performed automatically. In Passive Open (server operation), the server enters listening state by opening its transmission port preset by itself. Connection is established when it is requested externally.

[Transmission from Serial Interface to Network]

Data received from RXD is output to the network when no data has been received for about 10 minutes after the last data was received during transfer time, or when the data volume received reaches 1 packet (536 bytes).

[Transmission from Network to Serial Interface]

Data received from the network is transmitted to TXD after executing an error check and removing the header information.

2.4 Power Supply

2.4.1 Operating Voltage

S1S60000 operates with the voltage supplied across VDD and Vss. This operating voltage is as shown below. $V_{DD} = 3.3 \pm 0.3 \text{V}(\text{Vss} = \text{GND})$

Note: S1S60000 has 7 VDD pins and 6 Vss pins. Be sure to connect every pin to the power supply so that any of them may not become open.

2.5 Power on Reset

Be sure to implement initial reset at powering on in order to ensure normal start of S1S60000. Schmitt input is applied RESET#.

Operation of OSC3 oscillation circuit is started by the initial reset (RESET#=Low) and then CPU is started by OSC3 clock at the positive going edge of the reset signal. OSC3 oscillation circuit takes some time until its oscillation stabilizes(Vdd=3V, the time required for stabilized oscillation under normal operation condition: 10ms Max.). Thus, in order to ensure positive start of CPU, be sure to release the initial reset only after this time has been elapsed. Make sure that length of the initial reset pulse is longer than the above oscillation stabilizing time. Figure 2.1 shows the timing chart at the power on reset.

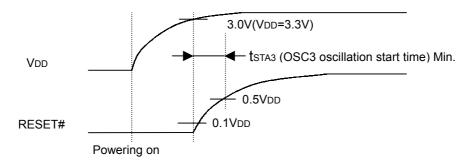


Figure 2.1 Power on Reset Timing

After powering on, maintain RESET# pin below 0.1 • VDD (Low level) until supply voltage reaches the oscillation start voltage (3.0V) or above. It is also required to maintain RESET# pin below 0.5 • VDD until oscillation of OSC3 oscillation circuit is stabilized.

Note: Oscillation start time of OSC3 oscillation circuit depends on the device substrate pattern used as well as the operating environment. So you must be sure to provide enough time before releasing the reset.

Reset pulse

When S1S60000 is in operation, it is possible to implement the initial by applying low level pulse to RESET# pin. In this case, however, the pulse width used must be greater than the minimum reset pulse width listed in the "AC Characteristics".

When applying reset pulse while OSC3 oscillation circuit is not in operation, RESET# pin must be maintained at low level for a period longer than the oscillation stabilization time. It is the same requirement as that for the power on reset.

2.6 OSC3 Clock

Operating clock for S1S60000 is entered to OSC3 pin. For the internal bus and CPU operation, the clock entered from OSC3 is used after it has been doubled. Normally, 25MHz clock is used. The lowest frequency allowed to input is 10MHz.

While the power save mode is turned on, the internal bus clock and CPU operating clock is reduced to 1/4 of the normal operation (1/2 of that input from OSC3).

When operating S1S60000 on 100Base-TX, be sure to enter 25MHz to OSC3 and operate S1S60000 in the normal mode. Note that it cannot operate in the power saving mode.

3. NETWORK INTERFACE

3.1 MII Interface

S1S60000 employs MII (Media Independent Interface) for connection with the physical layer (PHY chip) enabling it to connect various network PHY chips designed for MII. For the detail of MII, refer to IEEE 802.3 Clause22. However, your attention is required on the following points.

• CRS (Carrier Sense) signal

This signal is not used in full duplex communication. Connect CRS signal to GPIO2 pin only when half-duplex communication is to take place. Also, when setting PHY forcibly to half-duplex communication, half-duplex must be set on GENCR.

• TX ER signal

This signal is used to propagate the error received with RX_ER. This signal, however, is not used on S1S60000 since it does have a repeating function.

Figures 3.1 and 3.2 show MII transmit waveform and MII receive waveform, respectively.

In transmission, MII_TXEN is set to high level and then level of MII_TXD is changed after MII_TXCLK has reached high level. In half-duplex communication, interrupt occurs in S1S60000 as MII_COL goes high level thereby forcing MII_TXEN to low level and suspending transmission. Then transmission is resumed after a predetermined time.

In receiving, after MII_RXDV has reached high level, MII_RXD is acquired at positive-going edge of MII_RXCLK. If MII_RXER goes high level while communicating with 100Base-TX, FCS error is set after receiving is complete and the received frames are disposed.

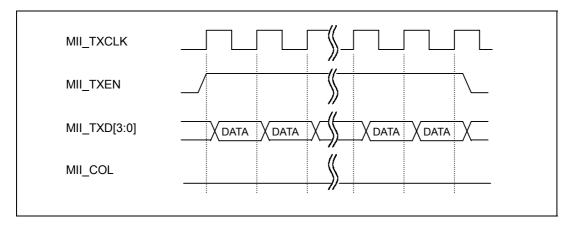


Figure 3.1 MII Transmit Waveform

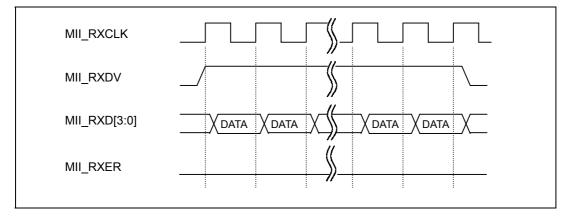


Figure 3.2 MII Receive Waveform

3.2 Management Interface

S1S60000 supports MII management interface. It can write or read registers in PHY through this interface. Figures 3.3 and 3.4 show the waveforms in the read and write operations, respectively.

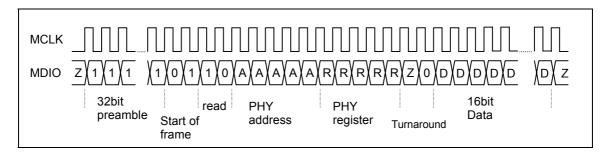


Figure 3.3 MII Management Interface Read Operation

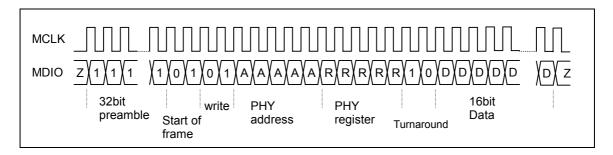


Figure 3.4 MII Management Interface Write Operation

3.3 Connecting PHY Chips

Figure 3.5 shows connection between S1S60000 and PHY chips.

You don't have to connect CRS for full duplex communication. TX ER signal is also not connected.

In the normal operation and the power save mode, OSC pin on S1S60000 outputs the signal being formed after buffering OSC3 input. Thus connecting a 25MHz crystal oscillator to OSC3 input and connecting OSCO to the clock of PHY allows you operate both S1S60000 and PHY with a single crystal oscillator.

Note: Before supplying clock form OSCO to PHY, make sure that it meets the clock accuracy required by PHY. Also make sure that length of the pattern connected is minimized and the clock waveform satisfies requirements of the PHY specification.

Followings are recommended for connection with S1S60000.

ICS ICS1893Y-10 TDK 78Q2120-64T

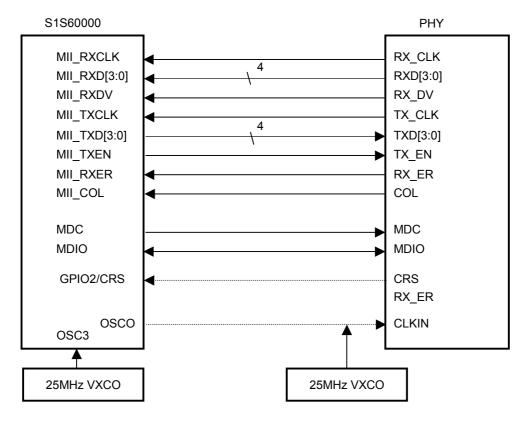


Figure 3.5 Connection between S1S60000 and PHY

3.4 Communication Mode

When using S1S60000, it is normally recommended to select 10Base-T/full duplex mode. S1S60000 does not support 100Base-TX/full duplex communication.

When selecting a communication mode through the auto-negotiation with the PHY chip, S1S60000 carries out the negotiation in the order of 10Base-T/full duplex, 100Base-TX/half-duplex and 10Base-T/half-duplex, and the mode for which the link is established the first is employed as the communication mode. This process takes approximately 6 seconds at maximum.

You can also turn on 100Base-TX/half-duplex or 10Base-T/half-duplex mode communication from setting of PHYMODE register. In this case, however, transfer performance can become lower than that available from 10Base-T/full duplex because of re-sending processing at occurrence of collisions as well as the restrictions imposed on the internal processing. Be advised not to use these modes except where so forced.

Communication Mode Setup Flow

- (1) The auto-negotiation is started selecting 10Base-T/Full-Duplex as the target. If it ends successfully, 10Base-T/Full-Duplex is employed and the setup process is ended. Otherwise, the negotiation continues to the next step.
- (2) The auto-negotiation is executed selecting 100Base-TX/Half-Duplex as the target. If it ends successfully, 100Base-TX/ Half-Duplex is employed and the setup process is ended. Otherwise, the negotiation continues to the next step.
- (3) The auto-negotiation is executed selecting 10Base-T/Half-Duplex as the target. If it ends successfully, 10Base-T/ Half-Duplex is employed and the setup process is ended.
- (4) If all negotiations ended unsuccessfully, S1S60000 judges that the link has not been established.

4. HOST INTERFACE

The host interface is an 8 bits or 16 bits parallel interface used to connect S1S60000 with external MPU. The host interface can connect up to five types of MPUs depending on its setting.

4.1 Control Signals

Table 4.1 shows the host interface signals. Every input pin including I/O pins contain a pull-up resister enabling then to accept 5V input is acceptable for HCS#, HA [2:0], HD [15:0], HRD0#, HRD1#, HWR0# and HWR1#. Output is 3.3V CMOS or 3-state output. When not using the host interface (when implementing GPIO control independently, for instance), be sure to leave the every host interface signal unconnected.

Pin name I/O **Function** HCS# It is the access enable signal. Access available as it goes low HA[2:0] ī Port select signal HD[15:0] I/O Input/output data bus HRD0# A R/W control signal. Its function depends on state of HIFSEL [2:0]. Its function depends on state of HIFSEL [2:0]. HRD1# ı A R/W control signal. A R/W control signal. HWR0# Its function depends on state of HIFSEL [2:0] HWR1# A R/W control signal. Its function depends on state of HIFSEL [2:0]. It is the interrupt signal. Polarity is settable. Host interface type select signal HINT Tri HIFSEL[2:0] HINTPOL Host interrupt line polarity select (enabled at the reset) 1:High active, 0:Low active HENDIAN Host interface endian select (enabled at the reset) 1:Big Endian, 0:Little Endian HSIZE Host interface size select (enabled at the reset) 1:8bit, 0:16bit

Table 4.1 Host Interface Signals

Tri: 3-state output

When HCS# is low, an access port is selected depending on the state of HA [2:0]. Following shows the port assignment.

(1) When 16-bit interface is selected

HA[2:0]	Access port
00x	Command port (Write) / Status port (Read)
01x	Data port
1xx	Flag port

Note: The flag port outputs the same contents to the upper and lower 8 bits.

(2) When 8-bit interface is selected

HA[2:0]	Access port
000	Lower command port (Write) / Lower status port (Read)
001	Upper command port (Write) /Upper status port (Read)
010	Lower data port
011	Upper data port
1xx	Flag port

Note: When the 8-bit interface is used, data transfer of one time is completed as access is made to both the upper and lower ports. The order in accessing the upper and lower ports is optional. The flag port does not have the upper or lower port.

4.2 Host Interface Port

4.2.1 Command Port

This port is used to send a command from the host MPU to S1S60000. Since this port is 16-bit wide, two times of access (the upper and lower addresses) are required when the 8-bit interface is used. For detail of the commands, refer to the "S1S60K Series Host I/F Manual".

4.2.2 Status Port

This port is used to return a status from S1S60000 to the host MPU. Since this port is 16-bit wide, two times of access (the upper and lower addresses) are required when the 8-bit interface is used. For detail, refer to the "S1S60K Series Host I/F Manual".

4.2.3 Data Port

This port is used to exchange data between the host MPU and S1S60000. Since this port is 16-bit wide, two times of access (the upper and lower addresses) are required when the 8-bit interface is used. An option segment added to a command or status is also exchanged via this port. For detail of the options, refer to the "S1S60K Series Host I/F Manual".

4.2.4 Flag Port

This port is used to indicate how a host interface-related command, status or data is processed. One of the following two types is assigned according to setting of EXTINT (bit7).

When EXTINT=0, the state of bit [1:0] is the factor which activates the HINT signal. If any of the bits is 1, the HINT signal goes active (polarity of the signal is changeable). On the host side, the reading-out status or data clears the corresponding factors. Thus, HINT signal turns to inactive when all factors are cleared. When checking the data processing status on the S1S60000 from the host interface, the state of bit [3:2] must be referenced.

When EXTINT=1, the state of bit [3:0] is the factor which activates the HINT signal. If any of the bits is 1, the HINT signal goes active (polarity of the signal is changeable).

On the host side, factors can be cleared by writing 1 at the corresponding bit positions. The HINT signal becomes inactive when all factors are cleared.

This port is 8-bit wide. Thus, when the 16-bit interface is used or when two times of access (to the upper and lower addresses) are made from the 8-bit interface, the same data is read to the upper and lower bits.

bit EXTINT=0 EXTINT=1 **EXTINT** 0: Extended interrupt is not used (so far compatible) 1: Extended interrupt is used 6:5 Not used. Value is 0. **HSTREN** 0: Data port receiving circuit of S1S60000 is disabled Data port receiving circuit of S1S60000 is enabled 3 H2CDC Data read complete notice (Read) H2CDV Write data processing state (R/O) 0: Waiting for data read or data is absent 0: Data write available 1: Read of preceding data is complete (it is cleared as 1 is written) 1: Waiting for data read 2 H2CCV Command processing state H2CCC Command processing complete notice (Read) (R/O) 0: Command is not processed yet or command is 0: Command write available not present 1: Processing of preceding command is complete (it 1: Waiting processing of command is cleared as 1 is written) C2HDV Read-data preparation state (Read) C2HDV Read-data preparation state (R/O) 0: Data to be read is not present 0: Data to be read is not present 1: Data to be read is present (it is cleared as 1 is 1: Data to be read is present written) C2HSV Status preparation state (R/O) C2HSV Status preparation state (Read) 0: Status to be read is not present 0: Status to be read is not present 1: Status to be read is present 1: Status to be read is present (it is cleared as 1 is written)

Table 4.2 Flag Port Bit Assignment

Note: When the host interface is 16 bits wide, the same information is output to bit [15:8] and bit [7:0]. Writing is enabled to bit [7:0] alone.

4.3 Host Interface Type

Type of the host interface is selected depending on state of HIFSEL [2:0] at the hardware reset. Table 4.3 shows assignment of the host interface type.

Table 4.3 Host Interface Type

HIFSEL[2:0]	Type	Example of host CPUs (8/16bit bus)
000	Type 0	Hitachi SH-3/4, EPSON S1C33
001	Type 1	MC68000/10
010	Type 2	MC68030/40
011	Type 3	Generic
100	Type 4	Reserved
101	Type 5	MIPS, ISA, NEC VR4121(16bit)
110	Type 6	PCMCIA, Philips PR31500/PR31700, Toshiba TX3912
111	EEPROM	A type is selected in the range of Type0 to Type6 depending on HIFCR data of EEPROM

- Type0 This type of interface controls access by use of the independent write signals (byte basis) and a single read signal. Hitachi SH-3/4 and EPSON S1C33 belong to this type.
- Type1 It controls access by combining the upper/lower byte signal (such as UDS#/LDS#) and the read/write signal. Motorola's MC68000 belongs to this type. In this case, connect the upper byte select signal to HWR0#, the lower byte select signal to HWR1# and the read/write signal to HRD1#. And maintain RD0# unconnected.
- Type2 It controls access by combining the data transfer size indicate signal and the read/write signal. MC68030/40 belong to this type. In this case, connect SIZ0 signal to HWR0#, SIZ1 signal to HRD0# and the read/write signal to HRD1#. And maintain HWR1# unconnected.
- Type3 It is the general-purpose type. When a given host CPU does not fit into any type, it is used to connect such host CPU by use of an externally generated access signal. In this case, connect the lower byte write signal to HWR0#, the upper byte write signal to HWR1#, the lower byte read signal to HRD0# and the upper byte read signal to HRD1#.
- Type4 This type is reserved for future extension. Don't select it.
- Type5 It controls access by using the upper/lower byte select signal (composed of two or more signals) plus the independent read signal and the write signals. MIPS and ISA bus belong to this type. In this case, connect the write signal to HWR0#, the upper byte select signal to HWR1# and the read signal to HRD0#. Maintain RD1# unconnected.
- Type6 It controls access by use of the independent byte enable signal, independent read enable signal and write signal. PCMCIA interface belongs to this type. In this case, connect the write signal to HWR0#, the read signal to HRD0# and the lower byte enable signal to HRD1#.
- EEPROM It selects a type according to HIFCR data of the serial EEPROM. A type is selectable in the range of Type0 to Type6. When EEPROM data is "111" or when EEPROM is not connected, S1S60000 assumes that a host CPU is unconnected.

Figure 4.1 shows the CPU type selection flowchart. Identify type of the target CPU based on its signal line and then check whether an appropriate access is obtainable or not referencing the signal pattern of respective CPUs in Tables 4.5 to 4.10. When the selected signal pattern does not match the pattern of the target CPU, decode the signal externally so that it may fit to the CPU type having the same or similar pattern to that of Type3 (Generic). When a CPU's address and data buses are multiplexed, be sure separate them before connection by, for instance, using a latch provided externally.



Figure 4.1 Host I/F Type Selection Flowchart

Table 4.4 Signal Connection by CPU Type

Туре	Manufacturer	Model	HCS#	HA[2:0]	HD[15:0]	HWR0#	HWR1#	HRD0#	HRD1#	RESET#	Re- mark
Type0	Hitachi	SH-3	(*1)	A[2:0]	D[15:0]	WE0#	WE1#	RD#	_	RESET#	
		SH-4	(*1)	A[2:0]	D[15:0]	WE0#	WE1#	RD#	_	RESET#	
	EPSON	S1C33	(*1)	A[2:0]	D[15:0]	#WRL	#WRH	#RD	_	#RESET	
Type1	Motolora	MC68000 MC68010	(*1)	A[2:1], NC	D[15:0]	UDS#	LDS#	_	R/W#	RESET#	16bit bus only
		MC68008	(*1)	A[2:0]	D[7:0]	_	DS#	_	R/W#	RESET#	8bit bus only
		MC68HC 001	(*1)	A[2:0]	D[15:0]	UDS#	LDS#		R/W#	RESET#	
Type2	Motolora	MC68030	(*1)	A[2:0]	D[31:16]	SIZ0	_	SIZ1	R/W#	RESET#	
		MC68040	(*1)	A[2:0]	D[31:16]	SIZ0	_	SIZ1	R/W#	RESET#	
Type3	_	Generic	(*1)	A[2:0]		WR0#	WR1#	RD0#	RD1#	RESET#	
Type5	_	MIPS	(*1)	SA[2:0]	SD[15:0]	MEMW#	SBHE#	MEMR#	_	inverted RESET	
	IBM	ISA	(*1)	SA[2:0]	SD[15:0]	MEMW#	SBHE#	MEMR#	_	inverted RESET	
	NEC	VR4121	(*1)	ADD [2:0]	DATA [15:0]	IOW#	SHB#	IOR#	_	RSTSW#	
Type6	Philips	PR31500 PR31700	GND	A[2:0]	D[23:16], D[31:24]	/CARD IOWR	/CARD xCSL	/CARD IORD	/CARD xCSH	/PON	
	Toshiba	TX3912	GND	A[2:0]	D[23:16], D[31:24]	CARD IOWR*	CARD xCSL*	CARD IORD*	CARD xCSH*	PON*	
	PCMCIA	PC Card	GND	A[2:0]	D[15:0]	-WE	-CE1	-RD	-CE2	inverted RESET	

^{-:} Not Connect

Note: The connections described in this table do not necessarily guarantee the operation. The connection required depends on the operating conditions (including the bus size, bus clock and signal timing). Be sure to reference the signal pattern by type before finalizing your connection.

^{*1:} Enter the decoded signal, as needed. Active Low.

Table 4.5 Signal Pattern of Type0

					S1S60	000 signa	l line	
R/W	Endian	Bus size	Operation	HWR0#	HWR1#	HRD0#	HRD1#	HA0
Write	Little	16bit	Word	L	L	Н	Н	L
			Low	L	Н	Н	Н	L
			High	Н	L	Н	Н	Н
		8bit	Low	L	Н	Н	Н	L
			High	L	Н	Н	Н	Н
	Big	16bit	Word	L	L	Н	Н	L
			Low	L	Η	Н	Н	L
			High	Η	L	Н	Н	Н
		8bit	Low	L	Η	Н	Н	L
			High	L	Н	Н	Н	Н
Read	Little	16bit	Word	Н	Н	L	Н	L
			Low	Н	Н	L	Н	L
			High	Н	Н	L	Н	Н
		8bit	Low	Н	Н	L	Н	L
			High	Н	Н	L	Н	Н
	Big	16bit	Word	Н	Н	L	Н	L
			Low	Н	Н	L	Н	L
			High	Η	Η	Ĺ	Н	Н
		8bit	Low	Η	Η	Ĺ	Н	L
			High	Н	Н	L	Н	Н

^{*} HRD1# is constantly kept at High by the internal pull-up resister in order to maintain it unconnected.

Table 4.6 Signal Pattern of Type1

					S1S60	000 signa	l line	
R/W	Endian	Bus size	Operation	HWR0#	HWR1#	HRD0#	HRD1#	HA0
Write	Little	16bit	Word	L	L	Н	L	L
			Low	L	Н	Н	L	L
			High	Η	L	Τ	L	Н
		8bit	Low	Η	L	Τ	L	L
			High	Η	L	Τ	L	Н
	Big	16bit	Word	L	L	Τ	L	L
			Low	L	Η	Τ	L	L
			High	Η	L	Τ	L	Н
		8bit	Low	Η	L	Τ	L	L
			High	Η	L	Τ	L	Н
Read	Little	16bit	Word	L	L	Τ	Н	L
			Low	L	Η	Τ	Н	L
			High	Η	L	Τ	Н	Н
		8bit	Low	Η	L	Τ	Н	L
			High	Η	L	Τ	Н	Н
	Big	16bit	Word	L	L	Н	Н	L
			Low	L	Н	Н	Н	L
			High	Н	L	Н	Н	Н
		8bit	Low	Н	Ĺ	Н	Н	Ĺ
			High	Н	Ĺ	Н	H	H1

^{*} HRD0# is constantly kept at High by the internal pull-up resister in order to maintain it unconnected.

Table 4.7 Signal Pattern of Type2

					S1S60	000 signa	l line	
R/W	Endian	Bus size	Operation	HWR0#	HWR1#	HRD0#	HRD1#	HA0
Write	Little	16bit	Word	L	Н	Н	L	L
			Low	Н	Н	L	L	L
			High	Н	Н	L	L	Η
		8bit	Low	Η	Η	L	L	L
			High	Η	Η	L	L	Н
	Big	16bit	Word	L	Η	Н	L	L
			Low	Η	Η	L	L	L
			High	Η	Η	L	L	Н
		8bit	Low	Н	Н	L	L	L
			High	Н	Н	L	L	Н
Read	Little	16bit	Word	L	Н	Н	Н	L
			Low	Н	Н	L	Н	L
			High	Η	Η	L	Н	Н
		8bit	Low	Н	Н	L	Н	L
			High	Н	Н	L	Н	Н
	Big	16bit	Word	Ĺ	Η	Н	Н	Ĺ
			Low	Η	Η	Ĺ	Н	Ĺ
			High	Η	Η	Ĺ	Н	Н
		8bit	Low	Η	Η	Ĺ	Н	Ĺ
			High	Н	Н	Ĺ	Н	Н

* HWR1# is constantly kept at High by the internal pull-up resister in order to maintain it unconnected.

Table 4.8 Signal Pattern of Type3

					S1S60	000 signa	l line	
R/W	Endian	Bus size	Operation	HWR0#	HWR1#	HRD0#	HRD1#	HA0
Write	Little	16bit	Word	L	L	Н	Н	L
			Low	L	Н	Н	Н	L
			High	Н	L	Н	Н	Η
		8bit	Low	L	Η	Н	Н	L
			High	L	Η	Н	Н	Н
	Big	16bit	Word	L	L	Н	Н	L
			Low	L	Η	Н	Н	L
			High	Η	L	Н	Н	Н
		8bit	Low	L	Н	Н	Н	L
			High	L	Η	Н	Н	Н
Read	Little	16bit	Word	Н	Н	L	L	L
			Low	Н	Н	L	Н	L
			High	Η	Η	Н	L	Н
		8bit	Low	Н	Н	L	Н	L
			High	Н	Н	L	Н	Н
	Big	16bit	Word	Н	Н	L	L	L
			Low	Н	Н	L	Н	L
			High	Н	Н	Н	L	Н
		8bit	Low	Η	Η	L	Н	Ĺ
			High	Н	Н	L	Н	Н

Table 4.9 Signal Pattern of Type5

					S1S60	000 signa	l line	
R/W	Endian	Bus size	Operation	HWR0#	HWR1#	HRD0#	HRD1#	HA0
Write	Little	16bit	Word	L	L	Н	Н	L
			Low	L	Н	Н	Н	L
			High	L	L	Н	Н	Н
		8bit	Low	L	Н	Н	Н	L
			High	L	Н	Н	Н	Н
	Big	16bit	Word	L	L	Н	Н	L
			Low	L	Н	Н	Н	L
			High	L	L	Н	Н	Н
		8bit	Low	L	Н	Н	Н	L
			High	L	Η	Τ	Н	Н
Read	Little	16bit	Word	Η	Ц	Ш	Н	L
			Low	Η	Η	Ш	Н	L
			High	Η	Ц	Ш	Н	Н
		8bit	Low	Η	Η	Ш	Н	L
			High	Η	Η	Ш	Н	Н
	Big	16bit	Word	Η	Ц	Ш	Н	L
			Low	Н	Н	L	Н	L
			High	Η	L	Ĺ	Н	Н
		8bit	Low	Н	Н	L	Н	L
			High	Н	H	L	H	Н

^{*} HRD1# is constantly kept at High by the internal pull-up resister in order to maintain it unconnected.

Table 4.10 Signal Pattern of Type6

					S1S60	000 signa	l line	
R/W	Endian	Bus size	Operation	HWR0#	HWR1#	HRD0#	HRD1#	HA0
Write	Little	16bit	Word	L	L	Н	L	L
			Low	L	L	Η	Н	L
			High	L	Η	Ι	L	Ι
		8bit	Low	L	L	Н	Н	L
			High	L	L	Н	Н	Η
	Big	16bit	Word	L	L	Н	L	L
			Low	L	L	Н	Н	L
			High	L	Н	Н	L	Н
		8bit	Low	L	L	Н	Н	L
			High	L	L	Н	Н	Н
Read	Little	16bit	Word	Н	L	L	L	L
			Low	Н	L	L	Н	L
			High	Н	Н	L	L	Н
		8bit	Low	Н	L	L	Н	L
			High	Н	L	L	Н	Н
	Big	16bit	Word	Н	L	L	L	L
			Low	Н	L	L	Н	L
			High	Н	Н	L	L	Н
		8bit	Low	Н	L	L	Н	L
			High	Η	L	Ш	Η	Ι

4.4 Data Swap by Use of Endian

S1S60000 swaps data, as needed, using the endian and the port accessed in order to reduce the swapping load on the host CPU. When an appropriate endian and bus size are selected, you need to be conscious of the swap.

Following describes examples of actual swap procedures.

• When accessing the command/status port On the command/status port, swap is carried out in such that the bit order on the host CPU's 16-bit register and S1S60000 becomes the same. Specifically, the swap becomes available when the big endian and 8-bit bus size are selected.

• When accessing the data port

When a continued byte string on the memory is transferred, swap on the data port ensures the same byte order on the CPU and S1S60000. Specifically, the swap becomes available when the big endian and 16-bit bus size are selected.

Table 4.11 shows state of the data being written from the host CPU and obtained by S1S60000. Table 4.12 shows state of data being written from S1S60000 and obtained by the host CPU.

R/W	Endian	Bus size	Operation	Command port 1234h write operation	Data port 5678h write operation
Write	Little	16bit	Word	1234	5678
			Low Byte	xx34	xx78
			High Byte	12xx	56xx
		8bit	Low Byte	xx34	xx78
			High Byte	xx12	xx56
	Big	16bit	Word	1234	7856(*1)
			Low Byte	12xx	78xx(*1)
			High Byte	xx34	xx56(*1)
		8bit	Low Byte	xx12(*1)	xx78
			High Byte	xx34(*1)	xx56

Table 4.11 Data Obtained by S1S60000 in Write Operation

Table 4.12 Data Obtained by Host CPU in Read Operation

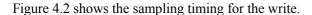
R/W	Endian	Bus size	Operation	Status port 1234h read operation	Data port 5678h read operation
Read	Little	16bit	Word	1234	5678
			Low Byte	zz34	zz78 5678(*2)
			High Byte	12zz	56zz 5678(*2)
		8bit	Low Byte	zz34	zz78
			High Byte	zz12	zz56
	Big	16bit	Word	1234	7856(*1)
			Low Byte	12zz	78zz(*1) 7856(*1, *2)
			High Byte	zz34	zz56(*1) 7856(*1, *2)
		8bit	Low Byte	zz12(*1)	zz78
			High Byte	zz34(*1)	zz56

zz: High impedance, but forced to FFh by the pull-up register.

xx: Uncertain

^{*1:} The upper and lower bytes are transposed by the swap operation.

^{*1:} The upper and lower bytes are transposed by the swap operation.


^{*2:} As for Type0, 16-bit long data is output on the bus, but 8 the host CPU acquires bits alone.

4.5 Access Timing

Writing from the host interface to S1S60000 takes place asynchronously and the state of the signals changes independent of the internal bus clock of S1S60000. Thus, S1S60000 continuously samples state of the host interface signals using the internal bus clock to implement the write operation at the first non-access state that occurred following the access state being detected in two consecutive samplings. The bus cycle of the host CPU, therefore, must be set to allow at least three times of sampling (2 cycles with the internal bus clock + more than the setup time). Since cycles of the sampling timing can vary according to the internal bus clock, special attention is required when operating S1S60000 at a low internal bus clock.

OSC3 input	Operation mode	Internal bus clock	Minimum access period (ns)(*1)
25MHz	Normal	50MHz	45
25MHz	Power save	12.5MHz	165
20MHz	Normal	40MHz	55
10MHz	Normal	20MHz	105

Table 4.13 Access Time required depending on Operation Mode

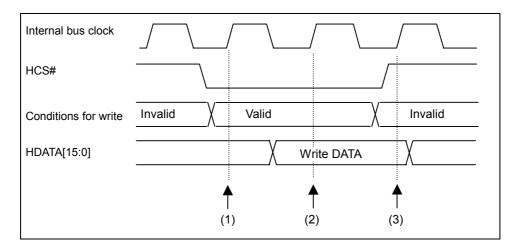


Figure 4.2 Sampling Timing for Write

- (1): The timing when the write condition is met for the first time. The data is acquired and held temporarily.
- (2): The timing when the write condition is met for the second time. The data is acquired again, used to overwrite (1) data and then held temporarily.
- (3): The timing when non-access state is detected for the first time. The data that had been acquired previously is obtained by S1S60000 at this timing.

Operations at respective read timings are essentially the same as the write operation though the data bus drive timing is not identical. Figure 4.3 shows the sampling timing.

^{*1:} The period in which access with the host I/F input signal is maintained

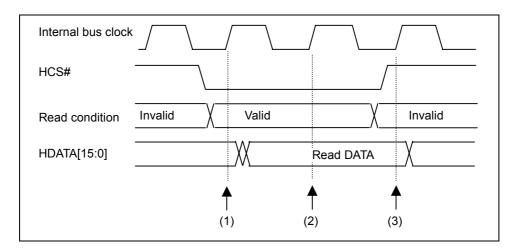


Figure 4.3 Sampling Timing for Read

- (1): The timing when the read condition is met for the first time. Driving of the data bus is started.
- (2): The timing when the read condition is met for the second time. Driving of the data bus is continued.
- (3): The timing when the non-access state is detected for the first time. Driving of the data bus is stopped at this timing.

The access condition is validated only when the write condition or read condition is met and HCS#=Low. The order, in which above conditions are made valid, is optional. When the setup time requirement was not met because of change of state the signal occurred immediately before the sampling, the sampling condition is regarded invalid. In this case, the valid access must wait for the next sampling.

5. HARDWARE CONTROL

Using GPIO and I²C bus master contained in S1S60000 makes hardware control easier. Following lists controllable hardware.

- Built-in register [to be described in Chapter 5.2]
- GPIO (General-Purpose Input/Output) [to be described in Chapter 5.3]
- I²C slave device [to be described in Chapter 5.4.2]
- EEPROM [to be described in Chapter 5.5]
- Flash ROM: 1Kbyte area available for user

5.1 Control Approach

User can control the built-in hardware of S1S60000 according to the following approaches.

- Control from network
- Control from host interface
- Control form external I²C master
- Control from serial interface

Table 5.1 shows relation between the control approaches and target hardware of control.

Table 5.1 Relation between Control Approaches and Target Hardware

Control approaches	Built-in register	GPIO	I ² C Slave	EEPROM	Flash ROM
From network	×	0	0	Δ	×
From host I/F	0	0	0	0	0
From external I ² C master	0	0	_	×	×
From serial interface	×	0	0	0	×

 \bigcirc : Accessible \triangle : Partially accessible \times : Not accessible

5.1.1 Control from Network

Since S1S60000 contains the protocol processing function, it becomes possible to read or control output of GPIO and I²C from network by designating URI. Following shows the URI designation format. All characters are ASCII characters and case insensitive.

Designation format: http://Address:8080/Target[/Destination][?Data]

Address IP address assigned to S1S60000. Target port number of access is constantly

8080

Target Specify one of the followings (target of access)

GPIO, I²C, EEPROM

* In order to prevent inappropriate rewrite, you can prohibit rewrite from

network. For the detail, refer to Chapters 5.2.10, 5.2.11 and 5.2.12.

Destination It depends on the target hardware of read/write such as memory and registers.

Data It is the data indicating the operation to be conducted on the destination.

It is the data indicating the operation to be conducted on the destination. It depends on the destination. You can specify two or more data by separating

them with "&".

To the control request, S1S60000 sends the return value in the following three responses. All return values in the three responses are coded in the same ASCII character string.

In HTTP response header X-DEVICE-VALUE: Return value

In HEAD element of HTML

<META NAME="DEVICE-VALUE" CONTENT="Return value">

When the hardware control ended unsuccessfully, S1S60000 returns the error using the status line of HTTP response header.

(1) Access to GPIO

When controlling GPIO, code "GPIO" in Target, port number of GPIO in Destination and the data to be output in Data.

Table 5.2 shows the specification format for GPIO access on 1-port basis. Table 5.3 shows the format on 16-port basis. Using the mask, you can operate a specified GPIO alone by setting "1" on the bits corresponding to the target GPIO and setting "0" on all other bits not corresponding to the target.

Table 5.2 GPIO Access Format (1-port basis)

Operation	Operation Designation of port			Return value	
	Digit	Specifiable value	Digit	Specifiable value	Digit
1 port input	2	"00" to "0F" (*1)	_	None	1
1 port output	2	"00" to "0F" (*1)	1	"0","1"	1

^{*1 :} Specify the corresponding GPIO with 2 digits hexadecimal numbers.

Table 5.3 GPIO Access Format (16-port basis)

Operation	Designation of port		Designation of input/output		Designation of mask		Designation of output value		Return value
Operation	Digit	Specifiable value	Digit	Specifiable value	Digit	Specifiable value	Digit	Specifiable value	Digit
16 ports input	2	"0X"	1	"R" (*1)	16	"0","1" (*2)	_	None	16
16 ports output	2	"0X"	1	"W"	16	"0","1" (*2)	16	"0","1"	16

^{*1:} It can be omitted.

When 16 digits are specified, (when the mask, output value and return value are specified), GPIO15 and GPIO0 are arranged in the upper and the lower, respectively. Table 5.4 shows state of data and return values.

Table 5.4 GPIO Data Designation/Return Value

Return value	Description						
"0"	Output is specified and low level is being output. When the mask is specified, the port is dropped						
	from the target. If the output value is specified, low level is output to the port.						
"1"	Output is specified and high level is being output. When the mask is specified, the port is selected						
	as the target of operation. When the output is specified, high level is output to the port.						
"L"	Input is specified and low level is currently input.						
"H"	Input is specified and high level is currently input.						
"U"	Not selected as GPIO. It is used as separate function.						
"P"	Control from network is prohibited.						

Example 1 When outputting high level to GPIO0 at IP address 192.168.1.1

URI: http://192.168.1.1:8080/GPIO/00?1

Response (High level being output): <DIV NAME="DEVICE-VALUE">1</DIV>

[Example 2] When checking input/output setup and input state of GPIO1 at IP address 192.168.1.1

URI: http://192.168.1.1:8080/GPIO/01

Response (Low level being input): <DIV NAME="DEVICE-VALUE">L</DIV>

[Example 3] When outputting high level to GPIO0 and low level to GPIO4 at IP address 192.168.1.1

URI: http://192.168.1.1:8080/GPIO/0X?W&00000000010001&00000000010000

Response: <DIV NAME="DEVICE-VALUE">LLLLPPPPLLL1PLL0</DIV>

[Example 4] When checking input/output setup and input state of GPIO15 from GPIO0 at IP address 192.168.1.1

URI: http://192.168.1.1:8080/GPIO/0X

Response: <DIV NAME="DEVICE-VALUE">LLLLPPPPLLL0PLL0</DIV>

^{*2 :} It can be omitted. Omitting it automatically selects "11111111111111".

(2) I²C

When controlling I²C master function, specify "I²C" in Target segment and the control data row in Data segment. Destination segment is not provided.

In the control data row, you can specify the value to be output to I^2C bus and the restart timing as well as the timing at which input from I^2C bus is to be received and the byte count used. Control data row is coded as shown below.

Table 5.5 I2C Control Data Row Coding Method

Element of control data row	Designation method			
Slave addressing	Beginning of control data. This addressing must be done after restart. In case of 7-bit addressing, set bit[7:1]=Adr[6:0] and specify R/W bit (1:Read, 0:Write) for bit0. In case of 10-bit addressing, set the first byte's bit[7:3]="11110" and bit[2:1]=Adr[9:8], and then set R/W bit (1:Read,0:Write) for bit0. In the second byte, set bit[7:0]=Adr[7:0].			
Value to be output to I ² C bus	2 digits hexadecimal numbers "00" to "FF" for each byte			
Restart timing(*1)	"SR"			
Input timing from I ² C bus and byte count used (*1)	"LN" and succeeding 2 digits hexadecimal numbers "01" to "08"			

^{*1:} It can be coded more than once in the same control data row.

In the control of I²C master function, the return value takes one of the following values.

Table 5.6 I²C Control Data Row Coding Method

Return value	Result of control
"ERROR"	Requested control was not completed.
Hexadecimal number x2 (byte count specified with "LN") digits	Completed every requested control and received input from I ² C bus.
"OK"	Completed every requested control.

When the return value is expressed in hexadecimal numbers and the byte count specified with "LN" is 2 or greater, the byte first received from I²C bus is arranged in the upper digit and the byte received the next is arranged in the lower digit. Following describes examples of access (following applies to the device where the data that succeeds addressing as an index).

[**Example 1**] When writing 2 bytes long data (01h, 02h) from Master at IP address 192.168.1.1 to index 0 of 7bit Slave address 02 device.

URI: http://192.168.1.1:8080/I2C?04000102

Response: <DIV NAME="DEVICE-VALUE">OK</DIV>

[Example 2] When reading 3 bytes long data at index 0 of 7bit Slave address 02 device from Master at IP address 192.168.1.1.

URI: http://192.168.1.1:8080/I2C?0400SR05LN03

Response: <DIV NAME="DEVICE-VALUE">000001</DIV>

[**Example 3**] When reading 3 bytes long data at index 0 of 10bit Slave address 234 device from Master at IP address 192.168.1.1.

URI: http://192.168.1.1:8080/I2C?F43400SRF5LN03 Response: http://192.168.1.1:8080/I2C?F43400SRF5LN03 Response: https://192.168.1.1:8080/I2C?F43400SRF5LN03

(3) EEPROM

When accessing EEPROM, designate "EEPROM" in Target segment, offset in Destination segment and value to be output to offset in Data segment. Exchange of data with EEPROM is done on word (16 bits as one word) basis.

Table 5.7 EEPROM Access Format and Return Value

Input/output		Designation of offset	Desig	nation of output data	Return value	
Digit		Specifiable value	Digit Specifiable value		Return value	
Input	2	"00" to "3F"(*1)	_	None	"0000" to "FFFF"	
Output	2	"10" to "3F"(*1,*2)	4	"0000" to "FFFF"	"OK", "ERROR"	

^{*1 :} Specifiable range depends on size of the EEPROM connected. In the example, 93C46 (1Kbit) is assumed.

Example 1 When entering data from EEPROM offset 0Dh at IP address 192.168.1.1.

URI: http://192.168.1.1:8080/EEPROM/0D

Response: <DIV NAME="DEVICE-VALUE">0001</DIV>

Example 2 When outputting data 6401h to EEPROM offset 0Dh at IP address 192.168.1.1.

URI: http://192.168.1.1:8080/EEPROM/0D?6401 Response: DIV>

5.1.2 Control from Host Interface

When accessing user operable S1S60000 hardware from the host interface, select "SYSTEM" for the terminal point as you specify the command. The internal registers of the S1S60000 and User Flash ROM area are also accessible from the host interface in addition to the hardware accessible from the network. A system can be built by reading the configurations from the User Flash ROM and setting them on the internal registers. For details, refer to "S1S60K Series Host I/F Manual".

5.1.3 Control from External I²C Master

When controlling the hardware from an external I^2C master, you can access to internal registers by operating S1S60000 as I^2C slave device. For the detail, refer to Chapter 5.4.2.

5.1.4 Control from Serial Interface

Hardware can be controlled by the serial interface only when the GPIO [15:8] is set to be used as a serial interface by the GPALT register, and the GPIO10 pin is high. In this case, the communication data format used is the following ASCII codes. No distinction between upper and lower cases is required.

Designation format: Target[/Destination][?Data]<Return>

Return value format: Return value < CR > < LF >

Target Specify one of the following:

GPIO, I2C or EEPROM

Destination Actual memory or register to be written/read. It differs depending on

the target.

Data indicating the operation to be executed for the destination. It

differs depending on the destination. Multiple data are specified by

using delimiter "&".

<Return> Either of CR, CR+LF or LF

The S1S60000 returns a return value in response to a control request. When hardware control fails, it returns an "ERROR" string.

^{*2 :} Rewrite from network is always prohibited in the area from "00" to "10".

And, write to the area prohibited by the user is also disabled when EPMSK register is so set by the user.

(1) GPIO access

When controlling GPIO, designate "GPIO" as the target, the GPIO port number as the destination and data to be output to the port.

The designation format and data/return value are the same as those of control from the network. Tables 5.3 and 5.4 indicate the designation form when GPIO access is performed on a 16-port basis, and the data/return value states, respectively.

Only a specific GPIO can be operated by setting the bits corresponding to the target GPIO as "1", otherwise "0" in the mask designation. To specify 16 digits (i.e. when mask, output value and return value are designated), the upper order is GPIO15 followed by lower order GPIO0.

[Example 1] Outputting high to GIPO0

Designated data: GPIO/00?1<return> Return value: 1<CR><LF>

[Example 2] Referring to GPIO1 I/O setting and input status

Designated data: GPIO/01<return> Return value: L<CR><LF>

[Example 3] Outputting low to GPIO0 and high to GPIO4

Designated data: GPIO/0X?W&000000000010001&0000000000010000

Return value: LLLLPPPPLLL1PLL0<CR><LF>> [**Example 4**] Referring to GPIO15 I/O setting and input status from GPIO1

Designated data: GPIO/0X<return>

Return value: LLLLPPPPLLL0PLL0<CR><LF>

(2) I2C

When controlling I²C master functions, designate "I²C" as the target and control data strings as the data. No destination setting is required for the I²C master.

For control data strings, the value to be output to the I²C bus, restart timing, timing to receive input from the I²C bus and its number of bytes can be designated. The control data strings and return values must be written similarly to when controlling from the network as indicated in Tables 5.5 and 5.6.

When the return value is a hexadecimal number and the bytes designated in "LN" are more than 2 bytes, the bytes received by I²C earlier becomes the upper order and those received later become the lower order of the string. Access examples are indicated as follows (examples when the device used interprets an address designation data as an index).

[Example 1] Writing 2-byte data (01h, 02h) from index 0 of the 7-bit slave address 02 device

Designated data: I2C?04000102<return>

Return value: OK<CR><LF>

[Example 2] Reading out 3-byte data from index 0 of the 7-bit slave address 02 device

Designated data: I2C?0400SR05LN03<return>

Return value: 000001<CR><LF>

[Example 3] Reading out 3-byte data from index 0 of the 10-bit slave address 234 device

Designated data: I2C?F43400SRF5LN03<return>

Return value: 000001<CR><LF>

(3) EEPROM

When accessing to the EEPROM, designate "EEPROM" as the target, offset as the destination and value output to the offset as the data. EEPROM input/output is performed on a word basis (16 bytes is counted as 1 word). The designation format and return values are as follows.

Table 5.8 EEPROM Access Format and Return Values (via Serial)

Input/output		Offset designation	Out	put data designation	Return values	
Impuboutput	Digit	Specifiable value	Digit	Specifiable value	Neturn values	
Input	2	"00" to "3F"(*1)	_	None	"0000" to "FFFF"	
Output	2	"00" to "3F"(*1)	4	"0000" to "FFFF"	"OK", "ERROR"	

^{*1:} The specifiable range differs depending on the EEPROM size. The above is an example when the size is 93C46 (1Kbit).

Unlike controlling from the network, designation is possible for the entire range.

[**Example 1**] Inputting data from EEPROM offset 0Dh

Designated data: EEPROM/0D<return> Return value: 0001<CR><LF>

[**Example 2**] Outputting data 6401h to EEPROM offset 0Dh Designated data: EEPROM/0D?6401</br>

Return value: EEPROM/0D/6401<

5.2 Built-in Registers

Following lists built-in register that allowing user's setting.

Table 5.9 List of Accessible Built-in Registers

Register	Offset	Major functions
name		•
REVID	0h	Device ID, Revision display (R/O)
MAC0	1h	MAC address
MAC1	2h	MAC address
MAC2	3h	MAC address
GENCR	4h	General-purpose setting register
HIFCR	5h	Specifies host interface
I2CSADR	6h	Specifies I ² C slave address
I2CCONF	7h	Specifies I ² C clock, specifies noise filter
GPALT	8h	Enables alternate GPIO function
GPCFG	9h	Specifies GPIO I/O
GPDAT	Ah	Specifies GPIO output value
GPMSK	Bh	Specifies operation mask of GPIO from network
EPMSK	Ch	Prohibits EEPROM operation from network
I2CMSK	Dh	Prohibits operation of I ² C built-in slave from network
PMWAIT	Eh	Specifies waiting time in power management
PHYMODE	Fh	Specifies operation mode of PHY
ANEGR	10h	Specifies information to be stored among those
		resulted from the auto-negotiation unique to PHY
IPADRH	11h	IP address
IPADRL	12h	
SNMSKH	13h	Subnet mask
SNMSKL	14h	
DGWH	15h	Default gateway
DGWL	16h	
DADR0H	17h	Destination address 0
DADR0L	18h	
DADR1H	19h	Destination address 1
DADR1L	1Ah	
DADR2H	1Bh	Destination address 2
DADR2L	1Ch	
DADR3H	1Dh	Destination address 3
DADR3L	1Eh]
PORT	1Fh	Port number
DPORT	20h	Destination port number
RSPAR	21h	Serial communication mode setting
TMOUT	22h	Timeout setting

Each register consists of 16 bits. Following describes detail of respective registers (Value in Init. space represents the initial value after reset).

5.2.1 **REVID**

(Revision Register)

Indicates ID and Revision of S1S60000. Read only is available.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8				
	REV[7:0]										
bit7	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0										
	ID[7:0]										

bit	Name	Init.	Description
15:8	REV	00h	(Revision)
			Indicates revision of the chip. Current value is 00h.
7:0	ID	C3h	(Device ID)
			Indicates ID of the chip. ID of S1S60000 is C3h.

5.2.2 MAC0, MAC1, MAC2

(Meda Access Controller Address Register)

Used to specify MAC address. Size of respective registers is 16 bits. The address is set in the order of network byte in MAC0 lower byte, MAC0 upper byte, MAC1 lower byte up to MAC2 upper byte. Initial values are all 0000h.

Example:

When setting the MAC address 00-00-48-12-34-56, following values are specified to the registers.

MAC0: 0000h, MAC1: 1248h, MAC2: 5634h

Note: When using S1S60000, user is requested to obtain OUI (Organizationally Unique Identifier) from IEEE to set a correct MAC address.

5.2.3 GENCR

(General Configuration Register)

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
DISBC	DDSTEN	Reserved	SLPEN	PSEN	SERCONF[2:0]		

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
ESKD	IV[1:0]	MDCD	IV[1:0]		Rese	erved	

bit	Name	Init.	Description
15	DISBC	0	(Disable Broadcast Receive) Used to specify whether broadcast packets are to be received or not. This function is used only under limited conditions. It should normally be set to 0. 0: Receives broadcast packets 1: Does not receive broadcast packets
14	DDSTEN	0	(Default Destination Massaging enable) When the interrupt input pin (alternate function of GPIO0) is enabled, it enables the function of sending status of GPIO to the address in DADR0 register and, at the same time, indicates validity of the destination address. 0: Interrupt notice function is invalid 1: Interrupt notice function is valid and DADR0 is valid
13	Reserved	0	Reserved. Be sure to set 0.
12	SLPEN	0	(Sleep Mode Enable) Selects use or non-use of the sleep mode as the power management. For the sleep mode, refer to Chapter 6. 0: Does not use the sleep mode 1: Use the sleep mode
11	PSEN	0	(Power Save Mode Enable) It reduces the operating clock to 1/4 of the normal level in order to save power consumption. 0: Does not use the power save mode. 1: Use the power save mode.
10:8	SERCONF	000	(Serial Configuration) When the serial I/F pin (alternate function of GPIO [15:8]) is enabled, it specified how to use the pin. 010: Host side start-stop synchronous serial 1ch with control line Other than 010: Reserved
7:6	ESKDIV	00	(EEPROM Serial Clock Divide) It is used specify how the EEPROM I/F clock should be divided in comparison with the internal bus clock. The slower the clock is, the longer becomes the time required for the access. Set an appropriate time on the EEPROM connected. 11:/32 10:/64 01:/128 00:/256
5:4	MDCDIV	00	(MIF Clock Divide) It is used to specify how the MII Management I/F clock should be divided in comparison with the internal bus clock. The slower the clock is, the longer becomes the time required for the access. Set an appropriate division so that the clock may be 4MHz maximum. 11:1/4 10:1/8 01:1/16 00:1/32
3:0	Reserved	0000	Reserved. Be sure to set 0.

5.2.4 HIFCR

(Host Interface Configuration Register)

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
Reserved	HIPOL	Reserved	HENDN	HSIZE	HIFSEL[2:0]		

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
			Rese	rved			

bit	Name	Init.	Description
15	Reserved	0	Reserved. Be sure to set 0.
14	HIPOL	0	(Host Interrupt Polarity)
			When the host I/F uses interrupt signal, it is used to specify its polarity.
			0:Low active
			1:High active
13	Reserved	0	Reserved. Be sure to set 0.
12	HENDN	0	(Host Endian)
			It is used to specify the endian of the host I/F.
			0:Little
			1:Big
11	HSIZE	0	(Host Interface)
			It is used to specify the bus size of the host I/F.
			0:16bit
			1:8bit
10:8	HIFSEL	000	(Host Interface Type)
			It is used to switch type of the host I/F. For the detail, refer to Chapter 4.3.
7:0	Reserved	00h	Reserved. Be sure to set 0.

5.2.5 I2CSADR

 $(I^2C\ Slave\ Address\ Register)$ It saves the address of S1S60000 when operated as $I^2C\ slave\ device.$

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
			Rese	erved			

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Reserved				SADR[6:0]			

bit	Name	Init.	Description					
15:7	Reserved	all 0	Reserved. Be sure to set 0.					
6:0	SADR	30h	t is used to specify the slave address when S1S60000 operates as I ² C slav					
			pecify a value in the range of 30h to 37h.					
			[Important]					
			The value specified here must be the one officially assigned by Philips of Holland. For the S1S60000, the range of 30h to 37h is assigned by Philips.					

5.2.6 I2CCONF

(I 2 C Configuration Register) It is used to specify the clock when S1S60000 is operated as I 2 C master device.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8		
		Reserved		NCCNT[2:0]					
_									
bit7	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0								

bit	Name	Init.	Description						
15:11	Reserved	00000	Reserved. Be sure to set 0.						
10:8	NCCNT	000	(Noise Cancel count value : Master, Slave)						
			It is used to select a value of the noise canceller of I ² C bus. A larger value removes noise better. Normally the value is selected in the 0 to 2. For a noisy environment, select 3 or greater value. (SCI delay count value: Master)						
7:0	SCLCNT	00h	(SCL delay count value: Master)						
			When S1S60000 operates as I ² C master device, it is used to specify the I ² C transfer clock. The transfer clock is calculated according to the following formula.						
			² C transfer clock [Hz] = Internal bus clock /(2 × (SCLCNT+NCCNT)+15)						
			When connecting the Fast mode device, the clock should be 400kHz maximum. And when connecting the Normal mode device, 100kHz maximum is recommended.						
			[Setting example]						
			When OSC3 input is 25MHz, Internal bus clock = 50MHz						
			As for Fast mode: SCLCNT=53 (35h), NCCNT=2						
			As for Normal mode: SCLCNT=241 (F1h), NCCNT=2						

5.2.7 **GPALT**

(GPIO Alternate Function Register) It is set when enabling the alternate function of GPIO [15:0] pin.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
GPALT15	GPALT14	GPALT13	GPALT12	GPALT11	GPALT10	GPALT9	GPALT8

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
GPALT7	GPALT6	GPALT5	GPALT4	GPALT3	GPALT2	GPALT1	GPALT0

bit	Name	Init.	Description							
15:8	GPALT[15:8]	00h	Used to enable function of GPIO [15:8] as the serial pin. Refer to Chapter 2.3							
			for detail.							
			[Important]							
			Be sure to switch bit [15:8] in a lump.							
			0: GPIO function							
	0041.77	-	1: Serial I/F pin							
7	GPALT7	0	Used to enable function of GPIO7 as OSCCTL.							
			After the sleep mode is turned on, GPIO7 is used to specify whether the							
			external oscillator is to be stopped or not. When this bit is 1, GPIO7 generates							
			output. In the normal operation, its output is high level and in the sleep mode,							
			low level is output.							
			0: GPIO7 1: OSCCTL output							
6	GPALT6	0	Alternate function of GPIO6 is not prepared. Set "0".							
5	GPALT5	0	Alternate function of GPIO5 is not prepared. Set "0".							
4	GPALT4	0	Alternate function of GPIO4 is not prepared. Set "0".							
3	GPALT3	0	Alternate function of GPIO3 is not prepared. Set "0".							
2	GPALT2	0	Used to enable function of GPIO2 as CRS.							
	OFALIZ	U	In half-duplex communication, GPIO2 is used CRS input.							
			0: GPIO2							
			1: CRS input							
1	GPALT1	0	Alternate function of GPALT1 is not prepared. Set "0".							
0	GPALT0	0	Used to enable function of GPIO1 as INT0.							
		-	Detecting the negative-going edge, INT0 enables network's notification							
			function. INT0 is also used to restore the normal mode from the sleep mode.							
			0: GPIO0							
			1: INT0 (Low Edge)							

5.2.8 **GPCFG**

(GPIO I/O Configuration Register)

It is used select the input/output direction of GPIO pin.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
GPCFG15	GPCFG14	GPCFG13	GPCFG12	GPCFG11	GPCFG10	GPCFG9	GPCFG8

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
GPCFG7	GPCFG6	GPCFG5	GPCFG4	GPCFG3	GPCFG2	GPCFG1	GPCFG0

bit	Name	Init.	Description	
15:0	GPCFG15 to GPCFG0	0000h	Used to specify input or output for GPIO [15:0]. to GPIO [15:0] enabling bit-by-bit setup. 0: Selects inputs 1: Selects output	Bit [15:0] is corresponding

5.2.9 **GPDAT**

(GPIO Output Data Register)

Used to specify the output value of GPIO pin.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
GPDAT15	GPDAT14	GPDAT13	GPDAT12	GPDAT11	GPDAT10	GPDAT9	GPDAT8

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
GPDAT7	GPDAT6	GPDAT5	GPDAT4	GPDAT3	GPDAT2	GPDAT1	GPDAT0

bit	Name	Init.	Description
15:0	GPDAT15 to GPDAT0	0000h	When the output mode is set for GPIO [15:0], it is used to specify the value to be output to the pin. Bit [15:0] is corresponding to GPIO [15:0] enabling bit-by-bit setup. When other than the output mode is selected, the value is saved on the register but not notified to the pin. 0: Low output 1: High output

5.2.10 **GPMSK**

(GPIO Access Mask Register)

It is used to prohibit modifying the output value of GPIO pin from network.

L	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	GPMSK15	GPMSK14	GPMSK13	GPMSK12	GPMSK11	GPMSK10	GPMSK9	GPMSK8

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
GPMSK7	GPMSK6	GPMSK5	GPMSK4	GPMSK3	GPMSK2	GPMSK1	GPMSK0

bit	Name	Init.	Description
15:0	GPMSK15 to GPMSK0	0000h	It disables modifying the output value of GPIO from network. Bit [15:0] is corresponding to GPIO [15:0] enabling bit-by-bit setup. This setting is invalid when the output mode is not selected. However, the set value is maintained. 0: Allows modifications from network 1: Prohibits modifications from network

5.2.11 EPMSK

(EEPROM Access Mask Register)

It is used to specify an area on EEPROM where rewrite from network is prohibited.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8	
	EPMSK[15:8]							
bit7	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0							
	EPMSK[7:0]							

bit	Name	Init.	Description
15:0	EPMSK[15:0]	0000h	It is used to prohibit rewrite from network to the indices below the specified value on EEPROM.

5.2.12 I2CMSK

(I²C Slave Access Mask Register)

It is used to prohibit rewrite of the built-in I²C slave from network.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
			Rese	erved			

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Rese	erved			I2CMS	SK[5:0]		

bit	Name	Init.	Description
15:6	Reserved	all 0	Reserved. Be sure to set 0.
5:0	I2CMSK[4:0]	00000	1
			values.

5.2.13 **PMWAIT**

(Power Management Wait Time Register)

When the power management mode is enabled, it is used to specify the waiting time until respective modes are turned on.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
			Rese	erved			

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Rese	erved			SLPWA	AIT[3:0]	

bit	Name	Init.	Description
15:4	Reserved	000h	Reserved. Be sure to set 0.
3:0	SLPWAIT	0h	It is used to specify the waiting time until the sleep mode is turned on from the power down mode. When the set value is "n", waiting time will be approximately 2n (ms).
			When 0 is specified, the sleep mode is immediately turned on. Specifying a value in the range of 1 to 15 allows setting the waiting time in the range of 2ms to 32768ms.

5.2.14 PHYMODE

(Physical Layer Operation Mode) It is used to specify an operation mode of PHY chip.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
ANEGD		Reserved				AMODE[2:0]	

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	Reserved						

bit	Name	Init.	Description					
15	ANEGD	0	Auto Negotiation Disable: It is used to specify whether the auto-negotiation is used or not when establishing the link. When the PHY chip used does not have the auto-negotiation function or when the counterpart of the link does not support the auto-negotiation function, 1 is set so that link condition can be set by MLINK bit. 0: Use auto-negotiation of PHY function.					
11.11	Decembed	0000	1: Does not use auto-negotiation function of PHY.					
14:11	Reserved	0000	Reserved. Be sure to set 0.					
10:8	AMODE	100	Auto Negotiation Link Mode: Used to specify an available link mode using the auto-negotiation.					
			000: 10Base/Half duplex					
			001: 10Base/Full duplex					
			010: 10Base/Full or half duplex					
			011: 100Base/Half duplex					
			100: 100Base/Half duplex or 10Base/Full or Half duplex					
			101: 100Base/Full duplex or 10Base/Full duplex (reserved for future extension and thus not specifiable)					
			110: 100Base/Full or Half duplex (reserved for future extension and not thus specifiable)					
			111: reserved					
7:2	Reserved		Reserved. Be sure to set 0.					
1:0	MLINK	00	Manual Link: When ANEGEN=1, the manual procedure is specified for establishing the link.					
			00: 10Base/Half Duplex					
			01: 10Base/Full Duplex					
			10: 100Base/Half Duplex					
			 11: 100Base/Full Duplex (reserved for future extension and thus not specifiable) 					

5.2.15 ANEGR

(Auto Negotiation Result Information Register)

It is used to specify the storing method for the auto-negotiation function result of the PHY chip.

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
		LSOFF[3:0]			erved	DINV	SINV

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
	DUPLE	EX[3:0]			SPEE	D[3:0]	

bit	Name	Init.	Description
15:12	LSOFF	0001	Link Status Offset: When the link is attempted through the auto-negotiation, which is unique to the PHY chip, is carried out, it is used to specify the position of MII management interface register to store the negotiation result as an offset from index 16. When it is 111, however, the index is 0. 0000: Index 16 register stores result of the attempt to establish the link. 0001: Index 17 register stores result of the attempt to establish the link. 1110: Index 30 register stores result of the attempt to establish the link.
11:10	Reserved	00	Reserved. Be sure to set 0.
9	DINV	0	Duplex Invert: Used to change the meaning of bit being specified for DUPLEX. 0: When Bit[DUPLEX]=1, full duplex and when Bit[DUPLEX]=0, half duplex. 1: When Bit[DUPLEX]=1, half duplex and when Bit[DUPLEX]=0, full duplex.
8	SINV	0	Speed Invert: Used to change the meaning of bit being specified with SPEED. 0: When Bit[SPEED]=1, 100Base and when Bit[SPEED]=0, 10Base. 1: When Bit[SPEED]=1, 10Base and when Bit[SPEED]=0, 100Base.
7:4	DUPLEX	1110	It is used to specify the position of the bits to indicate the duplex mode in the register storing the result of the auto-negotiation (indicated with LSOFF)/ 1111: bit15, 1110: bit14, 0001: bit1, 0000: bit0
3:0	SPEED	1111	It is used to specify the position of the bits to indicate the link speed in the register storing the result of the auto-negotiation (indicated with LSOFF). 1111: bit15, 1110: bit14, 0001: bit1, 0000: bit0

Setup example:

With ICS1893-Y from ICS, the link speed and duplex mode are stored on bit 15 and bit 14 of index 17, respectively. Thus, the setup becomes as shown below.

LSOFF=0001, DINV=0, SINV=0, DUPLEX=1110, SPEED=1111

5.2.16 IPADRH, IPADRL

(Default IP Address)

Used to hold the own IP address. Table 5.10 shows the initial values and the register settings.

Table 5.10 Setup of Address and Subnet Mask

Target	Initial value	Notation in hex	Register setting
IP address	192.168.0.254	C0.A8.00.FE	IPADRH=A8C0h, IPADRL=FE00h
Subnet mask	255.255.255.0	FF.FF.FF.00	SNMSKH=FFFFh, SNMSKL=00FFh
Default gateway	192.168.0.1	C0.A8.00.01	DGWH=A8C0h, DGWL=0100h
Destination address 0	192.168.0.2	C0.A8.00.02	DADR0H=A8C0h, DADR0L=0200h
Destination address 1	192.168.0.3	C0.A8.00.03	DADR1H=A8C0h, DADR1L=0300h
Destination address 2	192.168.0.4	C0.A8.00.04	DADR2H=A8C0h, DADR2L=0400h
Destination address 3	192.168.0.5	C0.A8.00.05	DADR3H=A8C0h, DADR3L=0500h

5.2.17 SNMSKH,SNMSKL

(Subnet Mask)

Used to hold the subnet mask. The initial values and register settings are the same as those shown in Table 5.10.

5.2.18 DGWH,DGWL

(Default Gateway)

Used to hold the address of the default gateway. The initial values and register settings are the same as those shown in Table 5.10.

5.2.19 DADRnH.DADRnL

(Destination Address)

Used to hold the destination address. DADR0H, DADR0L, DADR1H, DADR1L, DADR2H, DADR2L, DADR3H and DADR3L hold the four destination addresses. The initial values and register settings are the same as those shown in Table 5.10.

5.2.20 PORT

(Default Port)

Used to specify the port number for listening when the system operates as a server in the serial emulation mode. The default value is C000h (49152).

5.2.21 **DPORT**

(Destination Port)

Used to specify the port number for destination of the connection when the system operates as a client in the serial emulation mode. The default value is C001h (49153).

5.2.22 SERMODE

(Serial Mode)

SERMODE sets the operation mode for the serial emulation operation. SERMODE is specified with the SERCONF setting of the GENCR register.

The bits are assigned as follows for GENCR.SERCONF=010 (serial emulation mode).

bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8
	Reserved						

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
BAUI	D[1:0]	LEN	STOP	PAF	RITY	FLO	OW

bit	Name	Init.	Descriptions			
15:9	Reserved	all 0	Reserved. Be sure to set 0.			
8:6	BAUD	011	Baud rate: Used to specify baud rate of the serial interface. 000: 1200 001: 2400 010: 4800 011: 9600 100: 19200 101: 38400 110: 57600 111: 115200 Data Length: Data length			
5	LEN	1	Data Length: Data length 0: 7bit 1: 8bit			
4	STOP	0	Stop bit: Stop bit length 0: 1bit 1: 2bit			
3:2	PARITY	00	Parity: Parity check setting 00: None 01: Reserved 10: Even number parity 11: Odd number parity			
1:0	FLOW	01	Flow Control: Flow control setting 00: None 01: RTS/CTS 10 or 11: Reserved.			

5.2.23 TM OUT

(Timeout)

Used to specify the timeout value for TCP connection on the second time scale. The default value is 64 (40h). When 0 is specified, it is set to the default value (64 seconds). This setting is used for the following purposes in the same way as when TCP is specified by option parameters 12 and 13 of the open command.

- TTL of the IP datagram to be transmitted.
- Time taken to give up active open of the TCP.
- Time taken to wait for ACK to receive TCP transmitted data.
- Time taken to wait for host CPU's response for a received SNMP request.

5.3 GPIO

As GPIO (General Purpose Input/Output), S1S60000 has 16 GPIO pins of GPIO[7:0] and GPIO[15:8]. Each pin allows independent operation. Special functions other than the GPIO function are assigned to some pins. You can switch the functions by changing the setting of the built-in registers.

After the reset, every pin usable as GPIO is set for the input and the output value is initialized to 0. When an output operation is conducted on a pin being specified set for input, the specified data is set as a requested output value but actual output is not generated. If the pin is set as an output pin after that, the specified value will be output from the pin. When you want to maintain the GPIO output at high level after the hardware reset, set the level of the pins currently being reset at high by use of the external pull-up register and then select 1 for the output setting.

Pin name	Characteristics (*1)	Special function	Priority
GPIO0/INT0	5V tolerant input	Interrupt notice/return from sleep mode	1
GPIO1	5V tolerant input		1
GPIO2/CRS	5V tolerant input	CRS input	1
GPIO3	5V tolerant input		2
GPIO4	5V tolerant input		3
GPIO5	5V tolerant input		3
GPIO6	5V tolerant input		3
GPIO7/OSCCTL	5V tolerant input	Control of external OSC	3
GPIO8/RXD	3.3V schmitt input	Serial I/F	2
GPIO9/TXD	3.3V schmitt input	Serial I/F	2
GPIO10/MODE	3.3V schmitt input	Serial I/F	2
GPIO11/RSV1	3.3V schmitt input	Serial I/F	2
GPIO12/CTS	3.3V schmitt input	Serial I/F	1
GPIO13/DSR	3.3V schmitt input	Serial I/F	1
GPIO14/RTS	3.3V schmitt input	Serial I/F	1
GPIO15/DTR	3.3V schmitt input	Serial I/F	1

Table 5.11 GPIO Pin Functions

Priority indicates the order of operation when two or more pins are to be operated at the same time. Switching occurs at the same time among the pins with the same priority level. Among the pins with different priority levels, however, there occurs some differences in input and output (due to the time required for the software-based operation). If you want such pins to change at the same time, an additional arrangement such as an external latch to be operated by GPIO is required.

When DDSTEN bit of GENCR register is 1, GPIO0 can be used as the low-edge input interrupt pin. As an interrupt is caused, a packet to notify status of GPIO is sent to DPORT port of DADR0 address set on EEPROM. Configuration of the packet is the same as that of the packet used in the 16-bit GPIO operation done from network.

GPIO2 is used as CRS input pin in half-duplex communication.

When OSCCTL bit of GENCR register is 1, GPIO7 functions as the control pin of the external oscillator. In this setup, this pin output high level during the normal operation, but if the sleep mode is turned on and the operating clock is switched to OSC1, its output is switched to low level. By this arrangement, the external oscillator is stopped reducing the overall power consumption as the result. When exiting from the sleep mode with the trigger, GPIO7 is set to high and, after a predetermined oscillation stabilizing time (approximately 10ms), switching to OSC3 takes place to recover the normal mode.

GPIO [15:8] can be used as the start-stop synchronous serial pin from the setting of SERCONF of GENCR register. For the detail, refer to "2.3 Serial Interface".

^{*1:} Every pin conforms to CMOS input/output.

5.4 I2C

I²C is an Inter IC Bus developed by Philips. S1S60000 contains the I²C master/slave function. Following describes features of the function.

- Master/slave transmission and reception
- Bus arbitration function
- Clock synchronization function
- Restart generating function
- Bus error detecting function
- Programmable noise cancel function
- 10-bit/7-bit master/slave addressing
- Supports Standard mode (Max. 100Kbps) /high-speed mode (Max. 400Kbps)
- Support multi-master

Figure 5.1 shows the basic format of I²C bus transfer.

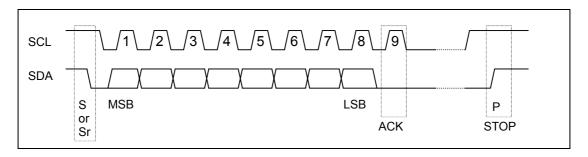


Figure 5.1 I²C Basic Format

[Precautions]

Acknowledge from S1S60000 is internally processed with software before it is returned. Thus, the response time fluctuates. If S1S60000 maintains SCL at low level during that time, the period up to acknowledge can be extended. Note, however, that this period depends on the time required for the internal processing.

5.4.1 Master Function

Master function of S1S60000 supports the multi-master. When another master device is present on I²C bus, this function synchronizes the clock. Thus, as long another master device maintains SCL signal at low level, S1S60000 refrains from latching SDA. This arrangement enables to specify the minimum HIGH or LOW retaining period of SCL on I2CCONF register thereby allowing the I²C bus clock to change responding to the period.

Procedure of communication with master device

Following describes the communication procedure when S1S60000 is the master and the external device is the slave.

[Procedure 1]

Addressing coding procedure

When the external device has the automatic address increment function, data can be continuously sent once the addressing is done at the start. The received address is added on byte basis.

- (1) S1S60000 sends the start condition
- (2) S1S60000 sends the slave address of the external device and R/W bit from the write mode
- (3) Confirms acknowledge from the external device
- (4) S1S60000 sends the address to be written to the external device
- (5) Confirms acknowledge from the external device
- (6) S1S60000 sends the data to be written to the address specified in step (4) above
- (7) Confirms acknowledge from the external device
- (8) Above (6) and (7) are repeated as needed. Addresses are automatically incremented in the external device.
- (9) S1S60000 sends the stop condition

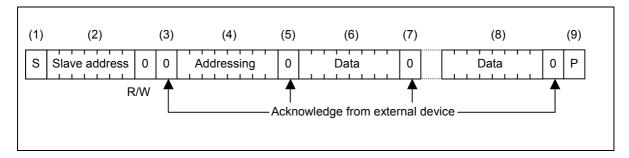


Figure 5.2 Writes Addressing as I²C Master

[Procedure 2]

Addressing read procedure

From the write mode, S1S60000 writes the address to be read and then turns on the read mode to read the actual data.

- (1) S1S60000 sends the start condition
- (2) S1S60000 sends the slave address of the external device and R/W bits from the write mode
- (3) Confirms acknowledge from the external device
- (4) S1S60000 sends the address to be written to the external device
- (5) Confirms acknowledge from the external device
- (6) S1S60000 sends the start condition (stop condition is not sent): Restart
- (7) S1S60000 sends the slave address of the external device and R/W bits from the read mode
- (8) Confirms acknowledge from the external device (from this step, S1S60000 becomes the receiver and the external device becomes the transmitter)
- (9) The external device sends data of the address specified in (4) above
- (10) S1S60000 sends acknowledge to the external device
- (11) As needed, (9) and (10) are repeated. Addresses to be read are automatically incremented in the external device.
- (12) S1S60000 sends "1" as acknowledge
- (13) S1S60000 sends the stop condition

In the above steps, the restart in (6) is automatically generated if the upper bits for containing the transmit data are specified. And, acknowledge in (12) is automatically output as S1S60000 received every specified data.

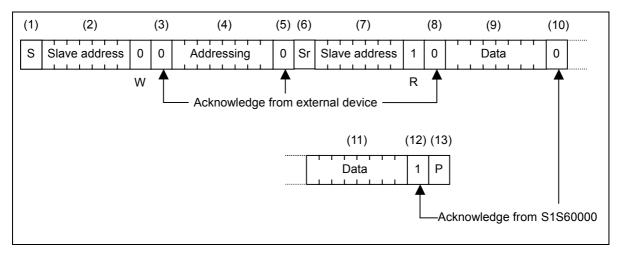


Figure 5.3 Reads Addressing as I²C Master

5.4.2 Slave Function

The slave address of S1S60000 is as shown below. This slave addresses is set on S1S60000 register I2CSADR. In bit [2:0], an address that does not compete against that of other connected devices is set.

Note: Since S1S60000 allows setting the slave address using software, it is possible to specify other address than shown in Table 5.12. However, user is requested not to try to use another address. When setting the address from EEPROM, the stipulated value is used for value other than bit [2:0].

Table 5.12 Slave Address

bit6	bit5	bit4	bit3	bit2	bit1	bit0
0	1	1	0	Χ	X	X

Table 5.13 lists the built-in registers that are accessible as the slave devices. For detail of the built-in registers, refer to Chapter 5.2.

Table 5.13 I²C Slave Register Map

Address	Content	Address	Content
0h	Device ID (C3h)	22h	SNMSKH register LOW
1h	Revision (00h)	23h	SNMSKH register HIGH
2h	MAC0 register LOW	24h	SNMSKL register LOW
3h	MAC0 register HIGH	25h	SNMSKL register HIGH
4h	MAC1 register LOW	26h	DGWH register LOW
5h	MAC1 register HIGH	27h	DGWH register HIGH
6h	MAC2 register LOW	28h	DGWL register LOW
7h	MAC2 register HIGH	29h	DGWL register HIGH
8h	GENCR register LOW	2Ah	DADR0H register LOW
9h	GENCR register HIGH	2Bh	DADR0H register HIGH
Ah	HIFCR register LOW	2Ch	DADR0L register LOW
Bh	HIFCR register HIGH	2Dh	DADR0L register HIGH
Ch	GPALT register LOW	2Eh	DADR1H register LOW
Dh	GPALT register HIGH	2Fh	DADR1H register HIGH
Eh	GPCFG register LOW	30h	DADR1L register LOW
Fh	GPCFG register HIGH	31h	DADR1L register HIGH
10h	GPDAT register LOW	32h	DADR2H register LOW
11h	GPDAT register HIGH	33h	DADR2H register HIGH
12h	GPMSK register LOW	34h	DADR2L register LOW
13h	GPMSK register HIGH	35h	DADR2L register HIGH
14h	EPMSK register LOW	36h	DADR3H register LOW
15h	EPMSK register HIGH	37h	DADR3H register HIGH
16h	I2CMSK register LOW	38h	DADR3L register LOW
17h	I2CMSK register HIGH	39h	DADR3L register HIGH
18h	PMWAIT register LOW	3Ah	PORT register LOW
19h	PMWAIT register HIGH	3Bh	PORT register HIGH
1Ah	PHYMODE register LOW	3Ch	DPORT register LOW
1Bh	PHYMODE register HIGH	3Dh	DPORT register HIGH
1Ch	ANEGR register HIGH	3Eh	SERMODE register LOW
1Dh	ANEGR register LOW	3Fh	SERMODE register HIGH
1Eh	IPADRH register LOW	40h	TMOUT register LOW
1Fh	IPADRH register HIGH	41h	TMOUT register LOW
20h	IPADRL register LOW	42h	
21h	IPADRL register HIGH	43h	

Communication Procedure as Slave Device

Following describes the communication procedure when the external device is the maser and S1S60000 is the slave.

[Procedure 1]

Addressing write procedure

S1S60000 has the automatic address increment function. So, after addressing is done at the start, data can be sent continuously. Addresses received by S1S60000 are incremented on byte basis.

- (1) The master sends the start condition
- (2) The master sends the slave address of S1S60000 and R/W bits from the write mode
- (3) Confirms acknowledge from S1S60000
- (4) The master sends the address to be written to S1S60000
- (5) Confirms acknowledge from S1S60000
- (6) Sends the data to be written to the address specified in (4) above
- (7) Confirms acknowledge from S1S60000
- (8) As needed, (6) and (7) are repeated. Addressed are automatically incremented in S1S60000.
- (9) The mater sends the stop condition

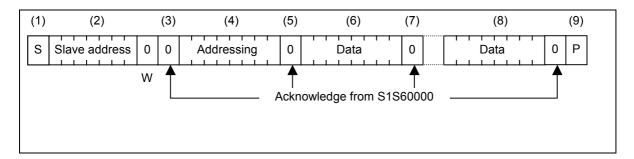


Figure 5.4 Addressing Write Procedure

[Procedure 2]

Addressing read procedure

S1S60000 writes the address to be read from the write mode and then turn on the read mode to read actual data.

- (1) The master sends the start condition
- (2) The master sends the slave address of S1S60000 and R/W bit from the write mode
- (3) Confirms acknowledge from S1S60000
- (4) The master sends address to be written to S1S60000
- (5) Confirms acknowledge from S1S60000
- (6) The master sends the start condition (stop condition is not sent): Restart
- (7) The master sends the slave address of S1S60000 and R/W bit from the read mode
- (8) Confirms acknowledge from S1S60000 (from this step, the master becomes the receiver and S1S60000 becomes the transmitter)
- (9) S1S60000 sends the data of the address specified in (4) above
- (10) The master sends acknowledge to S1S60000
- (11) As needed, (9) and (10) are repeated. Read addresses are automatically incremented in S1S60000.
- (12) The master sends "1" as acknowledge
- (13) The master sends the stop condition

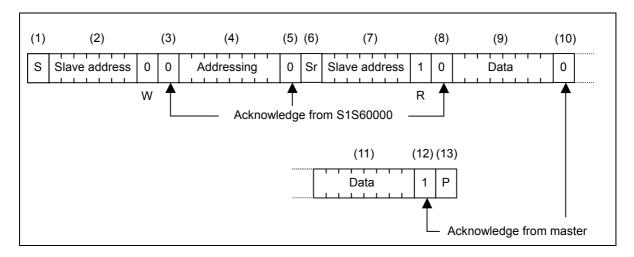


Figure 5.5 Addressing Read Procedure

[Procedure 3]

Read procedure when addressing is absent

Turning on the read mode first immediately enables the data read. In this case, the address to be accessed is +1 of the address being accessed the last.

- (1) The master sends the start condition
- (2) The master sends the slave address of S1S60000 and R/W bit from the read mode.
- (3) Confirms acknowledge from \$1\$60000 (from this step, the master becomes the receiver and \$1\$60000 becomes the transmitter)
- (4) S1S60000 sends the data of the address incremented by 1 from the address being accessed the last time
- (5) The master sends acknowledge to \$1\$60000
- (6) As needed, (4) and (5) are repeated. Read addresses are automatically incremented in S1S60000.
 (7) The master sends "1" as the acknowledge
 (8) The master sends the stop condition

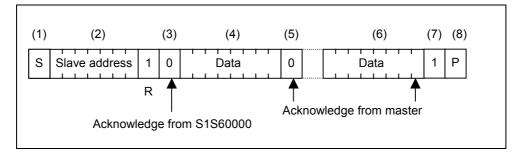


Figure 5.6 Read Procedure when Addressing is absent

5.5 EEPROM

5.5.1 EEPROM Specification

Following type of EEPROM is available.

- 3-Wire type (93C46/56/66 compatible type) +3.3V operation or +5V operation
- 16bit word

EEPROM interface block of S1S60000 structured to 5V tolerant. Thus, the products designed for supply voltage of +5V or +3.3V are usable.

5.5.2 Data Stored

Size of respective data stored on EEPROM is 16 bits. Table 5.14 shows the data map of the area used by S1S60000. Data at index 01h to 22h are stored on the corresponding registers after the reset.

Table 5.14 EEPROM Data Map

Index	Data	Content
00h	ID	Fixed to 0xE0C3. If any other value is used, EEPROM is regarded as illegal and
		access to it will not be made.
01h	MAC0	Initial value of MAC register. For the content, refer to Chapter 5.2.2.
02h	MAC1	
03h	MAC2	
04h	GENCR	GENCR register set value. For the content, refer to Chapter5.2.3.
05h	HIFCR	HIFCR register set value. For the content, refer to Chapter 5.2.4.
06h	I2CSADR	I2CSADR register set value. For the content, refer to Chapter 5.2.5.
07h	I2CCONF	I2CCONF register set value. For the content, refer to Chapter 5.2.6.
08h	GPALT	GPALT register set value. For the content, refer to Chapter 5.2.7.
09h	GPCFG	GPCFG register set value. For the content, refer to Chapter 5.2.8.
0Ah	GPDAT	GPDAT register set value. For the content, refer to Chapter 5.2.9.
0Bh	GPMSK	GPMSK register set value. For the content, refer to Chapter 5.2.10.
0Ch	EPMSK	EPMSK register set value. For the content, refer to Chapter 5.2.11.
0Dh	I2CMSK	I2CMSK register set value. For the content, refer to Chapter 5.2.12.
0Eh	PMWAIT	PMWAIT register set value. For the content, refer to Chapter 5.2.13.
0Fh	PHYMODE	PHYMODE register set value. For the content, refer to Chapter 5.2.14.
10h	ANEGR	ANEGR register set value. For the content, refer to Chapter 5.2.15.
11h	IPADRH	IP Address: Initial value of own station's IP address. For the content, refer to Chapter
12h	IPADRL	5.2.16.
13h	SNMSKH	Subnet Mask: Subnet mask initial value. For the content, refer to Chapter 5.2.17.
14h	SNMSKL	
15h	DGWH	Default Gateway: Default gateway initial value. For the content, refer to Chapter 5.2.18.
16h	DGWL	
17h	DADR0H	Destination IP Address 0: Destination address 0 is set. For the content, refer to
18h	DADR0L	Chapter 5.2.19.
19h	DADR1H	Destination IP Address 1: Destination address 1 is set. For the content, refer to
1Ah	DADR1L	Chapter 5.2.19.
1Bh	DADR2H	Destination IP Address 2: Destination address 2 is set. For the content, refer to
1Ch	DADR2L	Chapter 5.2.19.
1Dh	DADR3H	Destination IP Address 3: Destination address 3 is set. For the content, refer to
1Eh	DADR3L	Chapter 5.2.19.
1Fh	PORT	PORT register set value. For the content, refer to Chapter 5.2.20.
20h	DPORT	DPORT register set value. For the content, refer to Chapter 5.2.21.
21h	SERMODE	SERMODE register set value. For the content, refer to Chapter 5.2.22.
22h	TMOUT	TMOUT register set value. For the content, refer to Chapter 5.2.23
23h	Reserved	This area is reserved for future extension.
to		
27h		

Note: Access from network to the area from 00h to 10h for rewrite is prohibited at any time. Don't try to rewrite this area from network.

5.5.3 Transmission/Receiving Format

The commands sent from S1S60000 to EEPROM are read (READ:10), write enable (WEN:0011), write (WRITE:01) and write disable (WDS:0000).

Since EP_DI pin contains a pull-up resister, it remains at high level as long as high impedance mode is continued. Signal change of EP_CS,EP_DO and input to EP_DI take place at the negative-going edge of EP_SK.

After the addressing, read is started from data at EP DI. Figure 5.7 shows timing of respective signals.

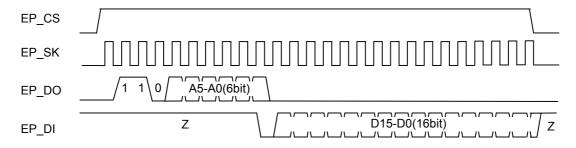


Figure 5.7 EEPROM (93C46) Read Format

When reading data, WEN is turned on first and then the WRITE command is issued. After data is output, the WRITE command sets EP_CS="0" once and then sets EP_CS="1" again to monitor EP_DI. Then it ends the operation after confirming that EP_DI="1" (Complete) referencing the hardware. WDS status is then restored. Figure 5.8 shows the timing at execution of the WRITE command.

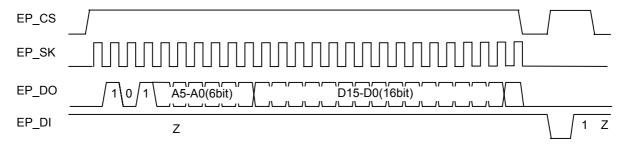


Figure 5.8 EEPROM (93C46) Write Format

5.5.4 Automatic Read

As S1S60000 is reset, automatic read from EEPROM is turned on starting with the data at address 0. When this data is E0C3h, data in the EEPROM is regarded valid and read is continued. Read data is set on respective registers. When EEPROM is not connected or the data read is not E0C3h, read is stopped and thus data is not set on the built-in registers.

6. POWER MANAGEMENT CONTROL

The power save mode and the sleep mode are available on S1S60000 as the power management mode. When turning on these modes, enable the corresponding bit of GENCR register and then, in case of the sleep mode, specify the timer value.

• Normal mode

It is the mode used for normal operation. The internal bus clock (=CPU clock) becomes twice the OSC3 clock.

• Power save mode

In this mode, the internal bus clock operates at 1/4 of the normal setting (1/2 of OSC3 clock) to reduce power consumption of S1S60000. You can enable this mode by setting "1" on bit 11 (PSEN) of GENCR register. Since the internal bus clock is modified, you must pay attention the related timing. If a necessary timing is not met, you must modify the setting.

- (1) Setting of GENCR register ESKDIV (EEPROM I/F clock)
- (2) Setting of GENCR register MDCDIV (MII management I/F clock)
- (3) Setting of I2CCONF register SCLCNT (I²C master clock)
- (4) Host I/F sampling interval

Note: As long as this mode is enabled, 100Base-TX based communication is unavailable.

• Sleep mode

In this mode, core CPU operates on 32kHz of OSC1 and OSC3 circuit is stopped. Power consumption of S1S60000 is reduced to approximately 1/30 of the normal operation. You can stop external OSC by setting GPALT7 bit of GPALT register to "1" and connecting GPIO7 pin to the oscillation control pin (Active Low) of external OSC. This arrangement further reduces the power consumption.

When enabling this mode, set SLPEN of GENCR register to "1" and then set the timer value (until this mode is turned on from the power down mode) on SLPWAIT (bit[11:8]) of PMWAIT register.

Note: Be sure to feed power while the sleep mode is turned on. If the operating supply voltage is not maintained, results of the succeeding operations become unpredictable.

The sleep mode is turned on in the following procedure.

- (1) \$1\$60000 sends the sleep status notice to the host CPU
- (2) Specifies GPIO0 as the recovery trigger input in order to prohibit interrupt from other
- (3) Selects OSC1
- (4) When GPIO7 is specified as OSCCTL, selects OSCCTL="0" in order to stop the external oscillator.
- (5) Executes slp

Recover from the sleep mode is started as the low edge is entered to GPIO0 and progresses in the in the following procedures.

- (1) When GPIO7 is specified as OSCCTL, S1S60000 starts the external oscillator
- (2) Starts up OSC3 oscillation circuit and waits until oscillation is stabilized
- (3) Selects OSC3
- (4) Sends the wake up status notice to the host CPU after recovery

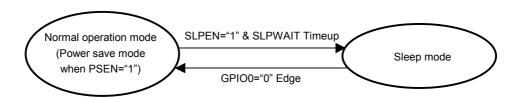


Figure 6.1 Power Management Status Transition

7. PRECAUTIONS ON IMPLEMENTATION

Following describes the precautions to be heeded when designing substrates and implementing ICs.

■ Oscillation circuit

- Oscillation characteristics vary depending on given conditions (such as parts used and substrate patterns).
 In particular, when using ceramic or crystal transducers, maker specified constants of components such as capacitance and resistance should be strictly observed.
- Disturbance of oscillation clock due to noises can cause malfunctioning. Pay attention to the following in order to prevent above trouble.
 - (1) Be sure to minimize the distance when connecting parts such as transducer, resistor and capacitor to OSC3 (OSC1), OSC4 (OSC2) and PLLC pin.
 - (2) Be sure to provide as much Vss pattern as possible to OSC3 (OSC1) and OSC4 (OSC2) pins as well as to peripheral areas of the parts connected to these pins. The same applies to PLLC pin, too. Don't try to connect non-oscillation system parts to this Vss pattern.
 - (3) When entering external clock to OSC3 (OSC1) pin, be sure to minimize the distance from the clock source. In this case, OSC4 (OSC2) pin must be made open.
- In order to prevent unstable operation of the oscillation circuit due to leak current across OSC3 (OSC1) VDD, be sure to locate OSC3(OSC1) sufficiently away from VDD power supply and signal line on the substrate pattern.
- When feeding clock to PHY chip by use of OSCO pin, try to minimize the pattern length. And, make sure that the clock satisfies the frequency accuracy required by PHY.

■ Reset circuit

- Reset signal entered to RESET# pin at powering on is affected by factors (such as turn on time of power supply, parts used and substrate patterns). Before employing the constants such as capacitance and resistance, be sure to test them carefully using applied products. As for the pull-up resister of RESET# pin, dispersion of resistance values must be carefully studied before finalizing the constant.
- In order to prevent the reset due to noise during operation, be sure to connect the parts such as capacitor and resistor to RESET# pin with the minimum distance.

■ Power supply circuit

- Sudden fluctuations in voltage due to noise can cause malfunctioning. In order to prevent above trouble, following rules should be observed.
 - (1) Use the shortest and thickest pattern as much as practicable for the connection between power supply and VDD or Vss pin.
 - (2) Connect VDD pin and Vss pin with the minimum distance when connecting a bypass capacitor across VDD - Vss.

■ Layout of signal line

- Don't route a large current signal line near to circuits susceptible to noise (such as oscillation circuit).
 This rule must be observed in order to prevent electromagnetic induced noise resulting from mutual inductance.
- If a high-speed signal line is routed for a long distance in parallel with another signal line or if such line is routed across another line, noises can be generated from mutual interference between the signals resulting in the system malfunctioning. In particular, you must avoid routing a high-speed signal line near to the circuits susceptible to noises.

■ Network block

• Don't route the signal lines for signals input to and output from PHY (such as TXP, TXN, RXP, and XN) near to the oscillation block.

8. ELECTRIC CHARACTERISTICS

8.1 Absolute Maximum Rating

(Vss=0V)

Item	Symbol	Condition	Rating	Unit	Note
Supply voltage	Vdd		-0.3 to +4.0	V	
Input voltage	Vı	Except FailSafe pin (*1)	-0.3 to VDD+0.5	V	
		FailSafe pin (*1)	-0.3 to 7.0	V	
High level output current	Іон	1 pin	-10	mA	
		Total of all pins	-40	mA	
Low level output current	lol	1 pin	10	mA	
		Total of all pins	40	mA	
Storage temperature	Tstg		-65 to +150	°C	

^{*1:} FailSafe pin = HCS#,HA[2:0],HD[15:0],HRD0#,HRD1#,HWR0#,HWR1#,GPIO[7:0],EP DI

8.2 Recommended Operating Conditions

(Vss=0V)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Supply voltage	VDD		3.00	_	3.60	V	
Input voltage	Vı	Except FailSafe pin (*1)	Vss	_	Vdd	V	
		FailSafe pin (*1)	Vss		5.5	V	1
CPU operating frequency	fcpu		_	_	50	MHz	
Low-speed oscillation operating frequency	fosc1		_	32.768		kHz	
Operating temperature	Та	When reading Flash ROM	-40	25	85	°C	
		When writing to Flash ROM	0	25	70	°C	
Input rise time (normal input)	tri		_	_	50	ns	
Input fall time (normal input)	tfi		_	_	50	ns	
Input rise time (Schmitt input)	tri		_	_	5	ms	
Input fall time (Schmitt input)	tfi		_	_	5	ms	

^{*1:} FailSafe pin=HCS#,HA[2:0],HD[15:0],HRD0#,HRD1#,HWR0#,HWR1#,GPIO[7:0],EP_DI

Note: When "HIGH" level output is turned on, don't apply external voltage higher than the output voltage to FailSafe pin.

8.3 DC Characteristics

(Except where otherwise specified: VDD=3.0V to 3.6V, Ta=-40°C to +85°C)

Item	Symbol	Condi	tion	Min.	Тур.	Max.	Unit	Note
Static current consumption	Idds	Static state, Tj=85°C		_	_	TBD	μA	
Large leak current	ILI			-1	_	1	μA	
Off-state leak current	loz			-1	_	1	μΑ	
High level output voltage	Vон	Іон=-2mA (Type1), Іон=-6mA (Type2), Vi	DD=Min.	VDD -0.4	_	_	V	
Low level output voltage	Vol	IOL=2mA (Type1), IOL=6mA (Type2), VD	D=Min.			0.4	٧	
High level input voltage	ViH	CMOS level, VDD=Max.		2.4	_	_	V	
Low level input voltage	VIL	CMOS level, VDD=Mir	n.		_	0.4	V	
Positive trigger input voltage	VT ⁺	CMOS Schmitt, VDD=	:Max.	1.1		2.4	V	
Negative trigger input voltage	VT ⁻	CMOS Schmitt, VDD=	:Min.	0.6	_	1.8	٧	
Hysteresis voltage	Vн	CMOS Schmitt		0.1	_	_	V	
Pull-up resistor	Rpu	Vi=0V	Other than DSIO	80	200	480	kΩ	
			DSIO	40	100	240	kΩ	
Pull-down resistor	RPD	VI=VDD (TEST0,TEST1)		40	100	240	kΩ	
Input pin capacitance	Сі	f=1MHz, VDD =0V		_	_	10	pF	
Output pin capacitance	Co	f=1MHz, VDD =0V			_	10	pF	
Input/output pin capacitance	Сю	f=1MHz, VDD =0V		_	_	10	pF	

Note: For the characteristics of pins, refer to "Appendix B List of Pin Characteristics".

8.4 Current consumption

(Except where otherwise specified: VDD=3.0V to 3.6V, Ta=-40°C to +85°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Current consumption	IDD1	fcpu=50MHz	_	TBD	TBD	mA	1
When power save mode is turned on	IDD2	fcpu=12.5MHz	_	TBD	TBD	mA	2
When sleep mode is turned on	IDD3	OSC1 oscillation is 32.768kHz	_	TBD	TBD	mA	3

- 1: When transmission and reception are conducted at the same time by use f internal loop back.
- 2: OSC3 and OSC1 are operated.
- 3: OSC3 is stopped and OSC1 is operated.

8.5 AC Characteristics

8.5.1 Description of Symbols

tcyc: Bus clock cycle time: Depends on OSC3 input value.

When OSC3 input = 25MHz, $t_{CYC} = 40ns$

8.5.2 AC Characteristics Measuring Condition

Signal detection level: Input signal High level VIH=VDD-0.4V

Low level VIL=0.4V

Output signal High level VOH=1/2 VDD

Low level Vol=1/2 VDD

Following conditions are assumed when external clock is entered to OSC3

Input signal High level VIH=1/2 VDD

Low level VIL=1/2 VDD

Input signal waveform: Rise (10% \rightarrow 90%VDD) 5ns

Fall (90% \rightarrow 10%VDD) 5ns

Output load capacitance: CL=50pF

8.5.3 AC Characteristics Table

■ External clock input characteristics

(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V,Ta=-40 to +85°C)

Item	Symbol	Min.	Max.	Unit	Note
High-speed clock cycle time	t c3	40	100	ns	
OSC3 clock input duty	t C3ED	45	55	%	
OSC3 clock input rise time	tıf	_	5	ns	
OSC3 clock input fall time	t ır	_	5	ns	
Minimum reset pulse width	t rst	6 t cyc	_	ns	

■ Input, output and input/output port

(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V,Ta=-40 to +85°C)

Item	Symbol	Min.	Max.	Unit	Note
Input data setup time	tinps	20	_	ns	
Input data hold time	tinph	10	_	ns	
Output data delay time	t outd	_	20	ns	

■ Host interface

(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V,Ta=-40 to +85°C)

Item	Symbol	Min.	Max.	Unit	Note
Host I/F access enabled period (HCS#,HA[2:0],HWR0#,HWR1#, HRD0#,HRD1#)	thav	2 t cyc+10	_	ns	
Host I/F output data delay time	t HOD	_	25	ns	
Host I/F output floating delay time	t HZD	_	25	ns	
Host I/F interrupt output delay time	t HIOD	_	20	ns	
Host I/F interrupt floating delay time	t HIZD	_	20	ns	
Host I/F set input setup time	t HIS	10	_	ns	
Host I/F set input hold time	t HID	10	_	ns	

■ MII

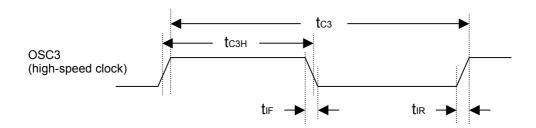
(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V,Ta=-40 to +85°C)

	= 1100 01 1111010 01110		0.0 10 0.01,100	0 1,	
Item	Symbol	Min.	Max.	Unit	Note
MII output data delay time	t txd	0	15	ns	
MII input data setup time	t rxs	10		ns	
MII input data hold time	t rxh	10		ns	
MDIO output delay	t MOD	t cyc	tcyc+5	ns	
MDIO data setup time	t mis	3		ns	
MDIO data hold time	tмін	0	_	ns	

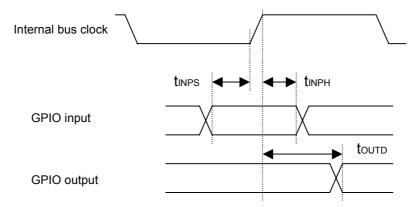
■ Serial EEPROM

(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V,Ta=-40 to +85°C)

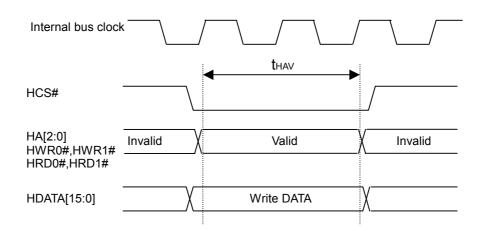
Item	Symbol	Min.	Max.	Unit	Note
Input data setup time	t eis	15	_	ns	
Input data hold time	t eih	0	_	ns	
Output data delay time	t EOD	_	5	ns	

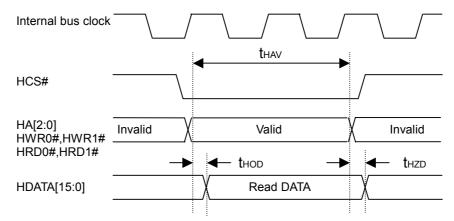

■ I²C bus

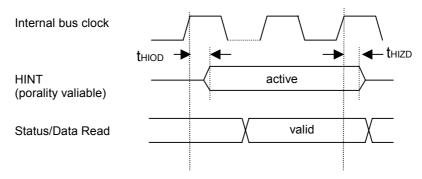
(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V,Ta=-40 to +85°C)

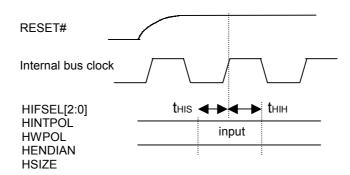

Item	Symbol	Min.	Max.	Unit	Note
SDA data setup time	t iis	5	_	ns	
SDA output delay time	tiod	5t cyc	_	ns	

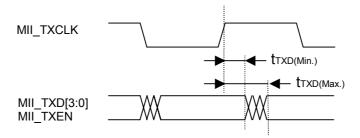
8.5.4 AC Characteristics Timing Chart

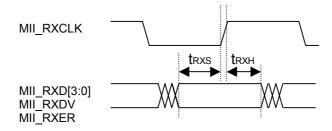

■ Clock

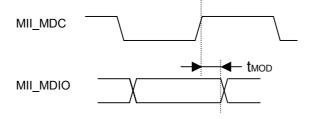

■ Input, output, input/output port

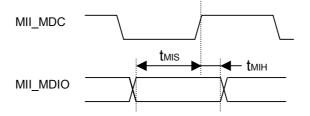

■ Host interface (Write)

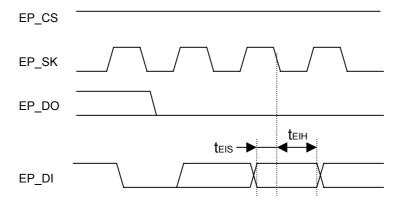

■ Host interface (Read)

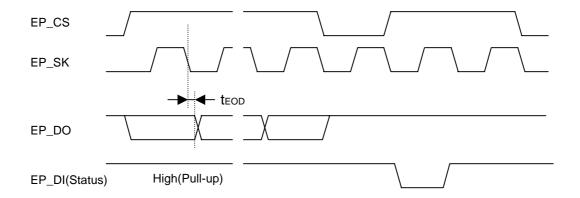

■ Host interface (control line)

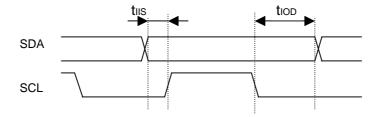

■ Reset (set input)


■ MII transmit


■ MII receive


■ MDIO output


■ MDIO input


■ Serial EEPROM (Read)

■ Serial EEPROM (Write)

■ I²C bus

8.6 Oscillation Characteristics

Oscillation characteristics can vary depending various factors (such as parts used and substrate patterns). Following capacitance is for your information only. In particular, when using ceramic or crystal transducers, maker specified constants of components such as capacitance and resistance should be strictly observed.

■ OSC1 crystal oscillation

(Except where otherwise specified: Crystal transducer=C-002RX*1 32.768kHz, Rf1=20MΩ, Cg1=CD1=15pF*2)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Operating temperature	Та	V _{DD} =3.0 to 3.6V	-40	_	85	°C	

^{*1} C-002RX: Crystal transducer from Seiko Epson
*2 CG1=CD1=15pF includes capacitance of substrate.

(Except where otherwise specified: VDD=3.3V, Vss=0V, Crystal transducer = C-002RX*1 32.768kHz, Rf1=20MΩ, Cg1=CD1=15pF*2, Ta=25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	t STA 1		_	_	3	sec	
Capacitance of external gate and drain	CG1,CD1	CG1=CD1, including capacitance of substrate	5	_	25	pF	
Frequency IC deviation	∆f/ΔIC		-10	_	10	ppm	
Frequency supply voltage deviation	∆f/ΔV		-10		10	ppm/V	
Frequency adjustment range	∆f/ ΔC G	Cg1=CD1=5 to 25pF	50	_	_	ppm	

^{*1} C-002RX: Crystal transducer from Seiko Epson

■ OSC3 crystal oscillation

Note: For OSC3 crystal oscillation circuit, "a crystal transducer that operates on the fundamental frequency" must be used.

(Except where otherwise specified: Vss=0V, crystal transducer =MA-306*1 25.000MHz, Rf1=20MΩ,CG1=CD1=15pF*2)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	t STA3	VDD=3.3V			10	ms	

^{*1} MA-306: Crystal transducer from Seiko Epson

■ OSC3 ceramic oscillation

(Except where otherwise specified: Vss=0V, Ta=25°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Oscillation start time	t sta3	10MHz ceramic transducer	1	-	10	ms	1
		16MHz ceramic transducer	_	_	10	ms	2
		20MHz ceramic transducer	_	_	10	ms	3
		25MHz ceramic transducer		_	5	ms	4

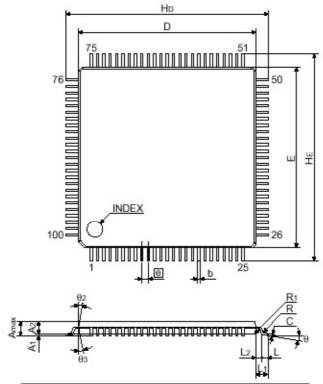
Note:	No	Ceramic transducer	Recom	ımended co	nstant	Supply voltage	Remarks
		Type name	C _{G2} (pF)	G2(pF) CD2(pF) Rf		Range (V)	
	1	CST10.0MTW	30	30	1		Ceramic transducer from Murata Manufacturing *1
	2	CST16.00MXW0C1	5	5	1		Ceramic transducer from Murata Manufacturing
	3	CST20.00MXW0H1	5	5	1		Ceramic transducer from Murata Manufacturing
	4	CST25.00MXW0H1	5	5	1		Ceramic transducer from Murata Manufacturing

^{*1} Frequency tends to become higher by 0.3%.

8.7 PLL Characteristics

(Except where otherwise specified:VDD=3.0 to 3.6V,Vss=0V, Crystal transducer =SG-8002*1,C1=100pF,C2=5pF,Ta=-40 to +85°C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Jitter (Peak jitter)	tpj		-1	_	1	ns	
Lockup time	tpll		_	_	1	ms	


^{*1} SG-8002: Crystal transducer from Seiko Epson

^{*2} CG1=CD1=15pF includes capacitance of substrate.

^{*2} CG1=CD1=15pF includes capacitance of substrate.

9. PACKAGE

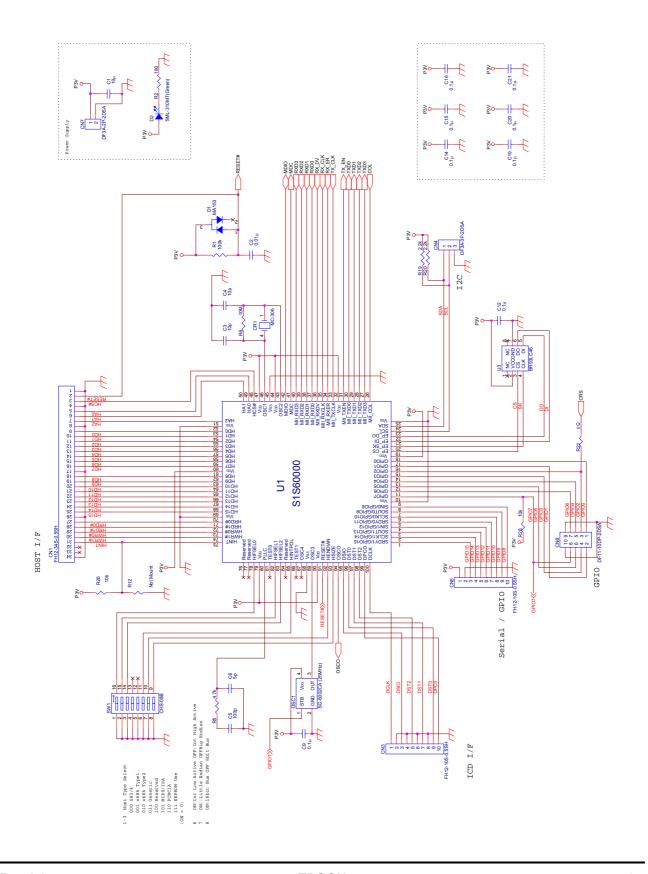
QFP15-100pin : Plastic QFP 100pin Body size $14 \times 14 \times 1.4$ mm

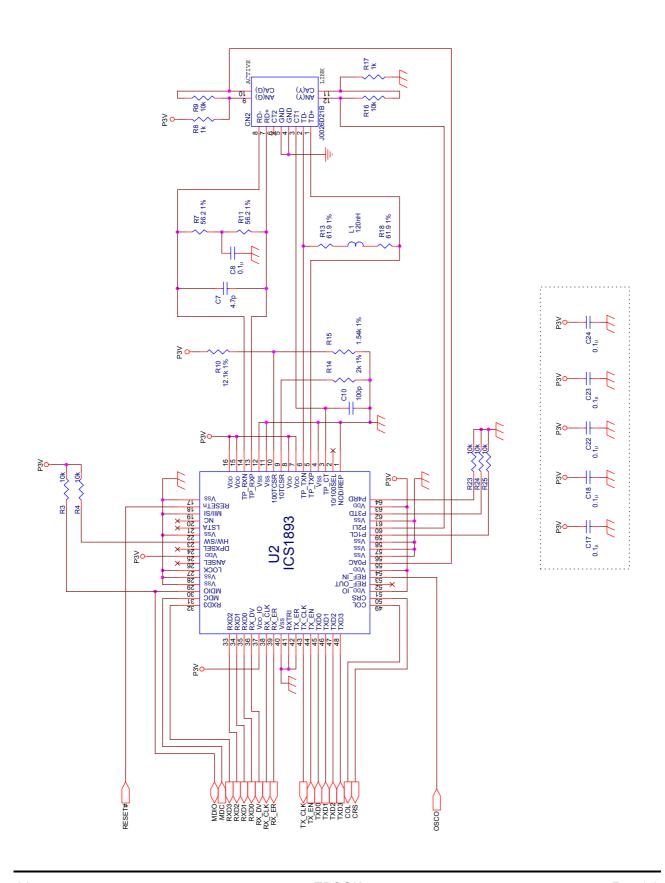
Symbol	Dimer	nsion in Millir	neters
Symbol	Min.	Nom.	Max.
E	13.9	14	14.1
D	13.9	14	14.1
Α			1.7
A 1		0.1	
A ₂	1.3	1.4	1.5
е		0.5	
b	0.13	0.18	0.28
С	0.1	0.125	0.175
θ	0°		10°
L	0.3	0.5	0.7
L1		1	
L2		0.5	
HE	15.7	16	16.3
HD	15.7	16	16.3
θ2	•	12°	
θз	•	12°	
R	•	0.2	
R1	•	0.2	

× Restrictions on Power Consumption

Chip temperature goes higher as power consumption of LSI grows larger. Temperature of LSI chip in the package is calculated based on its ambient temperature Ta, heat resistance of package θ and power consumption PD as shown below.

Chip temperature (Tj) = Ta + (PD $\times \theta$) (°C)


In the normal operation, it is recommended to maintain the chip temperature (Tj) below 85°C.


Following shows heat resistance of QFP15-100pin package.

Heat resistance ($^{\circ}$ C/W) = TBD

Above heat resistance value is obtained from the sample hung in windless air. Heat resistance can vary significantly depending on how a package is implemented on the substrate as well as presence or absence of forced air-cooling.

APPENDIX A REFERENCE CIRCUIT

Bill of Material

	Name	Reference	Maker	Qty	Address	Note
101	S1S60000	100Pin QFP	EPSON	1	U1	
102	ICS1893Y-10	Ethernet Transceiver 64Pin TQFP	ICS	1	U2	
103	BR93LC46FV	Serial EEPROM 8Pin SSOP	ROHM	1	U3	
301	MA153	Diode 40V 100mA 3Pin	MATSUSHITA	1	D1	
302	SML-310FT	LED(Green)	ROHM	1	D2	
	MCR03EZHJ000	0ohm 1608	ROHM	1	R21	
	MCR03EZHJ181	180 5% 1608	ROHM	1	R2	
	MCR03EZHJ102	1K 5% 1608	ROHM	2	R8,R17	
	MCR03EZHJ222	2.2K 5% 1608	ROHM	2	R19,R20	
	MCR03EZHJ472	4.7K 5% 1608	ROHM	1	R5	
406	MCR03EZHJ103	10K 5% 1608	ROHM	9	R3,R4,R9,	
					R16,R23-26,	
107	MOD0057111404	1001/ 50/ 1000	DOI 114		R28	
-	MCR03EZHJ104	100K 5% 1608	ROHM	1	R1	
-	MCR03EZHJ106	10M 5% 1608	ROHM	1	R6	
	MCR03EZHF56R2	56.2 1% 1608	ROHM	2	R7,R11	
	MCR03EZHF61R9	61.9 1% 1608	ROHM	2	R13,R18	
	MCR03EZHF1541	1.54K 1% 1608	ROHM	1	R15	
	MCR03EZHF2001	2K 1% 1608	ROHM	1	R14	
	MCR03EZHF1212	12.1K 1% 1608	ROHM	1	R10	N1 - 4
414	MCR03EZHJ000	Not Mount 1608	_	1	R12	Not
						imple- mented
						menteu
501	GRM1882C1H4R7CZ01B	4.7pF 50V 1608	MURATA	1	C7	
	GRM1882C1H5R0JZ01D	5pF 50V 1608	MURATA	1	C6	
	GRM1882C1H100JZ01D	10pF 50V 1608	MURATA	2	C3,C4	
	GRM1882C1H101JA01B	100pF 50V 1608	MURATA	2	C5,C10	
	GRM188B11H103KA01D	0.01μF 50V 1608	MURATA	1	C2	
-	GRM188B11H104KA01D	0.1μF 25V 1608	MURATA	14	C8,C9,C12,C	
		, and the second	-		14-C24	
508	GRM31CB11A106KC01L	10μF 10V 3225	MURATA	1	C1	
601	FH12-34S-0.5SH	34Pin FFC Connector	HIROSE	1	CN1	
602	J0026D21B	RJ45 Jack with Magnetics	PULSE	1	CN2	
603	FH12-10S-0.5SH	10Pin FFC Connector	HIROSE	2	CN3,CN5	
604	DF3A-3P-2DSA	3Pin Connector (I ² C)	HIROSE	1	CN4	
605	DF11-10DP-2DSA	10Pin-Header	HIROSE	1	CN6	
606	DF3A-2P-2DSA	2Pin Connector (Power)	HIROSE	1	CN7	
607	CHS-08B	8bit Dip Switch	COPAL	1	SW1	
701	SG-8002CA 25.0MHz	25.0MHz ± 50ppm	EPSON	1	OSC1	
703	MC-306	32.768kHz ± 20ppm	EPSON	1	CR1	
704	ELJRER12JF3	120nH 1608	MATSUSHITA	1	L1	
799	PCB	4layer, t=1.6, 50*45 FR-4		1		

Note: This reference circuit intended to show an example of use. It does not necessary warrant the operation.

APPENDIX B LIST OF PIN CHARACTERISTICS

Pin	Signal name	I/O	I/O Cell	Input characteristics	Output characteristics	PU/PD	Туре	Remarks
1	GPIO15	0	XBH1T	CMOS SCHMITT	2mA		1	
2	GPIO14	Ю	XBH1T	CMOS SCHMITT	2mA		1	
3	GPIO13	Ю	XBH1T	CMOS SCHMITT	2mA		1	
4	GPIO12	Ю	XBH1T	CMOS SCHMITT	2mA		1	
5	GPIO11	Ю	XBH1T	CMOS SCHMITT	2mA		1	
6	GPIO10	Ю	XBH1T	CMOS SCHMITT	2mA		1	
7	GPIO9	Ю	XBH1T	CMOS SCHMITT	2mA		1	
8	GPIO8	0	XBH1T	CMOS SCHMITT	2mA		1	
9	Vss							
10	GPIO7	0	XBB1	CMOS(Fail Safe)	2mA		1	
11	GPIO6	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
12	GPIO5	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
13	GPIO4	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
14	GPIO3	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
15	GPIO2	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
16	GPIO1	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
17	GPIO0	Ю	XBB1	CMOS(Fail Safe)	2mA		1	
18	VDD							
19	EP_CS	0	XBB1	CMOS(Fail Safe)	2mA		1	Note 1
20	EP_SK	0	XBB1	CMOS(Fail Safe)	2mA		1	Note 1
21	EP_DI		XIBBP1	CMOS(Fail Safe)	_	Pull-up		
22	EP_DO	0	XBB1	CMOS(Fail Safe)	2mA		1	Note 1
23	SCL	Ю	XBDH1T	CMOS SCHMITT	N-OD/2mA		1	
24	SDA	Ю	XBDH1T	CMOS SCHMITT	N-OD/2mA		1	
25	Vss							
26	MII_COL		XIBC	CMOS	_			
27	MII_TXD3	0	XOB1CT	_	2mA		1	
28	MII_TXD2	0	XOB1CT	_	2mA		1	
29	MII_TXD1	0	XOB1CT	_	2mA		1	
30	MII_TXD0	0	XBC1T	CMOS	2mA		1	Note 1
31	MII_TXEN	0	XBC1T	CMOS	2mA		1	Note 1
32	VDD							
33	MII_TXCLK		XBC1T	CMOS	2mA		1	Note 2
34	MII_RXER		XBC1T	CMOS	2mA		1	Note 2
35	MII_RXCLK		XBC1T	CMOS	2mA		1	Note 2
36	MII_RXDV		XBC1T	CMOS	2mA		1	Note 2
37	MII_RXD0		XBC1T	CMOS	2mA		1	Note 2
38	MII_RXD1		XBC1T	CMOS	2mA		1	Note 2
39	MII_RXD2		XBC1T	CMOS	2mA		1	Note 2
40	MII_RXD3		XBC1T	CMOS	2mA		1	Note 2
41	MDC	0	XOB1CT	_	2mA		1	
42	MDIO	Ю	XBC1T	CMOS	2mA		1	
43	OSC2	0	XLOT	TRANSPARENT	_			
44	VDD							
45	Vss							
46	OSC1	ı	XLIN	TRANSPARENT	_			
47	VDD							İ
48	HCS#	ı	XIBBP1	CMOS(Fail Safe)		Pull-up		
49	HA0	i	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	Note 2
50	HA1	i	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	Note 2

Pin	Signal name	I/O	I/O Cell	Input characteristics	Output characteristics	PU/PD	Туре	Remarks
51	HA2	1	XIBBP1	CMOS(Fail Safe)	_	Pull-up		
52	Vss							
53	HD0	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
54	HD1	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
55	HD2	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
56	HD3	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
57	HD4	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
58	HD5	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
59	HD6	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
60	HD7	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
61	VDD							
62	HD8	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
63	HD9	10	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
64	HD10	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
65	HD11	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
66	HD12	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
67	HD13	10	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
68	HD14	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
69	HD15	Ю	XBB1P1	CMOS(Fail Safe)	2mA	Pull-up	1	
70	Vss							
71	HRD0#	ı	XIBBP1	CMOS(Fail Safe)	_	Pull-up		
72	HRD1#	ı	XIBBP1	CMOS(Fail Safe)	_	Pull-up		
73	HWR0#	l	XIBBP1	CMOS(Fail Safe)	_	Pull-up		
74	HWR1#	I	XIBBP1	CMOS(Fail Safe)	_	Pull-up		
75	HINT	0	XTB1T	_	Tri/2mA		1	
76	Reserve	0	XTB1T	_	Tri/2mA		1	
77	Reserve	0	XTB1T	_	Tri/2mA		1	
78	HIFSEL0	ı	XBH1P2T	CMOS SCHMITT	2mA	Pull-up	1	
79	VDD							
80	PLLC	ı	XLIN	TRANSPARENT				
81	TEST0	ı	XIBCD2	CMOS	ı	Pull-down		
82	HIFSEL1	ı	XIBHP2	CMOS SCHMITT	_	Pull-up		
83	HIFSEL2	ı	XIBHP2	CMOS SCHMITT	_	Pull-up		
84	Reserve	ı	XIBHP2	CMOS SCHMITT	_	Pull-up		
85	HINTPOL	ı	XIBHP2	CMOS SCHMITT	_	Pull-up		
86	TEST1	ı	XIBCD2	CMOS	_	Pull-down		
87	OSC4	0	XLOT	TRANSPARENT				
88	Vss							
89	OSC3	ı	XLIN	TRANSPARENT	_			
90	VDD							
91	RESET#	Ī	XIBHP2	CMOS SCHMITT	_	Pull-up		
92	HENDIAN	Ī	XIBHP2	CMOS SCHMITT	_	Pull-up		
93	HSIZE	ı	XIBHP2	CMOS SCHMITT		Pull-up		
94	OSCO	0	XBC2T	CMOS	6mA		1	Note 1
95	DSIO	Ю	XBH2P2T	CMOS SCHMITT	6mA	Pull-up	2	
96	DST0	Ю	XBH2T	CMOS SCHMITT	6mA		2	
97	DST1	Ю	XBH2T	CMOS SCHMITT	6mA		2	
98	DST2	Ю	XBH2T	CMOS SCHMITT	6mA		2	
99	DPCO	Ю	XBH2T	CMOS SCHMITT	6mA		2	
100	DCLK	Ю	XBH2T	CMOS SCHMITT	6mA		2	

Note 1: This pin is used as an input pin in the device test. In the normal operation, it is used as an output pin. **Note 2:** This pin is used as an out pin in the device test. In the normal operation, it is used as an input pin.

EPSON

International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 FAX: +1-408-922-0238

SALES OFFICES

West

1960 E.Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 FAX: +1-310-955-5400

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 FAX: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 FAX: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49-(0)89-14005-0 FAX: +49-(0)89-14005-110

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49-(0)2171-5045-0 FAX: +49-(0)2171-5045-10

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44-(0)1344-381700 FAX: +44-(0)1344-381701

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33-(0)1-64862350 FAX: +33-(0)1-64862355

BARCELONA BRANCH OFFICE Barcelona Design Center

Edificio Testa

Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN

ASIA

EPSON (CHINA) CO., LTD.

23F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 FAX: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Qing Road Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 FAX: 21-6485-0775

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 FAX: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3

Taipei

Phone: 02-2717-7360 FAX: 02-2712-9164

Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No. 295, Kuang-Fu Road, Sec. 2

HsinChu 300

Phone: 03-573-9900 FAX: 03-573-9169

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 FAX: +65-334-2716

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 FAX: 02-767-3677

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5816 FAX: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

ED International Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5814 FAX: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices.

Our lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

S1S60000

Technical Manual

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

■ EPSON Electronic Devices Website

http://www.epsondevice.com/