

Elan Microelectronics Crop.

CONFIDENTIAL

EM65567

66COM/ 96SEG 256 Color STN LCD Driver

April 29, 2003

Version 0.3 (Preliminary)

	EM65567 Specification Revision History						
Version	Content	Date					
0.1	Initial version	January 9, 2003					
0.2	 Add "Enable DDRAM read" instruction Palette function: Different gradation levels can't be set the same palette. 	February 19,2003					
0.3	1. Modify the PAD Coordinates Table	April 29, 2003					

Caution: The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

Contents

1.	GENERAL DESCRIPTION	4
2	FEATURE	4
Z.	FEAI UKE	4
3.	APPLICATIONS	4
4.	PIN CONFIGURATIONS	5
5.	FUNCTIONAL BLOCK DIAGRAM	13
6.	PIN DESCRIPTION	15
7.	PIN DESCRIPTION. FUNCTIONAL DESCRIPTION. CONTROL REGISTER	19
8.	CONTROL REGISTER	49
9	RELATIONSHIP BETWEEN SETTING AND COMMON/DISPLAY RAM	75
). 10.		
	DC CHARACTERISTICS	
12.	AC CHARACTERISTIC	80
13.	APPLICATION CIRCUIT	88
14	COF INFORMATION	92

1. General description

EM65567 is one of the industry's most advanced wide-screen STN-LCD drivers for 256-color display. The industry's first sub-screen display function makes it possible to display different images and data in a sub-screen inside the main LCD screen. It also has a built-in display RAM, a power supply circuit for LCD drive, and an LCD controller circuit, therefore contributing to compact system design. Its partial display function realizes low power consumption.

*Partial display function: A function that utilizes only part of the screen, thus reducing power consumption.

2. Feature

Display RAM capacity

■ Graphic: 96*64*(3+3+2)=49,152 bits

 \blacksquare Icons: 96*2*(3+3+2)=1,536 bits

Ratio of display duty cycle: 1/10, 1/18, 1/26, 1/34, 1/42, 1/50, 1/58, 1/66

Outputs

■ Segment:96 RGB (288) outputs, Common: 66 outputs

■ Static driver: 2 outputs

➤ Built-in display RAM and power supply circuit

> Partial display functions

> Switchable display in black and white mode

Bus connection with 80-family 68-family Elan MCU

> Serial interface is available

Logic power supply voltage: 1.8 to 3.3 V

LCD driving voltage: 5.0 to 12.0 V

➤ Booster: 2 to 4 times

Write system cycle: 140 ns

Package (Ordering information):

Part Number	Package	Description	Package information
EM65567AGH	Gold bumped chip	NA	Page 5
EM65567AF	COF	64x96RGB (Version A)	Page 92

Note: The EM65567 series has the following sub-codes depending on their shapes.

H: Bare chip (Aluminum pad without bumped); GH: Gold bumped chip;

F: COF package; T: TAB (TCP) package

Example EM65567AF → EM65567: Elan number ; A: Package Version ; F: COF package

3. Applications

- ➤ Mobile phone
- > DSC
- > Small PDA

4. Pin configurations

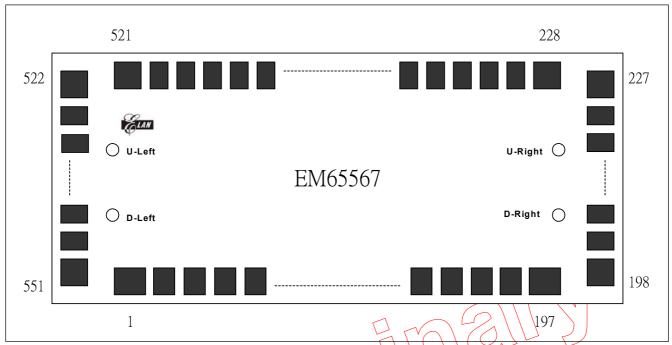


Figure 1. Pin configuration

Note: With the Elan logo in upper left the pin 1 is in the down left corner.

Mark	Coordinate (X,Y)	Mark	Coordinate (X,Y)
U-Left	-7241.1 ,141.6	U-Right	7247.9,141.6
D-Left	-7241.1 ,-208.4	D-Right	7247.9,-208.4

PIN DIMENSIONS

Item	Pad No.	Si	ze	Unit		
Ttem	i au ivo.	X	Y			
Chip size	-	15450	1770			
	229~520	36	63			
Dumn Circ	199~226,522~550	63	36			
	2~196	46	63			
Bump Size	228,521	48	63			
	198,227,522,551	63	48			
	1,197	70	63			
Pad Pitch		50 (min.)		μm		
Die thickness (excluding bumps)		508 +/- 25.4				
Bump Height	All P	ad 17 +/- 3 (within	die)			
Minimum Bump Gap	14					
Coordinate Origin		Chip center)		

RECOMMENDED COG ITO TRACES RESISTOR

Interface	ITO Traces resistances
V0~V4	Max= 300Ω
CAP1+,CAP1-,CAP2+,CAP2-,CAP3+,CAP3-,Vout	Max=100Ω
VDD,VEE	$Max=100\Omega$
VSSL,VSSH	Max=50Ω
WRB,RDB,CSB,,D0~D7	Max=3KΩ

PAD Coordinates Table

		Coordinate			Coordinate
Pin NO	Pad Name	(X,Y)	Pin NO	Pad Name	(X,Y)
1	DUMMY	-7299.9 ,-765.0	51	CSB	-3575.6 ,-765.0
2	DUMMY	-7217.9 ,-765.0	52	CSB	-3505.6 ,-765.0
3	DUMMY	-7147.9 ,-765.0	53	RS	-3435.6 ,-765.0
4	DUMMY	-7077.9 ,-765.0	54	RS	-3365.6 ,-765.0
5	DUMMY	-7007.9 ,-765.0	55	VSS	-3295.6 ,-765.0
6	SSEG	-6937.9 ,-765.0	56	VSS	-3225.6 ,-765.0
7	V0	-6867.9 ,-765.0	57	VSS	-3155.6 ,-765.0
8	V0	-6797.9 ,-765.0	58	VSS	-3085.6 ,-765.0
9	V0	-6727.9 ,-765.0	59	M/S	-3015.6 ,-765.0
10	V0	-6657.9 ,-765.0	60	M/S	-2945.6 ,-765.0
11	V0	-6587.9 ,-765.0	61	VDD	-2875.6 ,-765.0
12	V1	-6517.9 ,-765.0	62	VDD	-2805.6 ,-765.0
13	V1	-6447.9 ,-765.0	63	VDD	-2735.6 ,-765.0
14	V1	-6377.9 ,-765.0	64	VDD	-2665.6 ,-765.0
15	V1 V1	-6307.9 ,-765.0	65	P/S	-2595.6 ,-765.0
16	V1 V1	-6237.9 ,-765.0	66	P/S	-2525.6 ,-765.0
17	V2	-6167.9 ,-765.0	67	M86	-2455.6 ,-765.0
18	V2 V2	-6097.9 ,-765.0	68	M86	-2385.6 ,-765.0
19	V2	-6027.9 ,-765.0	69\	VSS	-2315.6 ,-765.0
20	V2 V2	-5957.9 765.0	70	VSS	-2245.6 ,-765.0
21	V2 V2	-5887.9 ,=765.0	71	VSS	-2175.6 ,-765.0
22	V2 V3	-5817.9, -765.0	72	VSS	-2175.6 ,-765.0
23	V3	5747,9\-765\0	73	VSS	-2035.6 ,-765.0
24	V3 V	-5677.9 , 765.0	74	WRB	-1965.6 ,-765.0
25	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5607.9,-765.0	75	WRB	-1895.6 ,-765.0
26	V3	-5537.9 ,-765.0	76	RDB	-1825.6 ,-765.0
27	V4	-5467.9 ,-765.0	77	RDB	-1755.6 ,-765.0
28	V4 V4	-5397.9 ,-765.0	78	VDD	-1473.3 ,-765.0
29	V4	-5327.9 ,-765.0	79	VDD	-1403.3 ,-765.0
30	V4	-5257.9 ,-765.0	80	VDD	-1333.3 ,-765.0
31	V4	-5187.9 ,-765.0	81	VDD	-1263.3 ,-765.0
32	VSSH	-5117.9 ,-765.0	82	VDD	-1193.3 ,-765.0
33	VSSH	-5047.9 ,-765.0	83	D0	-1123.3 ,-765.0
34	VSSH	-4977.9 ,-765.0	84	D0	-1053.3 ,-765.0
35	VSSH	-4907.9 ,-765.0	85	D1	-983.3 ,-765.0
36	VSSH	-4837.9 ,-765.0	86	D1	-913.3 ,-765.0
37	DUMMY	-4767.9 ,-765.0	87	D2	-843.3 ,-765.0
38	DUMMY	-4485.6 ,-765.0	88	D2	-773.3 ,-765.0
39	DUMMY	-4415.6 ,-765.0	89	D3	-703.3 ,-765.0
40	DUMMY	-4345.6 ,-765.0	90	D3	-633.3 ,-765.0
41	DUMMY	-4275.6 ,-765.0	91	D4	-563.3 ,-765.0
42	VSSL	-4205.6 ,-765.0	92	D4	-493.3 ,-765.0
43	VSSL	-4135.6 ,-765.0	93	D5	-423.3 ,-765.0
44	VSSL	-4065.6 ,-765.0	94	D5	-353.3 ,-765.0
45	VSSL	-3995.6 ,-765.0	95	D6	-283.3 ,-765.0
46	VSSL	-3925.6 ,-765.0	96	D6	-213.3 ,-765.0
47	TEST	-3855.6 ,-765.0	97	D7	-143.3 ,-765.0
48	TEST	-3785.6 ,-765.0	98	D7	-73.3 ,-765.0
49	RESB	-3715.6 ,-765.0	99	D8	-3.3 ,-765.0
50	RESB	-3645.6 ,-765.0	100	D8	66.7 ,-765.0
50	TELOD	5015.0, 705.0	100	D0	00.7, 705.0

Pin NO	Pad Name	Coordinate	Pin NO	Pad Name	Coordinate
101		(X,Y)			(X,Y)
101	D9	136.7 ,-765.0	151	VEE	3849.0 ,-765.0
102	D9	206.7 ,-765.0	152	VREG	4130.4 ,-765.0
103	D10	276.7 ,-765.0	153	VREG	4200.4 ,-765.0
104	D10	346.7 ,-765.0	154	VREG	4270.4 ,-765.0
105	D11	416.7 ,-765.0	155	VREG	4340.4 ,-765.0
106	D11	486.7 ,-765.0	156	VREG	4410.4 ,-765.0
107	D12	556.7 ,-765.0	157	VOUT	4481.3 ,-765.0
108	D12	626.7 ,-765.0	158	VOUT	4551.3 ,-765.0
109	D13	696.7 ,-765.0	159	VOUT	4621.3 ,-765.0
110	D13	766.7 ,-765.0	160	VOUT	4691.3 ,-765.0
111	D14	836.7 ,-765.0	161	VOUT	4761.3 ,-765.0
112	D14	906.7 ,-765.0	162	CAP1-	4831.3 ,-765.0
113	D15	976.7 ,-765.0	163	CAP1-	4901.3 ,-765.0
114	D15	1046.7 ,-765.0	164	CAP1-	4971.3 ,-765.0
115	LP	1116.7 ,-765.0	165	CAP1-	5041.3 ,-765.0
116	LP	1186.7 ,-765.0	166	CAP1-	5111.3 ,-765.0
117	FLM	1469.0 ,-765.0	167	CAP1+	5181.3 ,-765.0
118	FLM	1539.0 ,-765.0	168	CAP1+	\$251.3 ,-765.0
119	M	1609.0 ,-765.0	169	CAP1+\	5321.3 ,-765.0
120	M	1679.0 ,-765.0	170	CAP1+	5391.3 ,-765.0
121	CLK	1749.0 ,-765.0	171	CAP1+	5461.3 ,-765.0
122	CLK	1819,0,-765,0	172	CAP2-	5531.3 ,-765.0
123	VSS	1889.0 ,-765.0	1/73	CAP2-	5601.3 ,-765.0
124	VSS	1959.0-765.0\	174	CAP2-	5671.3 ,-765.0
125	VS\$	2029.0 , 765.0	175	CAP2-	5741.3 ,-765.0
126	VSS	2099.0 -765.0	176	CAP2-	5811.3 ,-765.0
127	VS8	2169.0 ,-765.0	177	CAP2+	5881.3 ,-765.0
128	CK	2239.0 ,-765.0	178	CAP2+	5951.3 ,-765.0
129	CK	2309.0 ,-765.0	179	CAP2+	6021.3 ,-765.0
130	CKS	2379.0 ,-765.0	180	CAP2+	6091.3 ,-765.0
131	CKS	2449.0 ,-765.0	181	CAP2+	6161.3 ,-765.0
132	VDD	2519.0 ,-765.0	182	CAP3-	6231.3 ,-765.0
133	VDD	2589.0 ,-765.0	183	CAP3-	6301.3 ,-765.0
134	VDD	2659.0 ,-765.0	184	CAP3-	6371.3 ,-765.0
135	VDD	2729.0 ,-765.0	185	CAP3-	6441.3 ,-765.0
136	VDD	2799.0 ,-765.0	186	CAP3-	6511.3 ,-765.0
137	DUMMY	2869.0 ,-765.0	187	CAP3+	6581.3 ,-765.0
138	DUMMY	2939.0 ,-765.0	188	CAP3+	6651.3 ,-765.0
139	DUMMY	3009.0 ,-765.0	189	CAP3+	6721.3 ,-765.0
140	DUMMY	3079.0 ,-765.0	190	CAP3+	6791.3 ,-765.0
141	DUMMY	3149.0 ,-765.0	191	CAP3+	6861.3 ,-765.0
142	VREF	3219.0 ,-765.0	192	SCOM	6931.3 ,-765.0
143	VREF	3289.0 ,-765.0	193	DUMMY	7001.3 ,-765.0
144	VREF	3359.0 ,-765.0	194	DUMMY	7071.3 ,-765.0
145	VREF	3429.0 ,-765.0	195	DUMMY	7141.3 ,-765.0
146	VREF	3499.0 ,-765.0	196	DUMMY	7211.3 ,-765.0
147	VEE	3569.0 ,-765.0	197	DUMMY	7293.3 ,-765.0
148	VEE	3639.0 ,-765.0	198	COM31	7605.0 ,-726.0
149	VEE	3709.0 ,-765.0	199	COM30	7605.0 ,-670.0
150	VEE	3779.0 ,-765.0	200	COM29	7605.0 ,-620.0
100	, 22	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5 5 1.1127	, , , , , , , , , , , , , , , , , , , ,

Pin NO	Pad Name	Coordinate (X,Y)	Pin NO	Pad Name	Coordinate (X,Y)
201	COM28	7605.0 ,-570.0	251	SEGC6	6175.0 ,765.0
202	COM27	7605.0 ,-520.0	252	SEGA7	6125.0 ,765.0
203	COM26	7605.0 ,-470.0	253	SEGB7	6075.0 ,765.0
204	COM25	7605.0 ,-420.0	254	SEGC7	6025.0 ,765.0
205	COM24	7605.0 ,-370.0	255	SEGA8	5975.0 ,765.0
206	COM23	7605.0 ,-320.0	256	SEGB8	5925.0 ,765.0
207	COM22	7605.0 ,-270.0	257	SEGC8	5875.0 ,765.0
208	COM21	7605.0 ,-220.0	258	SEGA9	5825.0 ,765.0
209	COM20	7605.0 ,-170.0	259	SEGB9	5775.0 ,765.0
210	COM19	7605.0 ,-120.0	260	SEGC9	5725.0 ,765.0
211	COM18	7605.0,-70.0	261	SEGA10	5675.0 ,765.0
212	COM17	7605.0 ,-20.0	262	SEGB10	5625.0 ,765.0
213	COM16	7605.0 ,30.0	263	SEGC10	5575.0 ,765.0
214	COM15	7605.0 ,80.0	264	SEGA11	5525.0 ,765.0
215	COM14	7605.0 ,130.0	265	SEGB11	5475.0 ,765.0
216	COM13	7605.0 ,180.0	266	SEGC11	5425.0 ,765.0
217	COM12	7605.0 ,230.0	267	SEGA12	5375.0 ,765.0
218	COM11	7605.0 ,280.0	268	ŞEGB12	5325.0 ,765.0
219	COM10	7605.0 ,330.0	269	SEGC12	5275.0 ,765.0
220	COM9	7605.0 ,380.0	270	SEGA13	5225.0 ,765.0
221	COM8	7605.0 ,430.0	271	SEGB13	5175.0 ,765.0
222	COM7	7605.0 480.0	272	SEGC13	5125.0 ,765.0
223	COM6	7605.0 ,\$30.0	273	SEGA14	5075.0 ,765.0
224	COM5	7605.0,580.0	274	SEGB14	5025.0 ,765.0
225	COM4	7605.0,630.0	275	SEGC14	4975.0 ,765.0
226	COM3	7605.0,680.0	276	SEGA15	4925.0 ,765.0
227	eom2	7605.0 ,736.0	277	SEGB15	4875.0 ,765.0
228	COM1	7331.0 ,765.0	278	SEGC15	4825.0 ,765.0
229	COM0	7275.0 ,765.0	279	SEGA16	4775.0 ,765.0
230	COMA	7225.0 ,765.0	280	SEGB16	4725.0 ,765.0
231	SEGA0	7175.0 ,765.0	281	SEGC16	4675.0 ,765.0
232	SEGB0	7125.0 ,765.0	282	SEGA17	4625.0 ,765.0
233	SEGC0	7075.0 ,765.0	283	SEGB17	4575.0 ,765.0
234	SEGA1	7025.0 ,765.0	284	SEGC17	4525.0 ,765.0
235	SEGB1	6975.0 ,765.0	285	SEGA18	4475.0 .765.0
236	SEGC1	6925.0 ,765.0	286	SEGB18	4425.0 ,765.0
237	SEGA2	6875.0 ,765.0	287	SEGC18	4375.0 ,765.0
238	SEGB2	6825.0 ,765.0	288	SEGA19	4325.0 ,765.0
239	SEGC2	6775.0 ,765.0	289	SEGB19	4275.0 ,765.0
240	SEGA3	6725.0 ,765.0	290	SEGC19	4225.0 ,765.0
241	SEGB3	6675.0 ,765.0	291	SEGA20	4175.0 ,765.0
242	SEGE3	6625.0 ,765.0	292	SEGB20	4175.0 ,765.0
243	SEGC3	6575.0 ,765.0	293	SEGC20	4075.0 ,765.0
244	SEGR4 SEGB4	6525.0 ,765.0	294	SEGA21	4025.0 ,765.0
245	SEGC4	6475.0 ,765.0	295	SEGB21	3975.0 ,765.0
246	SEGA5	6425.0 ,765.0	296	SEGC21	3925.0 ,765.0
247	SEGAS SEGB5	6375.0 ,765.0	297	SEGA22	3875.0 ,765.0
248	SEGE5	6325.0 ,765.0	298	SEGB22	3825.0 ,765.0
249	SEGC3 SEGA6	6275.0 ,765.0	299	SEGC22	3775.0 ,765.0
					111.10 10.10

Pin NO	Pad Name	Coordinate (X,Y)	Pin NO	Pad Name	Coordinate (X,Y)
301	SEGB23	3675.0 ,765.0	351	SEGA40	1175.0 ,765.0
302	SEGC23	3625.0 ,765.0	352	SEGB40	1125.0 ,765.0
303	SEGA24	3575.0 ,765.0	353	SEGC40	1075.0 ,765.0
304	SEGB24	3525.0 ,765.0	354	SEGA41	1025.0 ,765.0
305	SEGC24	3475.0 ,765.0	355	SEGB41	975.0 ,765.0
306	SEGA25	3425.0 ,765.0	356	SEGC41	925.0 ,765.0
307	SEGB25	3375.0 ,765.0	357	SEGA42	875.0 ,765.0
308	SEGC25	3325.0 ,765.0	358	SEGB42	825.0 ,765.0
309	SEGA26	3275.0 ,765.0	359	SEGC42	775.0 ,765.0
310	SEGB26	3225.0 ,765.0	360	SEGA43	725.0 ,765.0
311	SEGC26	3175.0 ,765.0	361	SEGB43	675.0 ,765.0
312	SEGA27	3125.0 ,765.0	362	SEGC43	625.0 ,765.0
313	SEGR27	3075.0 ,765.0	363	SEGA44	575.0 ,765.0
314	SEGE27	3025.0 ,765.0	364	SEGB44	525.0 ,765.0
315	SEGA28	2975.0 ,765.0	365	SEGC44	475.0 ,765.0
316	SEGR28	2925.0 ,765.0	366	SEGA45	425.0 ,765.0
317	SEGC28	2875.0 ,765.0	367	SEGB45	375.0 ,765.0
318	SEGA29	2825.0 ,765.0	368	SEGC45	325.0 ,765.0
319	SEGB29	2775.0 ,765.0	369	SEGA46	275.0 ,765.0
320	SEGC29	2725.0 ,765.0	370	SEGB46	2/5.0 ,765.0
320	SEGA30	2675.0 ,765.0	371	SEGC46	175.0 ,765.0
322	SEGB30	2625.0 765.0	372	SEGA47	125.0 ,765.0
323	SEGE30		373		
323	SEGC30 SEGA31	25\\(76\)5.0\(76\)5.0\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	374	SEGB47 SEGC47	75.0 ,765.0 25.0 ,765.0
325	-	2475.0,765.0	375	SEGA48	·
325	SEGB31		376		-25.0 ,765.0
320	SEGC31	2A25.0.765.0	377	SEGB48	-75.0 ,765.0
327	SEGA32	2375.0 ,765.0		SEGC48	-125.0 ,765.0
	SEGB32	2325.0 ,765.0	378	SEGA49	-175.0 ,765.0
329	SEGC32	2275.0 ,765.0	379	SEGB49	-225.0 ,765.0
330	ŠEGA33	2225.0 ,765.0	380	SEGC49	-275.0 ,765.0
331	SEGB33	2175.0 ,765.0	381	SEGA50	-325.0 ,765.0
332	SEGC33	2125.0 ,765.0	382	SEGB50	-375.0 ,765.0
333	SEGA34	2075.0 ,765.0	383	SEGC50	-425.0 ,765.0
334	SEGB34	2025.0 ,765.0	384	SEGA51	-475.0 ,765.0
335	SEGC34	1975.0 ,765.0	385	SEGB51	-525.0 ,765.0
336	SEGA35	1925.0 ,765.0	386	SEGC51	-575.0 ,765.0
337	SEGB35	1875.0 ,765.0	387	SEGA52	-625.0 ,765.0
338	SEGC35	1825.0 ,765.0	388	SEGB52	-675.0 ,765.0
339	SEGA36	1775.0 ,765.0	389	SEGC52	-725.0 ,765.0
340	SEGB36	1725.0 ,765.0	390	SEGA53	-775.0 ,765.0
341	SEGC36	1675.0 ,765.0	391	SEGB53	-825.0 ,765.0
342	SEGA37	1625.0 ,765.0	392	SEGC53	-875.0 ,765.0
343	SEGB37	1575.0 ,765.0	393	SEGA54	-925.0 ,765.0
344	SEGC37	1525.0 ,765.0	394	SEGB54	-975.0 ,765.0
345	SEGA38	1475.0 ,765.0	395	SEGC54	-1025.0 ,765.0
346	SEGB38	1425.0 ,765.0	396	SEGA55	-1075.0 ,765.0
347	SEGC38	1375.0 ,765.0	397	SEGB55	-1125.0 ,765.0
348	SEGA39	1325.0 ,765.0	398	SEGC55	-1175.0 ,765.0
349	SEGB39	1275.0 ,765.0	399	SEGA56	-1225.0 ,765.0
350	SEGC39	1225.0 ,765.0	400	SEGB56	-1275.0 ,765.0

Pin NO	Pad Name	Coordinate (X,Y)	Pin NO	Pad Name	Coordinate (X,Y)
401	SEGC56	-1325.0 ,765.0	451	SEGB73	-3825.0 ,765.0
402	SEGA57	-1375.0 ,765.0	452	SEGC73	-3875.0 ,765.0
403	SEGA57	-1425.0 ,765.0	453	SEGA74	-3925.0 ,765.0
404	SEGE57	-1475.0 ,765.0	454	SEGB74	-3975.0 ,765.0
405	SEGA58	-1525.0 ,765.0	455	SEGC74	-4025.0 ,765.0
406	SEGA58	-1575.0 ,765.0	456	SEGA75	-4075.0 ,765.0
407	SEGC58	-1625.0 ,765.0	457	SEGB75	-4125.0 ,765.0
407	SEGA59	-1675.0 ,765.0	458	SEGC75	-4175.0 ,765.0
409	SEGB59	-1725.0 ,765.0	459	SEGA76	-4225.0 ,765.0
410	SEGB59	-1725.0 ,765.0	460	SEGB76	-4275.0 ,765.0
411	SEGA60		461	SEGC76	·
411		-1825.0 ,765.0	462		-4325.0 ,765.0
	SEGB60	-1875.0 ,765.0		SEGA77	-4375.0 ,765.0
413	SEGC60	-1925.0 ,765.0	463	SEGB77	-4425.0 ,765.0
414	SEGA61	-1975.0 ,765.0	464	SEGC77	-4475.0 ,765.0
415	SEGB61	-2025.0 ,765.0	465	SEGA78	-4525.0 ,765.0
416	SEGC61	-2075.0 ,765.0	466	SEGB78	4575.0 ,765.0
417	SEGA62	-2125.0 ,765.0	467	SEGC78	4625.0 ,765.0
418	SEGB62	-2175.0 ,765.0	468	SEGA79	4675.0 ,765.0
419	SEGC62	-2225.0 ,765.0	469	SEGB79	-4725.0 ,765.0
420	SEGA63	-2275.0 ,765.0	470	SEGC79	-4775.0 ,765.0
421	SEGB63	-2325.0 ,765.0	471	SEGA80	-4825.0 ,765.0
422	SEGC63	-2375.0 765.0	472	SEGB80	-4875.0 ,765.0
423	SEGA64	-2425.0 ,765.0	473	SEGC80	-4925.0 ,765.0
424	SEGB64	-2475.0 ,765.0	474	SEGA81	-4975.0 ,765.0
425	SEGC64	-2525.0\765.0	475	SEGB81	-5025.0 ,765.0
426	SEGA65	-2575.0,765.0	476	SEGC81	-5075.0 ,765.0
427	SEGB65	-2625.0 ,765.0	477	SEGA82	-5125.0 ,765.0
428	SEGC65	-2675.0 ,765.0	478	SEGB82	-5175.0 ,765.0
429	SEGA66	-2725.0 ,765.0	479	SEGC82	-5225.0 ,765.0
430	SEGB66	-2775.0 ,765.0	480	SEGA83	-5275.0 ,765.0
431	SEGC66	-2825.0 ,765.0	481	SEGB83	-5325.0 ,765.0
432	SEGA67	-2875.0 ,765.0	482	SEGC83	-5375.0 ,765.0
433	SEGB67	-2925.0 ,765.0	483	SEGA84	-5425.0 ,765.0
434	SEGC67	-2975.0 ,765.0	484	SEGB84	-5475.0 ,765.0
435	SEGA68	-3025.0 ,765.0	485	SEGC84	-5525.0 ,765.0
436	SEGB68	-3075.0 ,765.0	486	SEGA85	-5575.0 ,765.0
437	SEGC68	-3125.0 ,765.0	487	SEGB85	-5625.0 ,765.0
438	SEGA69	-3175.0 ,765.0	488	SEGC85	-5675.0 ,765.0
439	SEGB69	-3225.0 ,765.0	489	SEGA86	-5725.0 ,765.0
440	SEGC69	-3275.0 ,765.0	490	SEGB86	-5775.0 ,765.0
441	SEGA70	-3325.0 ,765.0	491	SEGC86	-5825.0 ,765.0
442	SEGB70	-3375.0 ,765.0	492	SEGA87	-5875.0 ,765.0
443	SEGC70	-3425.0 ,765.0	493	SEGB87	-5925.0 ,765.0
444	SEGA71	-3475.0 ,765.0	494	SEGC87	-5975.0 ,765.0
445	SEGB71	-3525.0 ,765.0	495	SEGA88	-6025.0 ,765.0
446	SEGC71	-3575.0 ,765.0	496	SEGB88	-6075.0 ,765.0
447	SEGA72	-3625.0 ,765.0	497	SEGC88	-6125.0 ,765.0
448	SEGB72	-3675.0 ,765.0	498	SEGA89	-6175.0 ,765.0
449	SEGC72	-3725.0 ,765.0	499	SEGB89	-6225.0 ,765.0
450	SEGA73	-3775.0 ,765.0	500	SEGC89	-6275.0 ,765.0

Pin NO	Pad Name	Coordinate (X,Y)	Pin NO	Pad Name	Coordinate (X,Y)
501	SEGA90	-6325.0 ,765.0	551	COMB	-7605.0 ,-726.0
502	SEGB90	-6375.0 ,765.0			
503	SEGC90	-6425.0 ,765.0			
504	SEGA91	-6475.0 ,765.0			
505	SEGB91	-6525.0 ,765.0			
506	SEGC91	-6575.0 ,765.0			
507	SEGA92	-6625.0 ,765.0			
508	SEGB92	-6675.0 ,765.0			
509	SEGC92	-6725.0 ,765.0			
510	SEGA93	-6775.0 ,765.0			
511	SEGB93	-6825.0 ,765.0			
512	SEGC93	-6875.0 ,765.0			
513	SEGA94	-6925.0 ,765.0			
514	SEGR94	-6975.0 ,765.0			
515	SEGC94	-7025.0 ,765.0			
516	SEGA95	-7025.0 ,765.0			
517	SEGA93 SEGB95	-7125.0 ,765.0		\prec	
517	SEGC95	-7125.0 ,765.0			
518	COM32	-7175.0 ,765.0			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
520	COM32 COM33	, , , ,			
		-7275.0 ,765.0		+	
521	COM34	-7331.0 ,765.0			
522	COM35	-7605.0 736.0			
523	COM36	-7605.0 ,680.0			
524	COM37	-7605.0 ,630.0			
525	COM38	7605.0,580.0			
526	COM39	-7605.0,530.0			
527	COM40	-7605.0 ,480.0			
528	COM41	-7605.0 ,430.0			
529	COM42	-7605.0 ,380.0			
530	COM43	-7605.0 ,330.0			
531	COM44	-7605.0 ,280.0			
532	COM45	-7605.0 ,230.0			
533	COM46	-7605.0 ,180.0			
534	COM47	-7605.0 ,130.0			
535	COM48	-7605.0 ,80.0			
536	COM49	-7605.0 ,30.0			
537	COM50	-7605.0 ,-20.0			
538	COM51	-7605.0 ,-70.0			
539	COM52	-7605.0 ,-120.0			
540	COM53	-7605.0 ,-170.0			
541	COM54	-7605.0 ,-220.0			
542	COM55	-7605.0 ,-270.0			
543	COM56	-7605.0 ,-320.0			
544	COM57	-7605.0 ,-370.0			
545	COM58	-7605.0 ,-420.0			
546	COM59	-7605.0 ,-470.0			
547	COM60	-7605.0 ,-520.0			
548	COM61	-7605.0 ,-570.0			
549	COM62	-7605.0 ,-620.0			
550	COM63	-7605.0 ,-670.0			

Note: For PCB layout, IC substrate must be connected to VSS or floating.

5. Functional block diagram

5.1 System Block Diagram

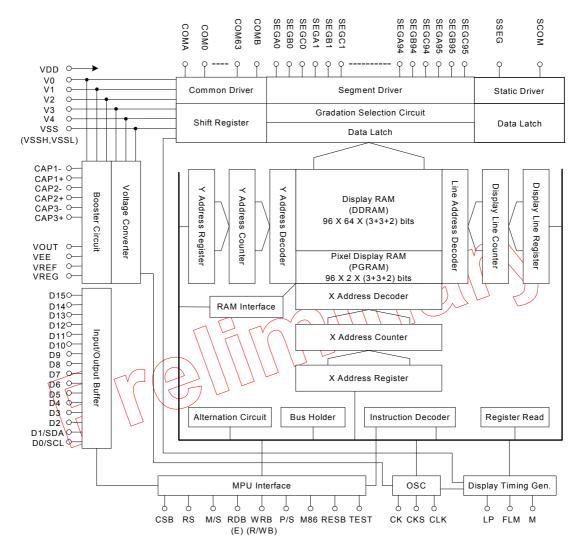
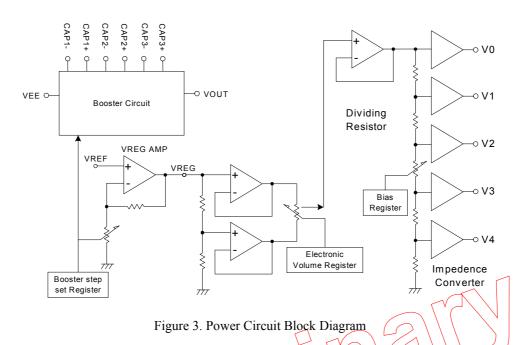



Figure 2. System Block Diagram

5.2 Power Circuit Block Diagram

6. Pin Description

6.1 Power Supply Pins

Symbol	I/O	Description				
VDD	Power Supply	Power supply pin for logic circuit to +1.8 to 3.3V				
VSSL	Power Supply	Ground pin for logic circuit, connect to 0V				
VSSH	Power Supply	Ground pin for high voltage circuit, connected to 0V				
V0 V1 V2 V3 V4	Power Supply	Bias power supply pin for LCD drive voltage When using an external power supply, convert impedance by using resistance-division of LCD drive power supply or operation amplifier before adding voltage to the pins. These voltages should have following relationship: VSS <v4<v3<v2<v1<v0 active,="" and="" are="" booster="" built-in="" by="" capacitor="" circuit="" connect="" converter.="" each="" generated="" internal="" is="" must="" power="" supply="" td="" the="" then,="" these="" to="" voltage="" voltages="" vss.<="" when=""></v4<v3<v2<v1<v0>				

6.2 LCD Power Supply Circuit Pins

Symbol	I/O	Description				
CAP1+	О	Connecting pin for the built in booster's capacitor + side. The capacitor is connected between CAP1 and CAP1+.				
CAP1-	О	Connecting pin for the built in booster's capacitor - side. The capacitor is connected between CAPI- and CAPI+				
CAP2+	О	Connecting pin for the built in booster's capacitor + side. The capacitor is connected between CAP2- and CAP2+.				
CAP2-	0	Connecting pin for the built in booster's capacitor - side. The capacitor is connected between CAP2- and CAP2+.				
CAP3+	Connecting pin for the built in booster's capacitor + side. The capacitor is connected between CAP3- and CAP3+.					
CAP3-	0	Connecting pin for the built in booster's capacitor - side. The capacitor is connected between CAP3- and CAP3+.				
VREF	I	Voltage input pin for generating reference power source				
VEE	Power Supply	Voltage supply pin for booster circuit. Usually the same voltage level as VDD.				
VOUT	О	Output pin of boosted voltage in the built-in booster. The capacitor must be connected between this pin and VSS.				
VREG	О	Output pin for regulated voltage of VREG AMP. The capacitor must be connected between this pin and VSS.				

6.3 System Bus Pins

Symbol	I/O	Description								
RESB	I	Reset input pin.								
TESE	•	When RESB is "L", initialization is executed.								
D0/SCL		Data bus / Signal interface related pins. When parallel interface is selected (P/S = "H"), The D7-D0 are 8-bits bi-directional data bus, connect to MPU data bus. When serial interface is selected (P/S = "L"), D0 and D1 (SCL, SDA) are used as serial interface pins.								
D1/SDA D2-D7	I/O	SCL: Input pin for data transfer clock SDA: Serial data input pin SDA data is latched at the rising edge of SCL. Internal serial/parallel conversion into 8-bit data occurs at the rising edge of 8 th clock of SCL After completing data transferring, or when making no access, be sure to set SCL to "L".								
D8-D15	I/O	8-bit bi-directional bus. Connected to MPU data bus. Used as data bus for upper 8-pins in the 16-bits data RAM transfer mode.								
CSB	I	Chip Select input pin. CSB = "L": accepts access from MPU CSB = "H": denies access from MPU								
RS	I	AM/Register select input pin. S = "0": D7-D0 are display RAM data S = "1": D7-D0 are control register data								
RDB (E)	I	Read/Write control pin Select 80-family MPU type (M86 = "L") The RDB is a data read signal. When RDB is "L", D7-D0 are in an output status. Select 68-family MPU type (M86 = "H") R/WB = "H": When E is "H", D7-D0 are in an output status.								
WRB (R/WB)	I	R/WB = "L": The data on D7-D0 are latched at falling edge of the E signal. Read/Write control pin Select 80-family MPU type (M86 = "L") The WRB is a data write signal. The data on D7-D0 are latched at rising edge of the WRB signal. Select 68-family MPU type (M86 = "H") Read/Write control input pin. R/W = "H": Read R/W = "L": Write								
M86	I	MPU interface type selecting input pin. M86 = "H": 68-family interface M86 = "L": 80-family interface Fixed at either "H" or "L"								
P/S	I	Parallel/Serial interface select pin. P/S Chip select Data identification Data Read/Write Serial clock H CSB RS D0-D7 RDB, WRB - L CSB RS SDA Write only SCL								
		P/S = "H": For parallel interface. P/S = "L": For serial interface. Fix D15-D5 pins are Hi-Z, RDB and WRB pins to either "H" or "L".								
TEST	I	For testing. Fix to "L" in normal operation.								

6.4 LCD Drive Circuit Signals

Symbol	I/O	Description								
		The LP is latch clock I/O pin. At the rising edge, count the display line counter. At the falling edge output the LCD drive								
LP I/O signal. This pin use in master/slave multi-chip system M/S = "H": LP is output										
		M/S = L": LP is input								
FLM	I/O	O pin for LCD display synchronous signals (first line maker). When FLM pin is set to "H", the display start-line address is preset. This pin use in naster/slave multi-chip system. In the display line counter M/S = "H": FLM is output								
		M/S = "L": FLM is input								
M	I/O	O pin for alternated signals of LCD drive output. 1/S = "H": M is output 1/S = "L": M is input								
		This pin use in master/slave multi-chip system. Maser/Slave mode select input pin								
		M/S State OSC Power Supply Circuit LP FLM M CLK								
M/S	I	H Master Enable Enable Output Output Output								
		L Slave Disable Disable Input Input Input Input								
		Fix to "H" or "L" at this terminal.								
SEGA0-A95 SEGB0-B95 SEGC0-C95		Segment output pins for LCD drives. According to the data of the Display RAM data, non-lighted at "0", lighted at "1" (Normal Mode). non-lighted at "1", lighted at "0" (Reverse Mode) and, by a combination of M signal and display data, one signal level among V0,V2,V3 and VSS signal levels are selected. (When Monochrome Display) M Signal Display RAM Data Normal Mode V2 V0 V3 VSS Reverse Mode V0 V2 VSS V3								
COM0- COM63	O	Common output pins for LCD drivers. By a combination of the scanning data and M signal, one signal level among V0, V1, V4 and VSS signal level is selected. Data								
COMA	О	L L V4 Common output pin for LCD drive exclusively for icons.								
COMB	0	Common output pin for LCD drive exclusively for icons. Common output pin for LCD drive exclusively for icons.								
SCOM SSEG		LCD driver output pin for static driver								

6.5 Oscillating Circuit Pin

Symbol	I/O	Description
		Display timing clock source select input pin.
CKS	T	CKS = "H": Use external clock from CK pin.
CKS	1	CKS = "L": Use internal oscillated clock.
		In the slave mode, fix this pin at "L". In the case of TCP, draw it as a separate terminal.
CK	I	External clock input pin for display timing. In the slave mode, fix the CK pin at "L".
		I/O pin for display timing clock. To use this pin in the master/slave system.
CLK	1/0	M/S = "H": Output in the master mode.
CLK	I/O	M/S = "L": Input display timing clock from the master.
		In the monochrome mode, this signal is not output signal.

7. Functional Description

7.1 MPU Interface

7.1.1 Selection of Interface Type

The EM65567 transfers data through 8-bit parallel I/O (D7-D0), 16-bit parallel I/O (D15-D0) or serial data input (SDA, SCL). The parallel interface or serial interface can select by state of P/S pin. When select serial interface, data reading cannot be performed, only data writing can operate.

	P/S	I/F Type	CSB	RS	RDB	WRB	M86	SDA	SCL	Data
ĺ	Н	Parallel	CSB	RS	RDB	WRB	M86	-	-	D7~D0 (D15~D0)
ſ	L	Serial	CSB	RS	-	-	-	SDA	SCL	-

7.1.2 Parallel Input

When parallel interface is selected with the P/S pin, the EM65567 allows data to be transferred in parallel to an 8-bit/16-bit MPU through the data bus. For the 8-bit/16-bit MPU, either the 80-family MPU interface or the 68-family MPU interface can be selected with the m86 pin.

M86	MPU Type	CSB	RS	RDB	WRB	Data
Н	68-family MPU	CSB	RS	Е	R/WB	D7~D0 (D15~D0)
L	80-family MPU	CSB	RS	RDB	WRB	D0~D7 (D15~D0)

7.1.3 Read/Write functions of Register and display RAM

The EM65567 have four read/write functions at parallel interface mode. Each read/write function select by combinations of RS, RDB and WRB signals.

RS	68-family	80-fa	mily	Function	
KS	R/WB	RDB	WRB	Function	
1	1	0	1	Read internal Register	
1	0	1	0	Write internal Register	
0	1	0	1	Read display data	
0	0	1	0	Write display data	

7.1.4 Serial Interface

The serial interface of EM65567 can accept inputs of SDA and SCL in the state of chip select (CSB="L"). When not in the state of chip select. The internal shift register and counter are reset in the initial condition. Serial data SDA are input sequentially in order of D7 to D0 at the rising of serial clock (SCL) and are converted into 8-bit parallel data (by serial to parallel conversion) at the rising edge of the 8th serial clock, being processed in accordance with the data. The identification whether are serial data inputs (SDA) are display data or control register data is judged by input to RS pin.

RS = "L": display RAM data

RS = "H": control register data

After completing 8-bit data transferring, or when making no access, be sure to set serial clock input (SCL) to "L". Cares of SDA and SCL signals against external noise should be taken in board wiring. To prevent transfer error due to external noise, release chip select (CSB = "H") every completion of 8-bit data transferring.

When serial interface is used, access is only made for 8-bit data transfer.

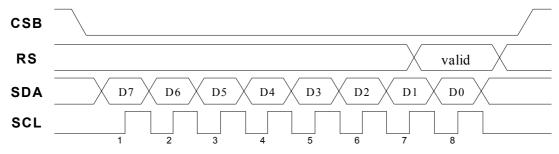


Figure 4. Serial Interface

7.2 Data write to Display RAM and Control Register

The data write to display RAM and Control Register use almost same procedure, only different setting of RS that select access object.

RS = "L": Display RAM data

RS = "H": Control register data

In the case of the 80-family MPU, the data is written at the rising edge of WRB. In the case of the 68-family MPU, the data written at the falling edge of signal E.

Data write operation

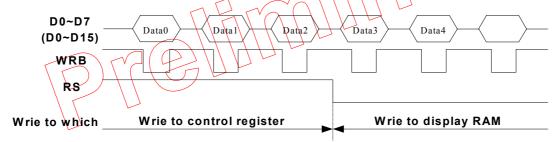


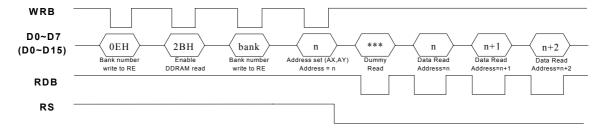
Figure 6. Data write operation

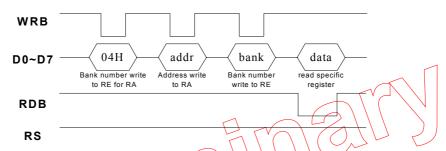
7.3 Internal Register Read

In the case of display RAM read operation, need to set RE band register to θE and write 2BH command. The designated address data are not output to read operation immediately after the address set to AX or AY register, but are output when the second data read. Dummy read is always required one time after address set and write cycle.

[Note: Please refer the page 45 for more detail information about DDRAM read function.]

Read display RAM operation




Figure 7. Read display RAM operation

The EM65567 can be read the control registers, in case of control register read operation, data bus upper nibble (D3-D0) use for register address (0 to FH). In maximum, 16 registers can access directly. But number of register is more than 16 registers. Therefore, EM65567 has register bank control. The RE register is set bank number to access. And the RE address is 0FH, in any bank can access RE register. It is need 4-steps to read the specific register in maximum case.

- (1) Write 04H to RE register for access to RA register.
- (2) Writes specific register address to RA register.
- (3) Write specific register bank to RE register.
- (4) Read specific register contents.

Register read operation

Eigure 8. Register read operation

7.4 16-bit Data Access to Display RAM

The EM65567 correspond to 8-bits and 16-bits bus size access.

The data bus size can select by WLS register.

WLS = "0": 8-bits bus size

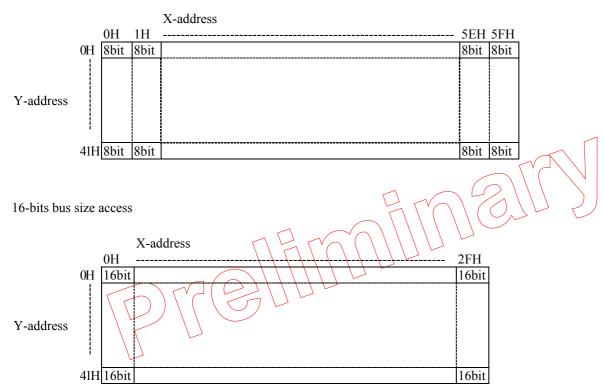
WLS = "1": 16-bits bus size

In the 16-bits access mode, access for control register use low-byte data bus (D7~D0). Then high byte data bus (D15~D8) are not used in internal circuit. When read control register using 16-bits bus. Register values output to D3-D0 and D15-D4 output "H". 16-bit access is only effective for access to the display RAM.

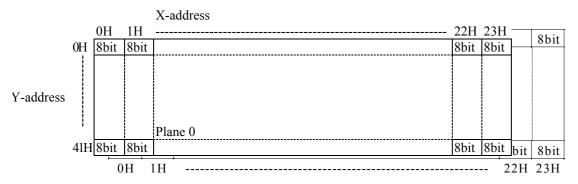
7.5 Display Start Address Register

This register determines the Y-address of the display RAM corresponding to the display start line. The display RAM data that addressed Display Start Address register output to common driver start line. The actual common start line of LCD panel depend on Display Start Common register and SHIFT bit of Display Control register. The register are preset every timing of FLM signal variation in the display line counter. The line counter counts up being synchronized with LP input and generates line addresses which read out sequentially 288 bits data from display RAM to LCD drive circuit.

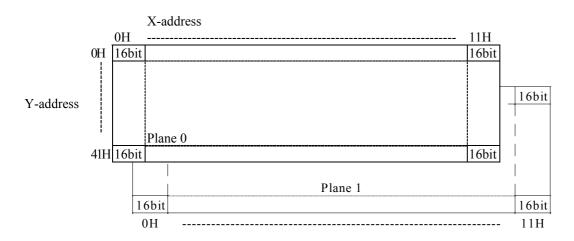
7.6 Addressing of Display RAM


The EM65567 has built-in bit mapped display RAM. The display RAM consists of 768 bits (8 bits*96) in the X-direction and 66 bits in the Y-direction. In the gradation display mode, the EM65567 provides segment driver output for 8-gradation display using 3 bits and that for 4-gradation display using 2 bits. The three outputs of the segment driver can be used for one pixel of RGB. When connected to an STN color LCD panel, the EM65567 can display 96*66 pixels with 256 colors (8

gradation * 8 gradation * 4 gradation). The address area in the X-direction depends on the access bus size. When use 8-bits bus size, can access 00H to 5FH address. When use 16-bits bus size, can access 00H to 2FH address. In the X-direction, X Address register use to access; and in the Y-direction, Y Address register use to access. Do not specify any address outside the effective address area in each access mode because it is not permitted.


In Gradation Display Mode (MON="0")

8-bits bus size access


In the monochrome display mode, can access 288*66dots size two screens (plane 0/plane 1). The selection of either plane 0 or 1 to access is made by the plane selection register (PSEL). The address area in the X-direction depends on the access bus size. When use 8-bits bus size, can access 00H to 23H address. When use 16-bits bus size, can access 00H to 11H address. In Monochrome Display Mode (MON="1")

8-bits bus size access

16-bits bus size access

The addresses, X Address and Y Address are possible to be set up so that they can increment automatically with the address control register. The increment is made every time display RAM is read or written from MPU. In the Y direction, 288 bits of data are read out to the display data latch circuit by internal operation when the LP rises in a one-line cycle. They are output from the display data latch circuit when the LP fails. When FLM signals being output in one frame cycle are at "H", the values in the display starting line register are preset in the line counter and the line counter counts up at the falling of LP signals. The display line address counter is synchronized with each timing signal of the LCD system to operate and is independent of address counters X and Y:

7.7 Display RAM Data and LCD (only monochrome mode)

One bit of display RAM data corresponds to one dot of LCD. Normal display and reverse display by REV register are set up as follows.

Normal display (REV=0): RAM data = "0" not lighted

RAM data = "1" lighted

Reverse display (REV=1): RAM data = "0" lighted

RAM data = "1" not lighted

7.8 Segment Display Output Order/Reverse Set up

The order of display output, SEGA0, SEGB0, SEGC0 to SEGA95, SEGB95, and SEGC95 can be reversed. If REF control bit set to "1", display by reversing access to display RAM from MPU by using REF register, lessen the limitation in placing IC when assembling an LCD panel module.

7.9 Relationship between Display RAM and Address

The Display RAM block diagram shows in the figure below:

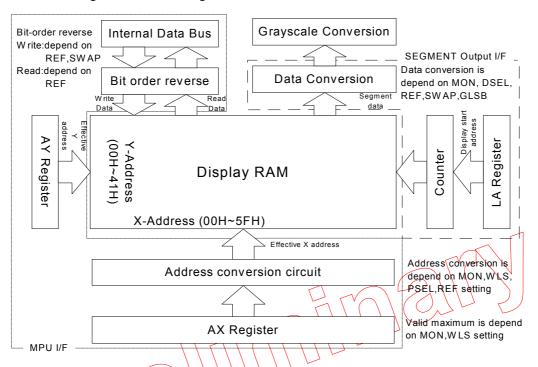
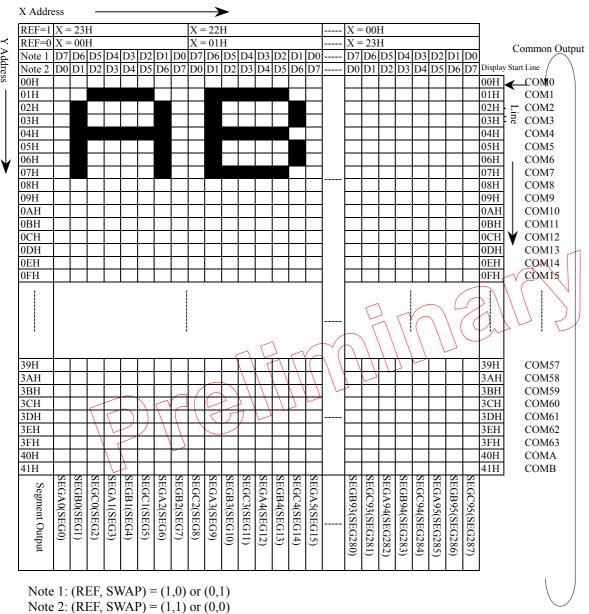
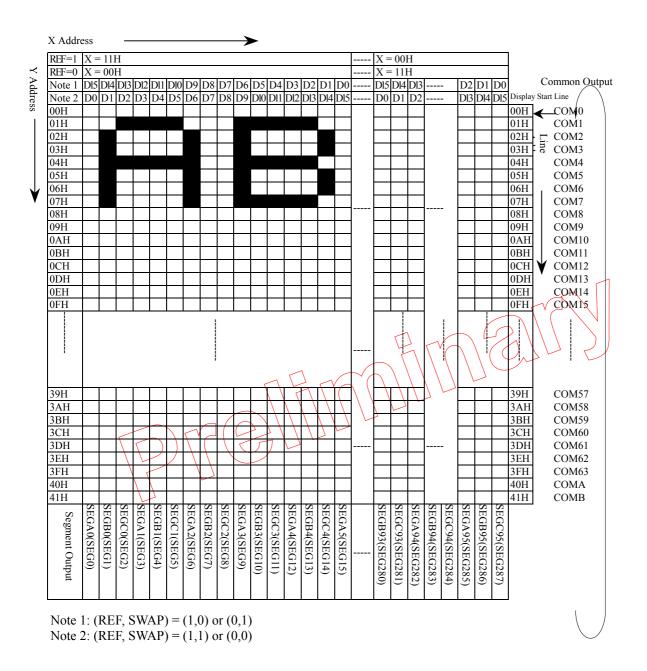
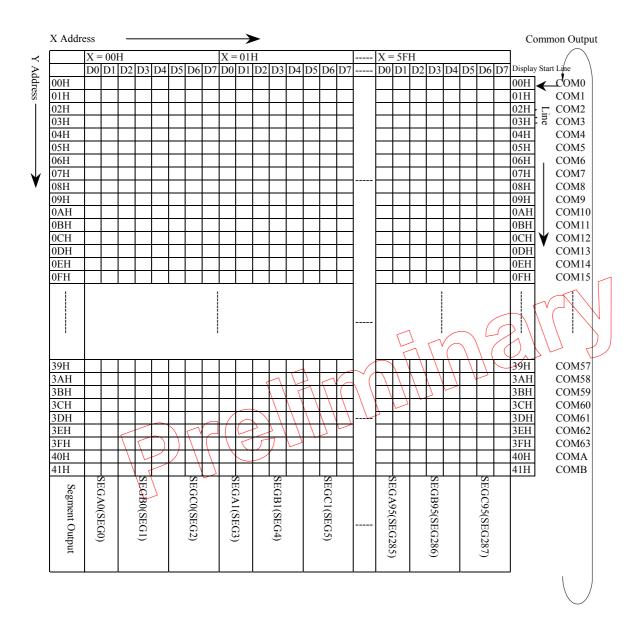



Figure 10. The Display RAM block diagram

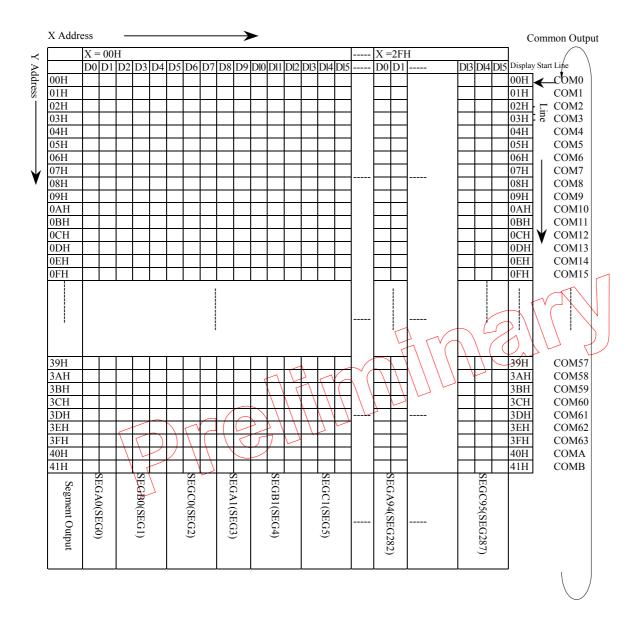
The EM65567 execute address conversion that depends on control register setting. In case of auto increment mode, usually AX register is added one. For instance when REF and AXI are both "1", AX register is added one, but effective X address seems decrement because of address conversion. The effective Y address use AY register values as it is.


(1) Monochrome mode, 8-bits Access mode, Display Start Address = "00H" and Plane0 or Plane1 displayed.

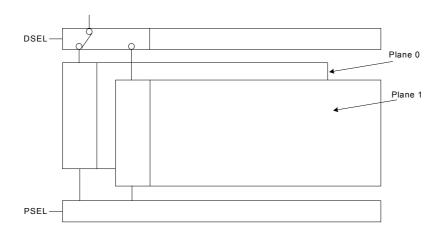
¹¹⁰te 2. (REF, 5 W/H) (1,1) of (0,0)


(2) Monochrome mode, 16-bits Access mode, Display Start Address = "00H" and Plane0 or Plane1 displayed.

^{*} This specification is subject to be changed without notice.

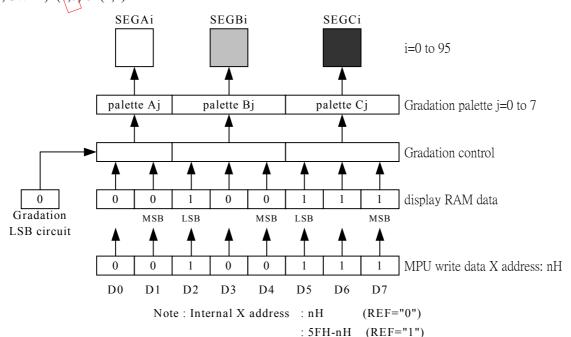


(3) Gradation mode, 8 bits access mode, (REF, SWAP) = (0,0)


(4) Gradation mode, 16 bits access mode, (REF, SWAP) = (0,0)

7.10 Monochrome Two-Plane Display

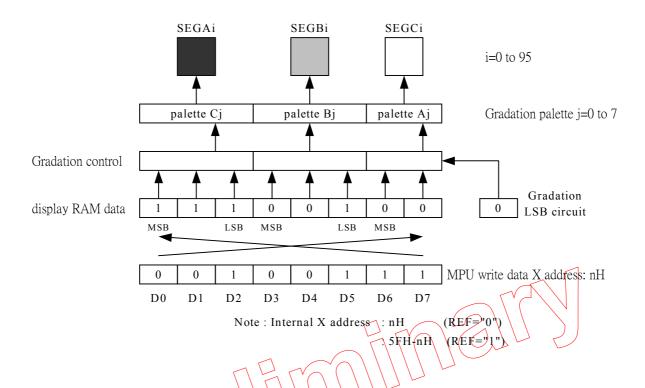
When the gradation display is not necessary, the monochrome display may be selected. In this case, display RAM for gradation are can be used to select either of two planes for display. When data is written to the memory, the plane 0 or 1 is selected with the PSEL bit. The DSEL control bit select plane for display, data can be written to the other plane, and when the write has been completed, the displayed plane can be changed. In the monochrome mode (MON="1"), 00H, 01H, ...23H are assigned to X-addresses on the plane 0/1. Access to each plane is changed with the PSEL bit.


7.11 Display Data Structure and Gradation Control

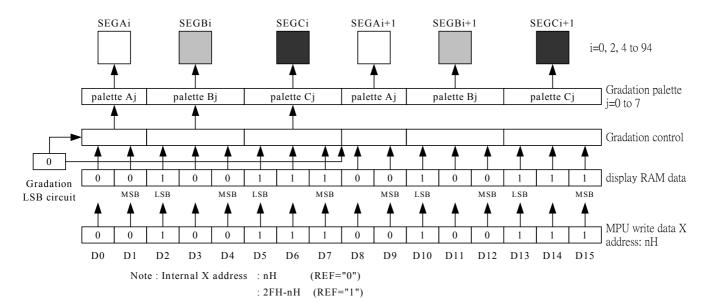
For the purpose of gradation control, one pixel requires multiple bits of display RAM. The EM65567 has 3-bit or 2-bit data per output to achieve the gradation display.

The three outputs of the segment driver are used for one pixel of RGB, and the EM65567 is connected to an STN color LCD panel. It can display 96*66 pixels with 256 colors (3 bits * 3 bits * 2 bits). In this case, since the gradation display data is processed by a single access to the memory, the data can be rewritten fast and naturally.

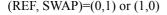
The weighting for each data bit is dependent on the status of the SWAP bit and the REF bit that is selected when data is written to the display RAM.

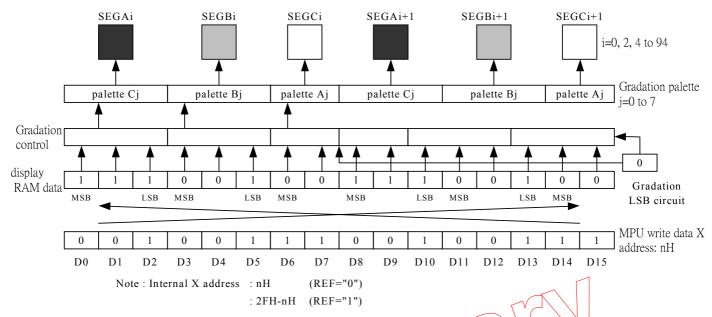

• (REF, SWAP)=(0,0) or (1,1)

⁽⁻⁻⁻⁻



(REF, SWAP)=(0,1) or (1,0)


In 16-bits access, the weighting for each data bit is dependent on the status of the SWAP bit and the REF bit that is selected when data is written to the display RAM, as in the case with 8-bits access.


(REF, SWAP)=(0,0) or (1,1)

^{*} This specification is subject to be changed without notice.

7.12 Gradation LSB Control

In the gradation display mode, the EM65567 provides segment driver output for 8 gradation display using 3-bits and that for 4 gradation display using 2-bits. The segment driver output for the 4-gradation display uses 2-bits written to the corresponding RAM area and 1-bit supplemented by the gradation LSB circuit, and then selects 4-gradation form 8-gradation.

In the gradation display mode, the segment driver output for the 4-gradation display result in a gradation level of 0 regardless of the gradation LSB, when 2-bits of data on the display RAM are "00". When 2-bits of data on the display RAM is "11", a gradation level of 7/7 is selected regardless of the bit information of the gradation LS8. The other gradation levels are selected depending on 2-bits of data on the display RAM and the gradation LSB bits.

One bit of data is supplemented by setting the gradation LSB register (GLSB).

The Gradation LSB control bit applied to all 4-gradation segment drivers.

Gradation LSB = "0": Selects 0 as the LSB information on the RAM for 4-gradation segment drivers.

Gradation LSB = "1": Selects 1 as the LSB information on the RAM for 4-gradation segment drivers.

7.13Gradation Palette

The EM65567 has two gradation display modes, the gradation fixed display mode and the gradation variable display mode. Select either of the two modes using the gradation display mode register.

PWM = "0": Selects the variable display mode using 8 gradation selected from 32 gradation.

PWM = "1": Selects the fixed display mode using specific 8 gradation.

To select the best gradation level suited to the LCD panel, use the gradation palette register among the 32-level gradation palettes in the gradation variable display mode. The segment driver output is set up by the selected 8-levels of gradation palettes.

The gradation palette register provides three registers for the SEGAi (0-95) group, SEGBi (0-95) group, and SEGCi (0-95)

group of segment driver outputs [palettes Aj, Bj, and Cj (j = 0-7)]. Each register consists of a 5-bit register, selecting 8-gradations from the pattern for 32-gradations.

Initial values on gradation palette register

[Three groups of palettes Aj, Bj, and Cj (j = 0-7) are available]

RAM dat	ta(LSB)	Register Name	Initial value					
0	0	Gradation Palette 0	0	0	0	0	0	
0	1	Gradation Palette 1	0	0	1	0	1	
1	0	Gradation Palette 2	0	1	0	1	0	
1	1	Gradation Palette 3	0	1	1	1	0	
0	0	Gradation Palette 4	1	0	0	0	1	
0	1	Gradation Palette 5	1	0	1	0	1	
1	0	Gradation Palette 6	1	1	0	1	0	
1	1	Gradation Palette 7	1	1	1	1	1	

Gradation level table (PWM = "0", variable mode)

[Three groups of palettes Aj, Bj, and Cj (j = 0-7) are available

Gradation level	Remarks		Pa	alet	te		Gradaton level	Remarks
0	gradation palette0 initial value	1	0	٩	0	0	16/31	
1/31		1	0	p	10	$\gamma_{(}$	17/31	gradation palette4 initial value
2/31		1	0/	Ò	1	0	18/31	
3/31		1	Ø	0	1	1	19/31	
4/31		Γ <u>1</u> /	0	1	0	0	20/31	
5/31	gradation palette1 initial value	1	0	1	0	1	21/31	gradation palette5 initial value
6/31		1	0	1	1	0	22/31	
7//31		1	0	1	1	1	23/31	
8/31		1	1	0	0	0	24/31	
9/31		1	1	0	0	1	25/31	
10/31	gradation palette2 initial value	1	1	0	1	0	26/31	gradation palette6 initial value
11/31		1	1	0	1	1	27/31	
12/31		1	1	1	0	0	28/31	
13/31		1	1	1	0	1	29/31	
14/31	gradation palette3 initial value	1	1	1	1	0	30/31	
15/31		1	1	1	1	1	31/31	gradation palette7 initial value

Gradation level table (PWM = "1", fixed mode)

(MSB)F	RAM dat	Gradation level	
0	0	0	0
0	0	1	1/7
0	1	0	2/7
0	1	1	3/7
1	0	0	4/7
1	0	1	5/7
1	1	0	6/7
1	1	1	7/7

RAM	Data	GLSB	Gradation level
0	0	*	0
0	1	0	2/7
0	1	1	3/7
1	0	0	4/7
1	0	1	5/7
1	1	*	7/7

※: Don't Care

Caution: Different gradation levels can't be set the same palette.

7.14 Display Timing Circuit

The display timing circuit generates internal signals and timing pulses (LP, FLM, M and CLK) by clock. It can select external input (CK) or internal oscillation.

By setting up Master/Slave mode (M/S), the state of timing pulse pins and the timing generator changes.

M/S Pin	Mode	LP Pin	M Pin	FLM Pin	CLK Pin	State of timing generator
L	Slave	Input	Input	Input	Input	LP,FLM,M generation stop
Н	Master	Output	Output	Output	Output	Operation state

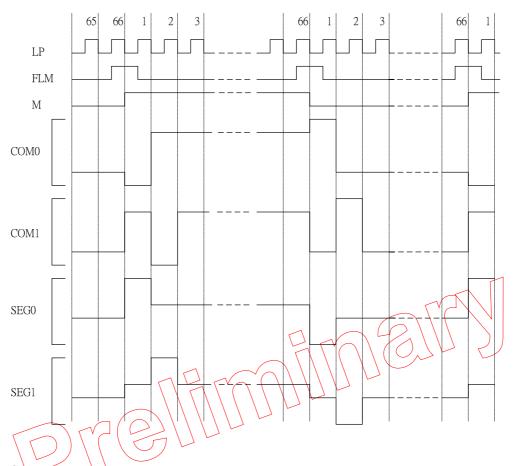
Display timing pulse pins and Generator State

7.15 Signal Generation to Display Line Counter, and Display Data Latching Circuit

Both the clock to the line counter and clock to display data latching circuit from the display clock (LP) are generated. Synchronized with the display clock (LP), the line addresses of Display RAM are generated and 288-bits display data are latched to display data latching circuit to output to the LCD drive circuit (Segment outputs). Read-out of the display data to the LCD drive circuit is completely independent of MPU. Therefore, MPU that has no relationship the read-out operation of the display data can access.

7.16 Generation of the Alternated Signal (M) and the Synchronous Signal (FLM)

LCD alternated signal (M) and synchronous signal (FLM) are generated by the display clock (LP). The FLM generates alternated drive waveform to the LCD drive circuit. Normally, the FLM generates alternated drive waveform every frame (M-signal level is reversed every one frame). However, by setting up data (n-1) in an n-line reverse register and n-line alternated control bit (NLIN) at "1", n-line reverse waveform is generated. When the EM65567 is used in multi chip system, master chip must provide LP, FLM, and M signals for the slave chip.


7.17 Display Data Latching Circuit

Display data latching Circuit temporally latches display data that is output display data to LCD driver circuit from display RAM every one common period. Normal display/reverse display, display ON/OFF, and display all on functions are operated by controlling data in display data latch. Therefore, no data within display RAM changes.

7.18 Output Timing of LCD Driver

Display timing at Normal mode (not reverse mode), 1/66 DUTY, and on monochrome mode.

7.19 LCD Drive Circuit

This drive circuit generates four levels LCD drive voltage. The circuit has 288 segment outputs and 66 common outputs and outputs combined display data and M signal. Two of common outputs, COMA and COMB, are special outputs. The COMA and COMB outputs be not influenced by partial setting. Mainly use for display. The common drive circuit that has shift register sequentially outputs common scan signals.

7.20 Oscillating Circuit

The EM65567 has the CR oscillator. The output from this oscillator is used as the timing signal source of the display and the boosting clock to the booster.

This can use only in the master operation mode.

When in the master operation mode and external clock is used, feed the clock to CK pin.

The duty cycle of the external clock must be 50%.

The resistance ratio of CR oscillator is programmable. If change this ratio, also change frame frequency for display.

7.21 Power Supply Circuit

This circuit supplies voltages necessary to drive a LCD. The circuit consists of booster and voltage converter.

Boosted voltage from the booster is fed to the voltage converter that converts this input voltage into V0, V1, V2, V3 and V4 that are used to drive the LCD. This internal power supply should not be used to drive a large LCD panel containing many

pixels. Otherwise, display quality will degrade considerably. Instead, use an external power supply. When using the external power supply, turn off the internal power supply (AMPON, DCON="00"), disconnect pins CAP1+, CAP2+, CAP2-, CAP3+, CAP3-, VOUT, VEE, VREF and VREG. Then, feed external LCD drive voltages to pins V0, V1, V2, V3 and V4. The power circuit can be control by power circuit related register. So partial function of built-in power circuit can use with external power supply.

DCON	AMPON	Booster circuit	Voltage conversion circuit	Extemal voltage input	Note
0	0	DISABLE	DISABLE	V0,V1,V2,V3 and V4 are supplied	% 1
0	1	DISABLE	ENABLE	VOUT is supplied	% 2
1	1	ENABLE	ENABLE	-	-

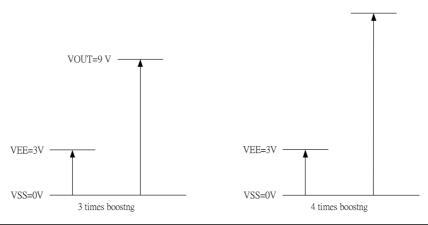
¾ 1 Because the booster and voltage converter not operating, disconnect pins

CAP1+, CAP1-, CAP2+, CAP2-, CAP3+, CAP3-, VOUT, VEE, VREG and VREF.

Apply external LCD drive voltages to corresponding pin.

* 2 Because the booster is not operating, disconnect pins

CAP1+, CAP1-, CAP2+, CPA2-, CAP3+, CAP3-


Derive the voltage source to be supplied to the voltage converter from VOUT pin and then Input the reference voltage at VREF pin.

7.22 Booster Circuit

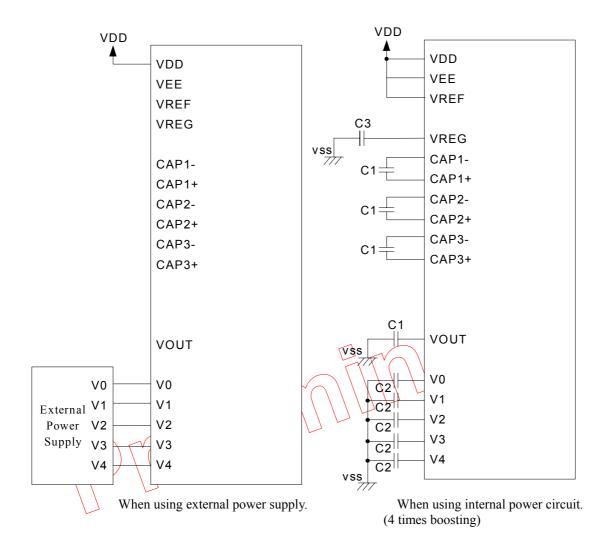
Placing capacitor C1 across CAP1+ and CAP1-, across CAP2+ and CAP2-, across CAP3+ and CAP3- and across VOUT and VSS boosts the voltage coming from VEE and VSS n-times and outputs the boosted voltage to VOUT pin. The twice, third, or fourth boosted voltage output to the VOUT pin by the boost step register set. The boost step registers set by the command.

- (1) In case of using only twice boosted voltage, placing C1 only across CAP1+ and CAP1- and opening CAP2+, CAP2-, CAP3+, CAP3
- (2) In case of using only third boosted voltage, placing C1 only across CAP1+ and CAP1-, across CAP2+ and CAP2- and opening CAP3+, CAP3-
- (3) In case of using only fourth boosted voltage, placing C1 only across CAP1+ and CAP1-, across CAP2+ and CAP2-, across CAP3+ and CAP3-

When use built-in booster circuit, output voltage (VOUT) must less than recommended operating voltage (15.0 Volt). If output voltage (VOUT) over recommended operating voltage, correct work of chip can not guarantee.

7.23 Electronic volume

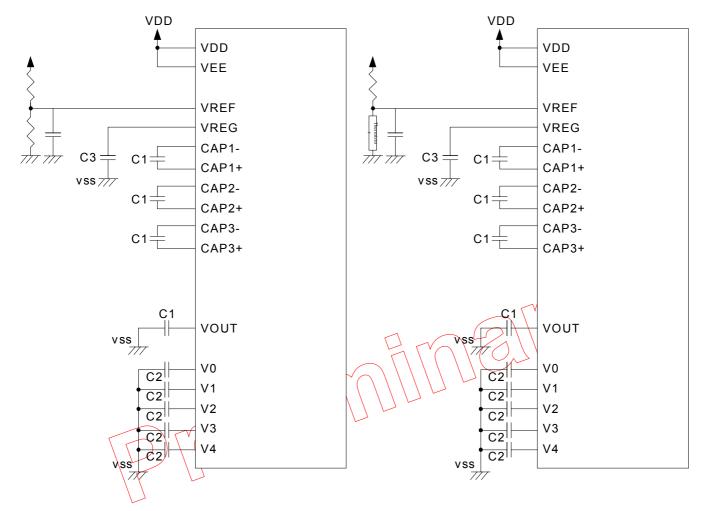
The voltage conversion circuit has built-in an electronic volume, which allows the LCD drive voltage level V0 to be controlled with DV register setting and allows the tone of LCD to be controlled. The DV registers are 7-bits, so can select 128 voltage values for the LCD drive voltage V0.


7.24 Voltage Regulator

The EM65567 has built-in reference voltage regulator, which generate the voltage amplified by input voltage from VREF pin. The generated voltage is output at the VREG pin. Even if the boosted voltage level fluctuates, VREG remains stable so far as VOUT is higher than VREG Stable power supply can be obtained using this constant voltage, even if the load fluctuates. The EM65567 uses the generated VREG level for the reference level of the electronic volume to generate LCD drive voltage. In order to stabilize the output voltage at the VREG pin, connect the capacitor C3 as appropriate by choosing its value.

7.25 LCD Drive Voltage Generation Circuit

The voltage converter contains the voltage generation circuit. The LCD drive voltages other than V0, that is, V1, V2, V3 and V4 are obtained by dividing V0 through a resistor network. The LCD drive voltage from EM65567 is biased at 1/5, 1/6, 1/7, 1/8 or 1/9. When using the internal power supply, connect a stabilizing capacitor C2 to each of pins V0 to V4. The capacitance of C2 should be determined while observing the LCD panel to be used. When using the external power supply, apply external LCD drive voltages to V0, V1, V2, V3, V4, disconnect pins CAP1+, CAP2+, CAP2+, CAP3+, CAP3-, VOUT, VEE, VREF and VREG. When using only the voltage conversion circuit, turn off the internal booster circuit, disconnect pins CAP1+, CAP1-, CAP2+, CAP2+, CAP3+, CAP3- and VEE. Derive the voltage source to be supplied to the voltage converter from VOUT pin and then input the reference voltage to VREF pin.

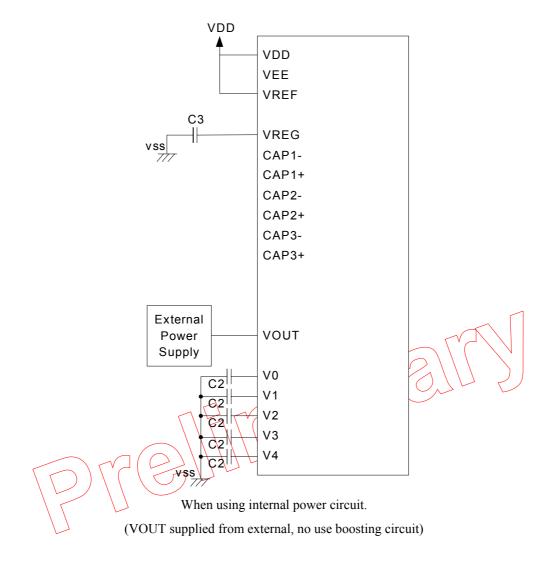


Recommended value.

C1	1.0 to 4.7 μ F
C2	1.0 to 2.2 μ F
C3	0.1 μF

Note: External Capacitance must be use B characteristic.

When using internal power circuit with external reference voltage input. (4 times boosting)

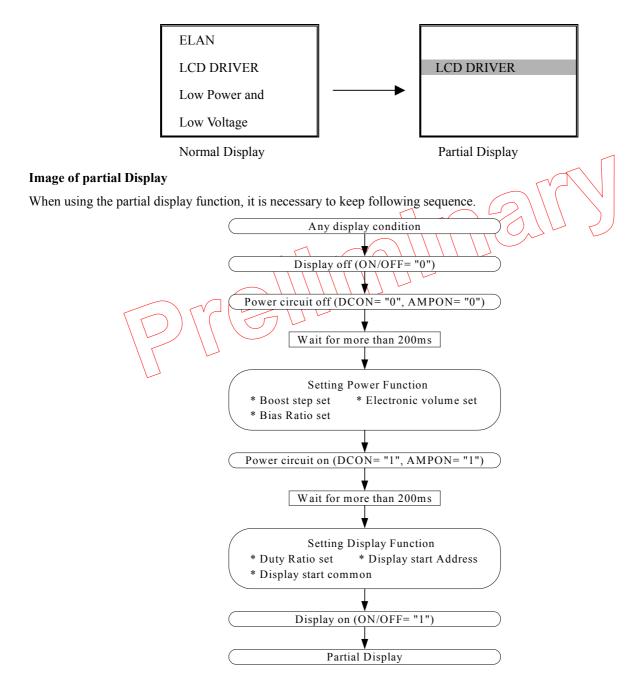

When using internal power circuit with thermistor for temperature independt. (4 times boosting)

Recommended value.

C1	1.0 to 4.7 μ F
C2	1.0 to 2.2 μ F
C3	0.1 μF

Note: External Capacitance must be use B characteristic.

Recommended value.


C2	1.0 to 2.2 μ F
C3	$0.1~\mu\mathrm{f}$

Note: External Capacitance must be use B characteristic.

7.26 Partial Display Function

The EM65567 has the partial display function, which can display a part of graphic display area. This function is used be set lower bias ratio, lower boost step, and lower LCD drive voltage. Since setting partial display function, EM65567 provides low power consumption. Partial display function is the most suitable for clock indication or calendar indication when a portable equipment stand-by.

Select a display duty ratio for the partial display from 1/10, 1/18, 1/26, 1/34, 1/42, 1/50 and 1/58 using the DS(LCD duty ratio) register. Set the most suitable values for LCD drive bias ratio, LCD drive voltage, electronic volume, the number of boosting steps, and others according to the actually used LCD panel and the selected duty ratio.

7.27 Discharge circuit

The EM65567 has built-in the discharge circuit, which discharges electricity from capacitors for a stability of power sources(V0~V4).

The discharge circuit is valid, while the DIS register is set to "1" or the RESB pin is set "L". When the built-in power supply is used, should be set DIS="1" after the power source is turned off (DCON, AMPON)=(0, 0). And don't turn on both the built-in power source and the external power source (V0~V4, VOUT) while DIS="1".

7.28 Initialization

The EM65567 is initialized by setting RESB pin to "L". Normally, RESB pin is initialized together with MPU by connecting to the reset pin of MPU. When power ON, be sure to make RESB="L".

Display RAM	Not fixed
X Address	00H set
Y Address	00H set
Display starting line	Set at the first line(0H)
Display ON/OFF	Display OFF
Display Normal/Reverse	Normal ()
Display duty	1/66
n-line alternated	every frame unit
Common shift direction	\ COMO→COM63, COMA, COMB
Increment mode	Increment OFF
REF mode	Normal
Data SWAP Mode	OFF
Register in electronic volume	(0,0,0,0,0,0)
Power Supply	OFF
Display mode	Gradation display mode
Bias ratio	1/9 bias
Gradation palette 0	(0, 0, 0, 0, 0)
Gradation palette 1	(0, 0, 1, 0, 1)
Gradation palette 2	(0, 1, 0, 1, 0)
Gradation palette 3	(0, 1, 1, 1, 0)
Gradation palette 4	(1, 0, 0, 0, 1)
Gradation palette 5	(1, 0, 1, 0, 1)
Gradation palette 6	(1, 1, 0, 1, 0)
Gradation palette 7	(1, 1, 1, 1, 1)
Gradation display mode	Variable mode
Gradation LSB	"0"
RAM access data length	8-bits mode
Discharge Register	"0"
Booster frequency	(0,0)
Static Pictograh	OFF

7.29 Precaution when Power ON and Power OFF

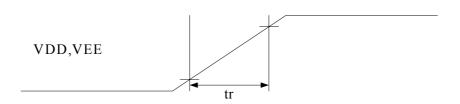
This LSI may be permanently damaged by high current that may flow if a voltage is supplied to the LCD driver power supply while the system power supply is floating. The detail is as follows.

- (i) When using as external power supply
- · Procedure for Power ON
- (1) Logic system (VDD) power ON, make reset operation.
- (2) Supply external LCD drive voltage to corresponding pins (V0, V1, V2, V3 and V4)
- · Procedure for Power OFF
- (1) Set HALT register to "1" or make reset operation.
- (2) Cut off external LCD drive voltage.
- (3) Logic system(VDD) power OFF.

Note: connect the serial resistor (50 to 100Ω) or fuse to the LCD drive power V0 or VOUT when only use internal voltage conversion circuit) of the system as a current limiter. Moreover, set up the suitable value of the resistor in consideration of LCD display grade.

- (ii) When using the built-in power supply
- Procedure for Power ON
- (1) Logic system (VDD) power ON
- (2) Booster circuit system (VEE) power ON
- (3) Make reset operation, booster and voltage conversion circuit enable.

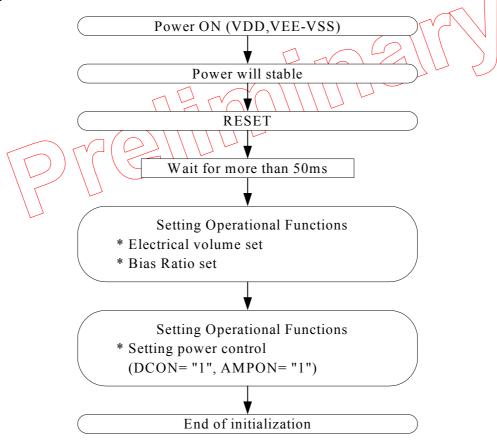
If VDD and VEE voltages aren't same potential, power on logic system (VDD) first.


- · Procedure for Power OFF
- (1) Set HALT register to "1" or make reset operation.
- (2) Booster circuit system (VEE) power ON
- (3) Logic system (VDD) power OFF.

If VDD and VEE are not same potential, cut off VEE first. After VEE, VOUT, V0, V1, V2, V3 and V4 voltages are below LCD ON voltage (threshold voltage for Liquid crystal turn on), power off logic system (VDD).

(iii) Power supply rising time

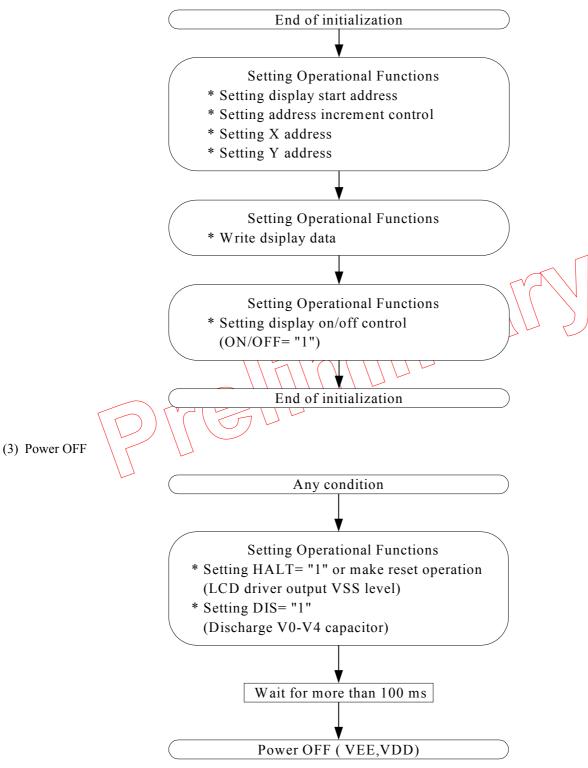
Though especially there is no constraint on the rising time of the power supply, the tr (rising time) of the following is recommended in the practical use.



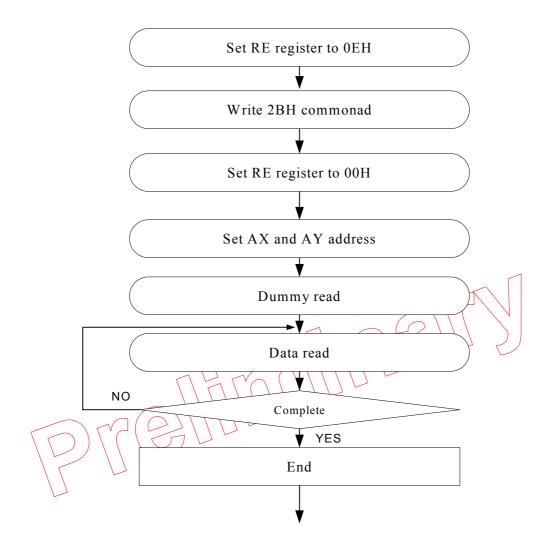
Item	Recommended rising time	Applicable Power
tr	30us ~ 10ms	VDD, VEE

Note: The rising time is the time from 10% of VDD, VEE to 90%.

7.30 Example of Setting Registers


(1) Initialization

If VDD and VEE voltage are not same, connect the logic system power supply (VDD) first.



When turning off the power, set HALT command or make reset operation.

If VDD and VEE voltage are not same, disconnect the booster circuit power supply (VEE) first.

(4) Data read

PROGRAM EXAMPLES Use Elan Risc II MCU assembly

INITIALIZATION SETTING EXAMPLE OF EM65567

WRITEOR macro REGSEL,INSDAT ; Write macro MOV A,INSDAT ; Write data

OR A,REGSEL ; Write register address

CALL WRITE_LCD_1BYTE ;Write A to LCD

endm

EM65567_INI:

WRITEOR #REREGISTERSET,#0b00000000 ;SET RE FLAG 000--> INSTRUCTION bank 0

WRITEOR #POWERCONTROL,#0b00000001 ;ACL(B0) =1 initialization ON

MOV A,#50 ;WAIT 50ms FOR EM65567 INITIAL SETTING

CALL WAIT_A_MS

WRITEOR #BOOSTERSET,#0b00000011 ;BOOSTER x 4 (B1 ,B0 = 1 1)

WRITEOR #POWERCONTROL,#0b00001010 ;BOOSTER CIRCUIT(B1) ON; OPAMP(B3) ON

WRITEOR #BIASRATIOCONTROL,#0b00000000 ;BIAS =1/9 (B2,B1,B0\(\pi\000))

WRITEOR #LCDDUTYSET,#0b00000111 ;LCD Duty Set 1/66 DUTY (B2,B1,B0=111)

WRITEOR #INCREMENTCONTROL,#060000011 \; X(B0) INCREMENT; Y(B1) INCREMENT

WRITEOR #DISPLAYSTARTLINELOWER, #0b00000000 ;SET Display Start LOWER Line=0
WRITEOR #DISPLAYSTARTLINEUPPER, #0b000000000 ;SET Display Start UPPER Line=0

WRITEOR #XADDRES\$LOWER,#0b00000000 ;SET X Add=0

WRITEOR #XADDRESSUPPER,#0b00000000

WRITEOR #YADDRESSLOWER,#0b00000000 ;SET Y Add=0

WRITEOR #YADDRESSUPPER.#0b00000000

WRITEOR #DISPLAYCONTROL1,#0b00001000 ;DISPLAY(B0) OFF; SHIFT(B3) = '1'

WRITEOR #DISPLAYCONTROL2,#0b00000010 ;SWAP(B1) = '1'

WRITEOR #REREGISTERSET,#0b00000100 ;SET RE FLAG 100--> INSTRUCTION bank 4

WRITEOR #ELECTRONICVOLUMEUPPER,#0b00000111 ;SET ELECTRONIC UPPER TO MAX 0111

WRITEOR #ELECTRONICVOLUMELOWER,#0b00001111 ;SET ELECTRONIC LOWER TO MAX 1111

WRITEOR #COMMONSTARTLINESET,#0b00000100 ;SET COMMON START FROM COM 32 B2='1'

WRITEOR #STATICPICTGRAPHCONTROL,#0b000000000 ;Static Pictograph Control =000

WRITEOR #DISPLAYSELECTCONTROL,#0b00001000 ;PWM (B3)=1 8-gradation fixed display
WRITEOR #RAMDATALENGTHSET,#0b00000000 ;WLS=0(B0) 8-BIT WIDTH MODE

WRITEOR #DISCHARGECONTROL,#0b00000010 ;Discharge(B0) off; High power mode(B1) off
WRITEOR #REREGISTERSET,#0b00000000 ;SET RE FLAG 000--> INSTRUCTION bank 0

RET


```
WRITE DISPLAY_PICTURE DATA INTO DISPLAY DATA RAM OF EM65567
DATA_WRITE_65567:
   BS
         REG_PORTB,F_LCD_A0
                               ; LCD RS = 1 INSTRUCTION OUTPUT
   WRITEOR #XADDRESSLOWER,#0b00000000
                                             ;SET X Add=0
   WRITEOR #XADDRESSUPPER,#0b00000000
   WRITEOR #YADDRESSLOWER,#0b00000000
                                             ;SET Y Add=0
   WRITEOR #YADDRESSUPPER,#0b00000000
   MOV
          A,#LINE_Y_MAX
                                        ;COMMON = 3FH (63)
   MOV
          DRAMY,A
DATA_W1:
   MOV
          A,#LINE_X_MAX
                               ;SEGMENT = 5fh (95)
   MOV
          DRAMX,A
                               ;SET LCD RS=0 DATA READ/WRITE
         REG_PORTB,F_LCD_A0
   BC
DATA_W2:
   TBRD
                               ;WRITE LCD SCREEN FROM DATA INDEX
         01,REG_ACC
   CALL
         WRITE LCD 1BYTE
   DEC
         DRAMX
         REG_STATUS,F_C,DATA_W2
   JBS
   DEC
         DRAMY
   JBS
         REG_STATUS,F_C,DATA_W1
   BS
         REG_PORTB,F_LCD_A0
                             ;LCD RS = 1 INSTRUCTION OUTPUT
   RET
WRITE ONE BYTE DATA INTO DDRAM (PARALLEL MODE 80 SERIES)
;AT FIRST DEFINE A0 TO IDENTIFY DATA OR INSTRUCTION WRITE
WRITE_LCD_1BYTE:
    JBS
          REG_DCRG,F_LAHEN,WRITE_LCD_1BYTE_1
                                           ;CHECK REG_DCRG LAHEN BIT=1 OR NOT
    BC
          REG_PORTC,F_LCD_WR
                                           ;SET /WR=0 ENABLE WRITE
           REG_DATA,A
    MOV
                                            ;MOVE A==> PORT_G
    NOP
                                            ;Write low pulse( Wait 2 instruction cycles)
    NOP
    BS
          REG_PORTC,F_LCD_WR
                                           ;SET /WR=1 DISABLE WRITE
    NOP
    NOP
```

^{*} This specification is subject to be changed without notice.

	NOP		
	NOP		
	RET		
WRIT	E_LCD_1B	YTE_1:	
	MOV	REG_DATA,A	;MOVE A==> PORT_G
	RET		
·****	******	*************	*********
;			
;	READ ON	E BYTE DATA INTO DDRAM (PARALLEL M	IODE 80 SERIES)
;			
****	******	***********	*********
;AT F	IRST DEFIN	NE A0 TO IDENTIFY DATA OR INSTRUCTION	READ
REAL	LCD_1BY	YTE:	
	BC	REG_PORTB,F_LCD_RD	;SET /RD=0 ENABLE READ
	NOP		
	NOP		
	MOV	A,REG_DATA	;MOVE PORT_G -A
	NOP		
	BS	REG_PORTB)F_LCD_RD	;SET /RD=1 DISABLE READ
	NOP		
	RET		

8. Control Register

8.1 control register

Control Register Table (Bank 0)

Control Register		·	Pir	ns (for 8	30-fami	ly) & E	Bank					Add	ress &	Code						
Control Register		CSB	RS	RDB	WRB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	Function			
Display Data write		0	0	1	0	0/1	0/1	0/1		•		Writ	e Data	1		•	Write to Display RAM			
Display Data read		0	0	0	1	0/1	0/1	0/1				Rea	d Data	1			Read from Display RAM			
Internal Register read		0	1	0	1	0/1	0/1	0/1	*	*	*	*		Read I	Data		Read out Internal Register			
X Address																	Set of X direction Address			
(Lower nibble)	[H0]	0	1	1 1	0	0	l o	0	0	0	0	Ιo	AX3	AX2	AX1	AX0	in display RAM			
X Address																	Set of X direction Address			
(Upper nibble)	[1H]	0	1	1 1	0	0	0	0	0	0	0	l 1	*	AX6	AX5	AX4	in display RAM			
Y Address	[]				_												Set of X direction Address			
(Lower nibble)	[2H]	0	1	1	0	0	0	0	0	0	1	0	AY3	AY2	AY1	AY0	in display RAM			
Y Address	[=: -]				_							Ť					Set of X direction Address			
(Upper nibble)	[3H]	0	1	1 1	0	0	0	0	0	0	1	l 1	*	AY6	AY5	AY4	in display RAM			
Display start address	[0]		Ė	·	Ť		Ť	Ť	Ť	Ť		H		,	,		Set address of display RAM			
(Lower nibble)	[4H]	0	1	1 1	0	0	0	0	0	1	0	lο	LA3	LA2	LA1	LA0	making common starting line display			
Display start address	[]		<u> </u>		Ŭ	_	Ť	Ŭ	Ť	<u> </u>	Ŭ	ا	L/ 10	L (L		L/ 10	Set address of display RAM			
(Upper nibble)	[5H]	0	1	1 1	0	0	0	0	0	1	0	l 1	*	*	LA5	LA4	making common starting line display			
n-line alternation	[OII]		<u> </u>		Ŭ	_	Ť	Ŭ	Ť	<u> </u>	Ŭ	t			L/ 10		Set the number of alternated			
(Lower nibble)	[6H]	0	1	1	0	0	0	0	0	1	1	۱	N3	N2	N1	N0	reverse line			
n-line alternation	[OII]	- 0					l o					H	140	1172	141	140	Set the number of alternated			
(Upper nibble)	[7H]	0	1	1	0	0	0	0	0	1	1	۱ ۱	*	*	N5	N4	reverse line			
Display control (1)	[///]	- 0					l					H	1		140	144	SHIFT: Select common shift direction			
Display Control (1)																	MON: Select Monochrome/gradation			
													SHI		ALL	ON	ALLON: All display ON			
	[8H]	0	1	۱ ،	0	0	0	0	4	0	0	١،	FT	MON	ON	ØFE	ON/OFF: Display ON/OFF control			
Display control (2)	[OI I]	U			U	0	0	U	_ '	- 0	U	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	IVIOIN	OIN	VI	REV. Display normal/neverse			
Display Control (2)													, لــ	$\sqrt{}$	/ /		NLIN: n line reverse control			
													$\overline{}$	\ (sw \		SWAP: Display data swapping			
	[9H]	0	۱ ,	1	0	0	٥	0	4	_0	0	∖ ₁	REV	N. IN	AP	REF-	REF: Segment normal/reverse			
Increment control	[9H]	U		_	U	- 0	1	\ 0		V	\sim	 \ 	KEA	INCIIN	AF	KEL	AIM: Select increment mode			
Increment control	[AH]	0	۱ ,	1	0	\(\int_0\)	\ _\A	5	1	\0	(1	/ 9	* \ \	AIM	AYI	AXI				
Power control	ĮΑΠJ	U			U	-\0	1	 \ 	-('	10	\ 	\		Alivi	AH	AAI	AYI: Y increment, AXI: X increment AMPON: Internal AMP. ON			
Power control						_ \	l \ '	\ \	\ \	. \	\	_	- 1				HALT: Power saving			
					/	1	\ \	\ \		\ \ \			AMP	НА	DC					
	1BH1		$\sqrt{1}$	/ _ 1	(\	/ 3	1	0	4	l ،	ON	LT	ON	۸ ۵۱	DCON: Boosting circuit ON			
LOD Dut Datie	[RH]	7 9	1		- 0	7	1 9	1	1	U	1	1	ON	LI	ON	ACL	ACL: Resetting			
LCD Duty Ratio	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ر کر	\	l\ ,		7/2		_			_	L		D00	DO4	D00	Set LCD drive duty ratio			
Deceter	(CH)	<u> </u>	\vdash	\ 1	0	/0	0	0	_1	_ 1	0	0	l —	DS2	DS1	DS0	Cat number of booting stop for			
Booster	77	_ ^	ا ا	۱ الـ	_	_	١ ,	_			_	L			V/1.14		Set number of boosting step for			
Diagraphic control	[pH]/	0	1	- 1	0	0	0	0	_1	1	0	1	*	F	VU1	VU0	booster circuit			
Bias ratio control	\	7	١.	Ι.		_		_				١.	L	D0		D.0	Set bias ratio			
D	[EH]	0	<u> 1</u>	1	0	0	0	0	_1	_ 1	1	0	*	B2	B1	B0	for LCD driving voltage			
Register Access Control		_	١.	Ι.	_	0/4						Ι.	TS			D=0	TST0: for LS1 test,must set to "0"			
	[FH]	0	1	1	0	0/1	0/1	0/1	1	1	1	1	T0	RE2	RE1	IKE0	RE: set register bank number			

Note: The "*" mark means "don't care"

Parentheses [] shows address for control register.

Control Register Table (Bank 1)

Control Register			Pir	ns (for 8	30-fami	ly) & E	Bank					Add	dress &	Code			Function					
Common regional		CSB	RS	RDB	WRB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	. unduen					
Gradation palette A0																	Set the umber of					
(Lower nibble)	[0H]	0	1	1	0	0	0	1	0	0	0	0	PA03	PA02	PA01	PA00	Gradation Palette A0					
Gradation palette A0																	Set the umber of					
(Upper nibble)	[1H]	0	1	1	0	0	0	1	0	0	0	1	*	*	*	PA04	Gradation Palette A0					
Gradation palette A1																	Set the umber of					
(Lower nibble)	[2H]	0	1	1	0	0	0	1	0	0	1	0	PA13	PA12	PA11	PA10	Gradation Palette A1					
Gradation palette A1																	Set the umber of					
(- - -	[3H]	0	1	1	0	0	0	1	0	0	1	1	*	*	*	PA14	Gradation Palette A1					
Gradation palette A2																	Set the umber of					
(Lower nibble)	[4H]	0	1	1	0	0	0	1	0	1	0	0	PA23	PA22	PA21	PA20	Gradation Palette A2					
Gradation palette A2																	Set the umber of					
(Upper nibble)	[5H]	0	1	1	0	0	0	1	0	1	0	1	*	*	*	PA24	Gradation Palette A2					
Gradation palette A3																	Set the umber of					
(Lower nibble)	[6H]	0	1	1	0	0	0	1	0	1	1	0	PA33	PA32	PA31	PA30	Gradation Palette A3					
Gradation palette A3																	Set the umber of					
(Upper nibble)	[7H]	0	1	1	0	0	0	1	0	1	1	1	*	*	*	PA34	Gradation Palette A3					
Gradation palette A4																	Set the umber of					
(Lower nibble)	[8H]	0	1	1	0	0	0	1	1	0	0	0	PA43	PA42	PA41	PA40	Gradation Palette A4					
Gradation palette A4																	Set the umber of					
(Upper nibble)	[9H]	0	1	1	0	0	0	1	1	0	0	1	*	*	*	PA44	Gradation Palette A4					
Gradation palette A5																	Set the umber of					
(Lower nibble)	[AH]	0	1	1	0	0	0	1	1	0	1	0	PA53	PA52	PA51	PA50	Gradation Palette A5					
Gradation palette A5																	Set the umber of					
(Upper nibble)	[BH]	0	1	1	0	0	0	1	1	0	1	1	*	*	*	PA54	Gradation Palette 45					
Gradation palette A6																	Set the umber of					
(Lower nibble)	[CH]	0	1	1	0	0	0	1	1	1	0	0	PA63	PA62	PA61	Gradation Palette A6						
Gradation palette A6												\-\-	ムて	$^{\vee}\overline{\frown}$	\ \	(- 	Set the umber of					
(Upper nibble)	[DH]	0	1	1	0	0	0	1	1	1	0	1	* \	*	* \	PA64	Gradation Palette A6					
Register Access Control													TS\	/			TST0: for LS1 test,must set to "0"					
	[FH]	0	1	1	0	0/1	0/1	0/1	$\sqrt{1}$	1	Y	\1	το \	RE2	RE1	RE0	RE: set register bank number					

Note: The "*x" mark means "don't care"

Parentheses [] shows address for control register.

Control Register Table (Bank 2)

Control Pogistor	Control Register Pins (for 80-family) & Bank											Ad	dress &	Code			Function				
Control Register		CSB	RS	RDB	WRB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	Function				
Gradation palette A7																	Set the umber of				
(Lower nibble)	[0H]	0	1	1	0	0	1	0	0	0	0	0	PA73	PA72	PA71	PA70	Gradation Palette A7				
Gradation palette A7																	Set the umber of				
(Upper nibble)	[1H]	0	1	1	0	0	1	0	0	0	0	1	*	*	*	PA74	Gradation Palette A7				
Gradation palette B0																	Set the umber of				
(Lower nibble)	[2H]	0	1	1	0	0	1	0	0	0	1	0	PB03	PB02	PB01	PB00	Gradation Palette B0				
Gradation palette B0																	Set the umber of				
(Upper nibble)	[3H]	0	1	1	0	0	1	0	0	0	1	1	*	*	*	PB04	PB04 Gradation Palette B0				
Gradation palette B1																	Set the umber of				
(Lower nibble)	[4H]	0	1	1	0	0	1	0	0	1	0	0	PB13	PB12	PB11	PB10	Gradation Palette B1				
Gradation palette B1																	Set the umber of				
(Upper nibble)	[5H]	0	1	1	0	0	1	0	0	1	0	1	*	*	*	PB14	Gradation Palette B1				
Gradation palette B2																	Set the umber of				
(Lower nibble)	[6H]	0	1	1	0	0	1	0	0	1	1	0	PB23	PB22	PB21	PB20	Gradation Palette B2				
Gradation palette B2																	Set the umber of				
(Upper nibble)	[7H]	0	1	1	0	0	1	0	0	1	1	1	*	*	*	PB24	Gradation Palette B2				
Gradation palette B3																	Set the umber of				
(Lower nibble)	[8H]	0	1	1	0	0	1	0	1	0	0	0	PB33	PB32	PB31	PB30	Gradation Palette B3				
Gradation palette B3																	Set the umber of				
(Upper nibble)	[9H]	0	1	1	0	0	1	0	1	0	0	1	*	*	*	PB34	Gradation Palette B3				
Gradation palette B4																	Set the umber of				
(Lower nibble)	[AH]	0	1	1	0	0	1	0	1	0	1	0	PB43	PB42	PB41	PB40	Gradation Palette B4				
Gradation palette B4																	Set the umber of				
(Upper nibble)	[BH]	0	1	1	0	0	1	0	1	0	1	1	*	*	*	PB44	Gradation Palette B4				
Gradation palette B5																	Set the umber of				
(Lower nibble)	[CH]	0	1	1	0	0	1	0	1	1	0	0	PB53	PB52	PB51	PB50	Gradation Ralette B5				
Gradation palette B5															/ /	\sim \sim	Set the umber of				
(Upper nibble)	[DH]	0	1	1	0	0	1	0	1	1	0	$\overline{}$	*	*	* [PB54	Gradation Palette B5				
Register Access Control													TS		$\setminus 7$	$\overline{()}$	TST0: for LS1 test, must set to "0"				
	[FH]	0	1	1	0	0/1	0/1	0/1	1	1		\1	70 /	RE2	RE1	REO^	RE: set register bank number				

Note: The "*x" mark means "don't care"

Parentheses [] shows address for control register.

Control Register Table (Bank 3)

Control Register			Pir	ns (for 8								Ac	dress 8	Code			Function			
Control Register		CSB	RS	RDB	WRB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0	Function			
Gradation palette B6																	Set the umber of			
(Lower nibble)	[0H]	0	1	1	0	0	1	1	0	0	0	C	PB63	PB62	PB61	PB60	Gradation Palette B6			
Gradation palette B6																	Set the umber of			
(Upper nibble)	[1H]	0	1	1	0	0	1	1	0	0	0	1	*	*	*	PB64	Gradation Palette B6			
Gradation palette B7																	Set the umber of			
(Lower nibble)	[2H]	0	1	1	0	0	1	1	0	0	1	C	PB73	PB72	PB71	PB70	Gradation Palette B7			
Gradation palette B7																	Set the umber of			
(Upper nibble)	[3H]	0	1	1	0	0	1	1	0	0	1	1	*	*	*	PB74	Gradation Palette B7			
Gradation palette C0																	Set the umber of			
(Lower nibble)	[4H]	0	1	1	0	0	1	1	0	1	0	C	PC03	PC02	PC01	PC00	Gradation Palette C0			
Gradation palette C0																	Set the umber of			
(Upper nibble)	[5H]	0	1	1	0	0	1	1	0	1	0	1	*	*	*	PC04	Gradation Palette C0			
Gradation palette C1																	Set the umber of			
(Lower nibble)	[6H]	0	1	1	0	0	1	1	0	1	1	C	PC13	PC12	PC11	PC10	Gradation Palette C1			
Gradation palette C1																	Set the umber of			
(Upper nibble)	[7H]	0	1	1	0	0	1	1	0	1	1	1	*	*	*	PC14	Gradation Palette C1			
Gradation palette C2																	Set the umber of			
(Lower nibble)	[8H]	0	1	1	0	0	1	1	1	0	0	C	PC23	PC22	PC21	PC20	Gradation Palette C2			
Gradation palette C2																	Set the umber of			
(Upper nibble)	[9H]	0	1	1	0	0	1	1	1	0	0	1	*	*	*	PC24	Gradation Palette ©2			
Gradation palette C3																	Set the umber of			
(Lower nibble)	[AH]	0	1	1	0	0	1	1	1	0	1	C	PC33	PC32	PC31	PC30	Gradation Palette ¢3			
Gradation palette C3																	Set the umber of			
(Upper nibble)	[BH]	0	1	1	0	0	1	1	1	0	1	1	*	*	*	PC34	Gradation Palette ¢3			
Gradation palette C4													\			\angle	Set the umber of			
(Lower nibble)	[CH]	0	1	1	0	0	1	1	1	1	0	\ <u>_</u> c	PC43	PC42	PC41	PC40	Gradation Palette C4			
Gradation palette C4												1	/ /	/	/ (Set the umber of			
(Upper nibble)	[DH]	0	1	1	0	0	_1	1	_1	$\sqrt{1}$	0	/_/	*_\	*\	* \	PC44	Gradation Palette C4			
Register Access Control									/_	. (TS\	/			TST0: for LS1 test,must set to "0"			
	[FH]	0	1	1	0	0/1	0/1	0/1	(1	\ \	1	\ 1	107	RE2	RE1	RE0	RE: set register bank number			

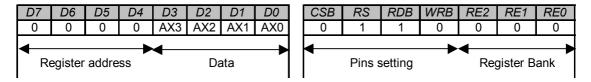
Note: The "*x" mark means "don't care"

Parentheses | shows address for control register.

Control Register Table (Bank 4)

Control Register			Pir	ns (for 8		• /						Ad	dress &	Code			Function			
		CSB	RS	RDB	WRB	RE2	RE1	RE0	D7	D6	D5	D4	D3	D2	D1	D0				
Gradation palette C5																	Set the umber of			
(Lower nibble)	[0H]	0	1	1	0	1	0	0	0	0	0	0	PC53	PC52	PC51	PC50	Gradation Palette C5			
Gradation palette C5																	Set the umber of			
(Upper nibble)	[1H]	0	1	1	0	1	0	0	0	0	0	1	*	*	*	PC54	Gradation Palette C5			
Gradation palette C6																	Set the umber of			
(Lower nibble)	[2H]	0	1	1	0	1	0	0	0	0	1	0	PC63	PC62	PC61	PC60	Gradation Palette C6			
Gradation palette C6																	Set the umber of			
(Upper nibble)	[3H]	0	1	1	0	1	0	0	0	0	1	1	*	*	*	PC64	Gradation Palette C6			
Gradation palette C7																	Set the umber of			
(Lower nibble)	[4H]	0	1	1	0	1	0	0	0	1	0	0	PC73	PC72	PC71	PC70	Gradation Palette C7			
Gradation palette C7																	Set the umber of			
(Upper nibble)	[5H]	0	1	1	0	1	0	0	0	1	0	1	*	*	*	PC74	Gradation Palette C7			
Display start common																	Set Common Driver			
	[6H]	0	1	1	0	1	0	0	0	1	1	0	*	SC2	SC1	SC0	Start Line			
Static Pictgraph Control																	Set Static Pictgraph			
	[7H]	0	1	1	0	1	0	0	0	1	1	1	*	*	SPC1	SPC0	Drive Mode			
Display Select Control																	Select Plane(access/display)			
	[8H]	0	1	1	0	1	0	0	1	0	0	0	PWM	GLSB	PSEL	DSEL	Set GLSB Bit. Select PWM Mode			
RAM Data length Set																	Set Data length on RAM Access			
	[9H]	0	1	1	0	1	0	0	1	0	0	1	*	*	*	WLS	8-bit access or 16-bit access			
Electronic Volume																	Set Electronic Volume			
(Lower nibble)	[AH]	0	1	1	0	1	0	0	1	0	1	0	DV3	DV2	DV1	DV0	Register (lower code)			
Electronic Volume																	Set Electronic Volume			
(Upper nibble)	[BH]	0	1	1	0	1	0	0	1	0	1	1	*	DV6	DV5	DV4	Register (upper code)			
Register read Control																	Set Register Address for read			
	[CH]	0	1	1	0	1	0	0	1	1	0	0	RA3	RA2	RA/I	RA0				
Select Rf													\			/	Select Rf ratio of OSC circuit			
	[DH]	0	1	1	0	1	0	0	1	1	0	1	1* [RF2	RF1	RF0				
Extended power control)		\ \			\bigcirc_{\wedge}	DIS:Discharge capacitance of			
							$\overline{}$		_	$\langle \langle \rangle \rangle$	\ \ \	\ \		/ /	`		V0,V1,V2,V3,V4 Pins			
			l	l					$/ \sim$	(\	Ι\ '	/ / <i>/</i>	\ \			HPM : high power mode set			
	[EH]	0	1	1	0	__1\	0	\ \0	(1	\ \	1	\0	₿F1	BF0	HPM	DIS	BF: Set Booster frequency			
Register Access Control							/ /				//	\Box	TS				TST0: for LS1 test,must set to "0"			
	[FH]	0	1	1,	0	0/1	0/1	0/1	\1	\1	1 لـ	1	T0	RE2	RE1	RE0	RE: set register bank number			

Note: The "%" mark means "don't care"


Parentheses [] shows address for control register.

8.2 Functions of Control Registers

The EM65567 has many control registers. In case of control register access, upper nibble of data bus (D7~D4) represent register address, lower nibble of data bus (D3~D0) represent data. The access example is shown in the following. The Pins (CSB, RS, RDB, WRB) setting are for 80-family MPU interface. Only the setting of terminal (RDB,WRB) is different, when it is accessed by the 68-family MPU.

(Example) X Address

In the writing to the control register, it is used directly as addressing D7~D4 of the data bus. In case of register read, first set RA register for specific register address, next can read specific register. Therefore, it is need 2-step for register read. Then, specific register output to D3~D0 of data bus. Except D3~D0 of data bus are all "H". Prohibit access to undefined register address area. When RS is "L", all read/write operations are accessed to display RAM. Then data bus doesn't include register address. In case of write, D3~D0 data is written to the register designated at D7~D4 in rising edge of the WRB signal. In case of read, register can output to data bus is RDB active period. Control register and display RAM are the equal access timing.

8.2.1 Data Write to Display RAM

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
	Display RAM write data									1	0	0/1	0/1	0/1

The Display RAM data of 8-bit are written in the designated X and Y address.

8.2.2 Data Read from Display RAM

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
	Display RAM read data							0	0	0	1	0/1	0/1	0/1

The 8-bit contents of Display RAM designated in X. and Y address and read out.

Immediately after data are set in X and Y address, dummy read is necessary one time.

8.2.3 Internal Register Data Read

D7	D6	D5	D4	D3	D2	D1	D0	C	SB	RS	RDB	WRB	RE2	RE1	RE0
*	*	*	*	Interna	al Regis	ster rea	d data		0	1	0	1	0/1	0/1	0/1

Mark shows "Don't care"

This command is used to read data from an internal register. Before executing the command. You need to set the address and RE flag for reading data from the internal register.

8.2.4 X Address Register Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	0	0	0	AX3	AX2	AX1	AX0	0	1	1	0	0	0	0

RE0

(At the time of reset: {AX3, AX2, AX1, AX0} = 0H, read address: 0H)

D7	D6	D5	D4	D3	D2	D1	D0	Č
0	0	0	1	*	AX6	AX5	AX4	0

 CSB
 RS
 RDB
 WRB
 RE2
 RE1
 RE0

 0
 1
 1
 0
 0
 0
 0

(At the time of reset: {AX6, AX5, AX4}= 0H, read address: 1H)

Mark shows "Don't care"

The AX register set to X-direction address of display RAM. In data setting, lower place and upper place are divided with 4-bit and 3-bit respectively. Be sure to do setting from the lower bit.

8.2.5 Y Address Register Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	1
0	0	1	0	AY3	AY2	AY1	AY0	0	1	1	0	0	0	

(At the tine of reset: {AY3, AY2, AY1, AY0}=0H, read address: 2H)

I	D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	F
	0	0	1	0	*	AY6	AY5	AY4	0	1	1	0	0	0	$\overline{}$

(At the time of reset: {AY6, AY5, AY4}=0H, read address: 3H)

Mark shows "Don't care"

The AY register set to Y-direction address of display RAM. In data setting, lower place and upper place are divided with 4-bit and 3-bit respectively. 00H to 41H are applicable to the values for AY6 to AY0, and 42H to FFH are not permitted. The address for (AY6 to AY0) = 40H, 41H are in the display RAM area for icon display.

8.2.6 Display Start Address Register Set

			1 1											
D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	0	0	LA3	LA2	LA1	LA0	0	1	1	0	0	0	0

(At the tine of reset: {LA3, LA2, LA1, LA0}=0H, read address: 4H)

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	0	1	*	*	LA5	LA4	0	1	1	0	0	0	0

(At the time of reset: {LA5, LA4}=0H, read address: 5H)

Mark shows "Don't care"

This display line address is require to designate, and the designated address becomes the display line of COM0. The display of LCD panel is indicated in the increment direction of the designated display starting address to the line address.

LA5	LA4	LA3	LA2	LA1	LA0	Line Address
0	0	0	0	0	0	0
0	0	0	0	0	1	1
					:	
1	1	1	1	1	1	63

8.2.7 n Line Alternated Register Set

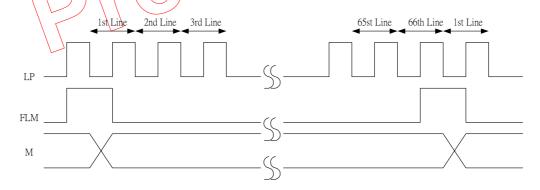
D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	N3	N2	N1	N0	0	1	1	0	0	0	0

(At the tine of reset: {N3, N2, N1, N0}=0H, read address: 6H)

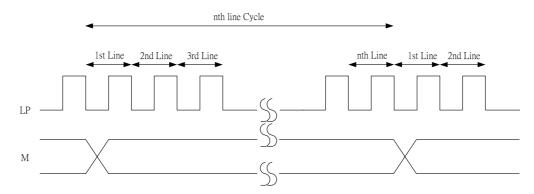
D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	1	*	*	N5	N4

I	CSB	RS	RDB	WRB	RE2	RE1	RE0
	0	1	1	0	0	0	0

(At the time of reset: { N5, N4}=0H, read address: 7H)


Mark shows "Don't care"

The reverse line number of LCD alternated drive is required to set in the register. The line number has a limit, must keeps between from 2 to 64 lines. The values set up by the alternated register become enable when NLIN control bit is "1". When NLIN control bit is "0", alternated drive waveform reverses by each frame is generated.


N5	N4	N3	N2	N1	N0	Line Address	
0	0	0	0	0	0	-	
0	0	0	0	0	1	2	
		:					
		:					
1	1	1	1	1	11	64	

Alternated Timing

(i) NLIN="0" (in case of 1/66 DUTY Display)

(ii) NLIN="1"

RE2

0

RE1

RE0

0

8.2.8 Display Control (1) Register Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB
				SHIF		ALL	ON/				
1	0	0	0	T	MON	ON	OFF	0	1	1	0

(At the tine of reset: {SHIFT, MON, ALLON, ON/OFF}=0H, read address: 8H)

Various control of display is set up.

ON/OFF

To control ON/OFF of display

ON/OFF = "0": Display OFF

ON/OFF = "1": Display ON

ALLON

Regardless of the data for display, all is on.

This control has priority over display normal/reverse commands.

ALLON = "0": Normal display

ALLON = "1": All display lighted

MON

Select Monochrome or Gradation display

MON = "0": Gradation display mode/

MON = "1": Monochrome display mode

SHIFT

The shift direction of display scanning data in the common driver output is selected.

SHIFT = "0": COM0→COM63 shift-scan

SHIFT = "1": COM63→COM0 shift-scan

8.2.9 Display Control (2) Register

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	0	1	REV	NLIN	SWA	REF	0	1	1	0	0	0	0

(At the tine of reset: {REV, NLIN, SWAP, REF}=0H, read address: 9H)

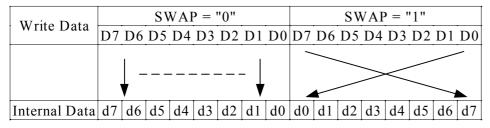
Various control of display is set up.

REF

When MPU accesses to display RAM, the X address and data can reverse. The REF function shows in the table below: The order of segment driver output can be reversed by register by register setting, lessening the limitation in placing IC when assembling a LCD module.

REF	Access fr	rom MPU	Internal	Access	Corresponding
KEF	X Address	D7-D0	X Address	D7-D0	Segment Output
		D0(LSB)		(LSB)	SEG(8*NH)Output
0	NH	:	NH	:	:
		D7(MSB)		(MSB)	SEG(8*NH+7)Output
		D0(LSB)		(MSB)	SEG(8*(maxH-NH)+7)Output
1	NH	:	maxH-NH	(LSB) SEG(8*NH)Output : : : (MSB) SEG(8*NH+7)Output (MSB) SEG(8*(maxH-NH)+7)Output I-NH : :	
		D7(MSB)		(LSB)	SEG(8*(maxH-NH))Output

Note: maxH: The maximum X-address in each access mode.


SWAP

When data to display RAM are written, the write data exchange bit order.

SWAP = "0": Normal mode. In data writing, the data either of D7 to D0 or D15 to D0can be written to the display RAM.

SWAP = "1": SWAP mode ON. In data writing the swapped data either of D7 to D0 or of D15 to D0 can be written to display RAM.

Example of exchange bit order

CAUTION: REF and SWAP both set to "1"

When data write to display RAM, the write data is normal bit order.

When data read from display RAM, the read data is exchanged bit order.

NLIN

The NLIN control n-line alternated drive.

NLIN = "0": n-line alternated drive OFF. In each frame, the alternated signals (M) are reversed.

NLIN ="1": n-line alternated drive ON. According to data set up in n-line alternated register, the alternation is made.

REV

Corresponding to the data of display RAM, the lighting or not-lighting of the display is set up.

REV ="0": When RAM data at "H", LCD at ON voltage (normal)

REV ="1": When RAM data at "L", LCD at ON voltage (reverse)

8.2.10 Increment Control Register Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	1	0	*	AIM	AYI	AXI	0	1	1	0	0	0	0

Mark shows "Don't care"

(At the tine of reset: {AIM, AYI, AXI}=0H, read address: AH)

The increment mode is set up when accessing to display RAM. By AIM, AYI, AXI register, the setting up of increment operation/non-operation for the X address counter and the Y address counter every write access or every read access to display RAM is possible. In setting to this control register, the increment operation of address can be made without setting successive address for writing data or for reading data to display RAM from MPU.

After the increment control register has been set. be sure to assign address to the X and Y address registers starting from the lowest bit. Because it is not assuring the data of X and Y address register after setting increment control register. The increment control of X and Y address by AIM, AXI, AXI registers is as follows.

AIM	Address Increment Timing
0	When writing to Display RAM or reading from Display RAM This is effective when access to successive address area
1	Only when writing to Display RAM This is effective the case of "Read Modify Write

AYI	AXI	Select Address Increment Operation	Remark
0	0	Address is not increment	(1)
0	1	X-Address is increment	(2)
1	0	Y-Address is increment	(3)
1	1	X and Y both are increment	(4)

- (1) Regardless of AIM, no increment for AX and AY register.
- (2) According to the setting-up of AIM, automatically change X address.

In accordance with the REF register, AX register and \boldsymbol{X} address becomes as follows.

REF	Transition of AX Register	Transition of X Address
0		Same as AX register
	→ 00H→ 01H→→ max	2 3333 33 2 3 2 3 2 3 3 3 3 3 3 3 3 3 3
1		<u></u> max→maxH → →00H

Note: maxH: The internal maximum X-address in each access mode.

(3) According to the setting-up of AIM, automatically change Y address. Regardless of REF, increment by loop of

Transition of AY Register	Transition of Y Address
► 00H→01H→→41H	Same as AY register

(4) According to the setting-up of AIM, cooperative change X and Y address. When the X address exceed maxH, Y address increment occurs.

REF	Transition of AX and AY Register	Transition of X and Y Address
0	AX:	Same as AX and AY register
	→ 00H → 00H → → max	ANY
	AY:	AX:
1	When each AX exceed maxH, increment AY	\longrightarrow max \longrightarrow maxH \longrightarrow $ \longrightarrow$ 00H \longrightarrow
	→ 00H → 00H → → 41H —	AY: Same as AY register

Note: maxH: The internal maximum X-address in each access mode.

In each operation mode, the following increment operation is performed:

- (i) When gradation display mode and 8-bit access are selected: Address are incremented as described above.
- (ii) When gradation display mode and 16-bit access are selected: Two bytes are accessed by accessing the RAM once. The X-addresses increment in the order of 00H,01H,...2EH,and 2FH.
- (iii) When monochrome display mode and 8-bit access are selected:

In the monochrome display mode, 01/1 to 23H are available for X-addresses in the access area.

PSEL = "0": The plane 0 area is selected, and the X-address change in increments in the order of 00H,01H,...22H, and 23H.

PSEL = "1": The plane 1 area is selected, and the X-address change in increments in the order of 00H,01H,...22H, and 23H.

(iv) When monochrome display mode and 16-biit access are selected:

Two bytes are accessed by accessing the RAM once.

PSEL = "0": The plane 0 area is selected, and the X-address change in increments in the order of 00H,01H,...10H,and 11H.

PSEL = "1": The plane 1 area is selected, and the X-address change in increments in the order of 00H,01H,...10H,and 11H.

8.2.11 Power Control Register

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	1	1	AMP	HAL	DCO	ACL	0	1	1	0	0	0	0
				ON	Т	N								

(At the tine of reset: {AMPON, HALT, DCON, ACL}=0H, read address: BH)

ACL

The internal circuit can be initialized. This register is effective only at Master operation mode.

ACL = "0": Normal operation

ACL = "1": Initialization ON

When the reset operation begins internally after ACL register sets to "1", the ACL register is automatically cleared to "0". The internal reset signal has been generated with a clock (built-in oscillation circuit or CK input) for the display. Therefore, install the WAIT period for the display clock two cycles at least. After WAIT period, next operation can handle. Since built-in oscillation circuit and external CK input can not be used in the slave mode, the setting of the ACL register becomes the invalidity. Certainly use the RESB terminal, when the reset is applied on the slave chip.

DCON

The internal booster circuit is set ON/OFF

DCON = "0": Booster circuit OFF

DCON="1": Booster circuit ON

HALT

The conditions of power saving are set ON/OFF by this command.

HALT = "0": Normal operation

HALT="1": Power-saving operation

When setting in the power-saving state, the consumed current can be reduced to a value near to the standby current.

The internal condition at power saving are as follows.

- (a) The oscillating circuit and power supply circuit are stopped.
- (b) The LCD drive is stopped, and output of the segment driver and common driver are VSS level.
- (c) The clock input from CK pin is inhibited.
- (d) The contents of Display RAM data are maintained.
- (e) The operational mode maintains the state of command execution before executing power saving command.

AMPON Command

The internal OP-AMP circuit block (voltage regulator, electronic volume, and voltage conversion circuit) is set ON/OFF by this command.

AMPON = "0": The internal OP-AMP circuit OFF

AMPON = "1": The internal OP-AMP circuit ON

8.2.12 LCD Duty Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	0	0	*	DS2	DS1	DS0	0	1	1	0	0	0	0

(At the time of reset: {DS2, DS1, DS0}=0H, read address: CH)

Mark shows "Don't care"

The DS register set to LCD display duty.

DS2	DS1	DS0	Display width and Duty
0	0	0	8-dot width display in Y-direction, 1/10 duty
0	0	1	16-dot width display in Y-direction, 1/18 duty
0	1	0	24-dot width display in Y-direction, 1/26 duty
0	1	1	32-dot width display in Y-direction, 1/34 duty
1	0	0	40-dot width display in Y-direction, 1/42 duty
1	0	1	48-dot width display in Y-direction, 1/50 duty
1	1	0	56-dot width display in Y-direction, 1/58 duty
1	1	1	64-dot width display in Y-direction, 1/66 duty

Partial display can be made possible by setting an arbitrary duty ratio.

8.2.13 Booster Set

_									_		_ \	$\sim \vee \sim$	_ \ _ /	\sim 1 \sim 1	1 1	
	D7	D6	D5	D4	D3	D2	D1	D0		CSB	RS	RDB	WRB	RE2	RE1	RE0
ľ	1	1	0	1	*	*	VU1	VU0		~Ø~	/ //	1	10	0	0	0

(At the time of reset: {VU2, VU1, VU0}=0H, read address; DH)

Mark shows "Don't care"

The booster steps set to VU register

VU1	VU0	Booster Operation
0	0	Booster disable (No operation)
0	1	2 times voltage output
1	0	3 times voltage output
1	1	4 times voltage output

8.2.14 Bias Setting Register Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	1	0	*	B2	B1	В0	0	1	1	0	0	0	0

(At the time of reset: {B2, B1, B0}=0H, read address: EH)

Mark shows "Don't care"

This register is used to set a bias ratio. A bias ratio can be selected from 1/9, 1/8, 1/7, 1/6, and 1/5 by setting B2, B1, and B0.

B2	<i>B1</i>	B0	Bias
0	0	0	1/9 Bias
0	0	1	1/8 Bias
0	1	0	1/7 Bias
0	1	1	1/6 Bias
1	0	0	1/5 Bias
1	0	1	Prohibit code
1	1	0	Prohibit code
1	1	1	Prohibit code

8.2.15 Register Access Control

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS
1	1	1	1	TST0	RE2	RE1	RE0	0	1

 CSB
 RS
 RDB
 WRB
 RE2
 RE1
 RE0

 0
 1
 1
 0
 0/1
 0/1
 0/1

(At the time of reset: {TST0, RE2, RE1, RE0}=0H, read address: FH)

Mark shows "Don't care"

The RE register set to number of register bank. Access to each control register, set RE register at first.

Note: The TST0 register use for test of LSI, Therefore this register must be set to "0"

8.2.16 Gradation Palette Register (PA0~PA7, PB0~PB7, PC0~PC7)

ĺ	D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
ĺ	0	0	0	0	PA03	PA02	PA01	PA00	0	1	1	0	0	0	1

(Read address: 0H)

													_	
D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	0	0	1	*	*	*	PA04	0	1	1	0 /	0	\ 0	1

(Read address: 1H)

(At the time of reset: $PA04 \sim PA00 = "00000"$)

Mark shows "Don't care"

				1 1 . (_ \									
D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	0	1	0	PA13	PA12	PA11	PA10	0	1	1	0	0	0	1

(Read address: 2H)

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	0	1	1	*	*	*	PA14	0	1	1	0	0	0	1

(Read address: 3H)

(At the time of reset: $PA14 \sim PA10 = "00101"$)

Mark shows "Don't care"

L	D7	D6	D5	D4	D3	D2	D1	D0		CSB	RS	RDB	WRB	RE2	RE1	RE0
	0	1	0	0	PA23	PA22	PA21	PA20	ſ	0	1	1	0	0	0	1

(Read address: 4H)

D7	D6	D5	D4	D3	D2	D1	D0	[CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	0	1	*	*	*	PA24		0	1	1	0	0	0	1

(Read address: 5H)

(At the time of reset: $PA24 \sim PA20 = "01010"$)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	0	PA33	PA32	PA31	PA30

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: 6H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	1	*	*	*	PA34

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: 7H)

(At the time of reset: $PA34 \sim PA30 = "01110"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	PA43	PA42	PA41	PA40

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: 8H)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	*	*	*	PA44

						$\overline{}$
CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0 /	0	/ 0	1

(Read address: 9H)

(At the time of reset: $PA44 \sim PA40 = "10001"$)

Mark shows "Don't care"

				\ \ ' (_		
D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	PA53	PA52	PA51	PA50

CSE	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: AH)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	*	*	*	PA54

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: BH)

(At the time of reset: $PA54 \sim PA50 = "10101"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	PA63	PA62	PA61	PA60

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: CH)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	1	*	*	*	PA64

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	0	1

(Read address: DH)

(At the time of reset: $PA64 \sim PA60 = "11010"$)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	PA73	PA72	PA71	PA70

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 0H)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	*	*	*	PA74

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 1H)

(At the time of reset: $PA74 \sim PA70 = "11111"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	PB03	PB02	PB01	PB00

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 2H)

D	7	D6	D5	D4	D3	D2	D1	D0
()	0	1	1	*	*	*	PB04

					_	$\overline{}$
CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0 /	0	\ 1	64

(Read address: 3H)

(At the time of reset: $PB04 \sim PB00 = "00000"$)

Mark shows "Don't care"

				\ \ ' (
D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	PB13	PB12	PB11	PB10

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 4H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	*	*	*	PB14

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 5H)

(At the time of reset: $PB14 \sim PB10 = "00101"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	0	PB23	PB22	PB21	PB20

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 6H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	1	*	*	*	PB24

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 7H)

(At the time of reset: PB24~PB20 = "01010")

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	PB33	PB32	PB31	PB30

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 8H)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	*	*	*	PB34

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: 9H)

(At the time of reset: PB34~PB30 = "01110")

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	PB43	PB42	PB41	PB40

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: AH)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	*	*	*	PB44

						$\overline{}$
CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0 /	0	\ 1	Q

(Read address: BH)

(At the time of reset: $PB44 \sim PB40 = "10001"$)

Mark shows "Don't care"

				\ \ ' (
D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	PB53	PB52	PB51	PB50

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: CH)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	1	*	*	*	PB54

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	0

(Read address: DH)

(At the time of reset: $PB54 \sim PB50 = "00101"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	PB63	PB62	PB61	PB60

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 0H)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	*	*	*	PB64

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 1H)

(At the time of reset: $PB64 \sim PB60 = "11010"$)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	PB73	PB72	PB71	PB70

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 2H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	*	*	*	PB74

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 3H)

(At the time of reset: $PB74 \sim PB70 = "11111"$)

Mark shows "Don't care"

١	D7	D6	D5	D4	D3	D2	D1	D0
	0	1	0	0	PC03	PC02	PC01	PC00

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 4H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	*	*	*	PC04

						$\overline{}$
CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0 /	9	\ 1	1

(Read address: 5H)

(At the time of reset: $PC04 \sim PC00 = "00000"$)

Mark shows "Don't care"

				\ \ ' (_ \		
D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	0	PC13	PC12	PC11	PC10

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 6H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	1	1	*	*	*	PC14

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 7H)

(At the time of reset: $PC14 \sim PC10 = "00101"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	PC23	PC22	PC21	PC20

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 8H)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	*	*	*	PC24

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: 9H)

(At the time of reset: PC24~PC20 = "01010")

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	PC33	PC32	PC31	PC30

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: AH)

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	1	*	*	*	PC34

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: BH)

(At the time of reset: $PC34 \sim PC30 = "01110"$)

Mark shows "Don't care"

I	D7	D6	D5	D4	D3	D2	D1	D0
	1	1	0	0	PC43	PC42	PC41	PC40

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	0	1	1

(Read address: CH)

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	1	*	*	*	PC44

					_	$\overline{}$
CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0 /	0	\ 1	1

(Read address: DH)

(At the time of reset: $PC44 \sim PC40 = "10001"$)

Mark shows "Don't care"

				\ \ ' (_ \		
D7	D6	D5	D4	D3	D2	D1	D0
0	0	0 \	0	PC53	PC52	PC51	PC50

C	SB	RS	RDB	WRB	RE2	RE1	RE0
	0	1	1	0	1	0	0

(Read address: 0H)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	*	*	*	PC54

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	1	0	0

(Read address: 1H)

(At the time of reset: $PC54 \sim PC50 = "10101"$)

Mark shows "Don't care"

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	PC63	PC62	PC61	PC60

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	1	0	0

(Read address: 2H)

D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	*	*	*	PC64

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	1	0	0

(Read address: 3H)

(At the time of reset: $PC64 \sim PC60 = "11010"$)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	0	PC73	PC72	PC71	PC70

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	1	0	0

(Read address: 4H)

D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	*	*	*	PC74

CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	1	0	0

(Read address: 5H)

(At the time of reset: $PC74 \sim PC70 = "11111"$)

Mark shows "Don't care"

These gradation palette register set up gradation level. The EM65567 has 32 gradation levels. Gradation level table [Three groups of palettes Aj,Bj, and Cj (j=0-7) are available]

Palette	Gradation	Remarks		P	alet	te		Gradation	Remarks
	level							level	
0 0 0 0 0	0	gradation palette 0 initial value	1	0	0	0	0	16/31	
0 0 0 0 1	1/31		1	0	0	0	1	17/3/1	gradation palette 4 initial value
0 0 0 1 0	2/31		_{\1}	0	0	1	0	18/31	
0 0 0 1 1	3/31		1	0	0	1(1	19/31	
0 0 1 0 0	4/31		1	0	\1	0	$\sqrt{0}$	20/31	
0 0 1 0 1	5/31	gradation palette 1 initial value	1	/0/	1	0	^ک 1	21/31	gradation palette 5 initial value
0 0 1 1 0	6/31		1	0	1	1	0	22/31	
0 0 1 1 1	7/31		1	0	1	1	1	23/31	
0 1 0 0 0	8/31		1	1	0	0	0	24/31	
0 1 0 0 1	9\\31		1	1	0	0	1	25/31	
0 1 0 1 0	10/31	gradation palette 2 initial value	1	1	0	1	0	26/31	gradation palette 6 initial value
0 1 0 1 1	11/31		1	1	0	1	1	27/31	
0 1 1 0 0	12/31		1	1	1	0	0	28/31	
0 1 1 0 1	13/31		1	1	1	0	1	29/31	
0 1 1 1 0	14/31	gradation palette 3 initial value	1	1	1	1	0	30/31	
0 1 1 1 1	15/31		1	1	1	1	1	31/31	gradation palette 7 initial value

8.2.17 Display Start Common Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	0	*	SC2	SC1	SC0	0	1	1	0	1	0	0

(At the time of reset: { SC2,SC1,SC0}=0H, read address: 6H)

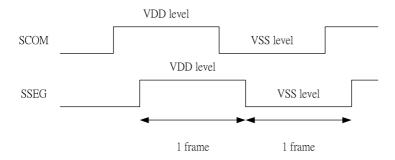
Mark shows "Don't care"

The SC register set up the scanning start output of the common driver.

SC1	SC0	Display starting common when	Display starting common when							
		SHIF $I=0$	SHIFT=1							
0	0	COM0~	COM63~							
0	1	COM8~	COM55~							
1	0	COM16~	COM47∼							
1	1	COM24~	COM39~							
0	0	COM32~	COM31~							
0	1	COM40~	COM23~							
1	0	COM48	COM15~							
1	1	COM56	COM7~							
="0": C	OM0 →	COM63 shift-scan								
SHIFT="1": COM63→ COM0 shift-scan										
	0 0 1 1 0 0 0 1 1 1	0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 1	0 0 COM0~ 0 1 COM8~ 1 0 COM16~ 1 1 COM24~ 0 0 COM32~ 0 1 COM40~ 1 1 COM40~ 1 COM40~ 1 COM48 1 1 COM56							

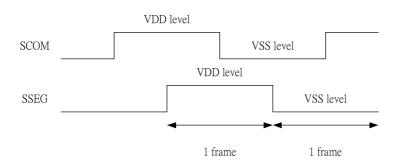
8.2.18 Static Pictograph Control

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
0	1	1	1	* \	*	SPC1	SPC0	0	1	1	0	1	0	0

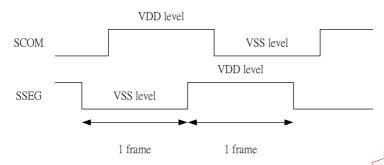

(At the time of reset: { SPC1,SPC0}=0H, read address: 7H)

Mark shows "Don't care"

This command is used to select a signal to drive static pictograph.


SPC1	SPC0	Signal for static pictograph
0	0	VSS level is always output at SCOM and SSEG
0	1	Phase deviates by 45 degrees at SCOM and SSEG
1	0	Phase deviates by 90 degrees at SCOM and SSEG
1	1	Phase deviates by 135 degrees at SCOM and SSEG

Drive waveform when (SPC1, SPC0) = (0, 1)



Drive waveform when (SPC1, SPC0) = (1, 0)

Drive waveform when (SPC1, SPC0) = (1, 1)

8.2.19 Display Select Control

										1 1 1				
D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	0	0	0	PWM	GLS	PSEL	DSEL	$\sqrt{0}$	1\	\J1\	0	1	0	0

(At the time of reset: {PWM, GLSA, PSEL, DSEL} = 0H, read address: 8H)

PSEL

The PSEL register select assessable plane from MPU in the monochrome display mode (MON="1").

PSEL = "0": The plane 0 can access

PSEL = "1": The plane 1 can access

DSEL command

The DSEL register select active plane for display in the monochrome display mode(MON="1").

DSEL = "0": The plane 0 is active for display.

DSEL = "1": The plane 1 is active for display.

GLSB

For the segment driver of 4-gradation display, select 4 gradations from 8 gradations using the 2 bits written to the corresponding RAM area and the 1 bit supplemented by the gradation LSB circuit. Supplement the 1 bit of data by setting the gradation LSB register (GLSB).

Gradation LSB = "0": Selects 0 as the LSB information on the RAM for 4-gradation segment driver.

Gradation LSB = "1": Selects 1 as the LSB information on the RAM for 4-gradation segment driver.

PWM

The PWM register selection the gradation display mode.

PWM = "0": Variable display mode using 8 gradations selected from 32 gradations

PWM = "1": 8-gradation fixed display mode

8.2.20 RAM Data Length Set

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS
1	0	0	1	*	*	*	WLS	0	1

 CSB
 RS
 RDB
 WRB
 RE2
 RE1
 RE0

 0
 1
 1
 0
 1
 0
 0

(At the time of reset: {WLS} = 0H, read address: 9H)

Mark shows "Don't care"

The WLS register select data bus size for access from MPU

WLS = "0": The data bus size is 8-bits width

WLS = "1": The data bus size is 16-bits width

When MPU access to control register using 16-bits bus size, high byte data is ignored.

8.2.21 Electronic Volume Register Set

								_			\sim	_		1 1 1	
D7	D6	D5	D4	D3	D2	D1	D0		CSB	RS	RDB	WRB	RE2	RE1	RI
1	0	1	0	DV3	DV2	DV1	DV0		_0/_	1	\ \ \	0)	1	0	(

(Read address: AH)

							$\overline{}$		١.	1 1	ı.					
	D7	D6	D5	D4	D3	D2	D1	D0	/	CSB	RS	RDB	WRB	RE2	RE1	RE0
Γ	1	0	N.		\ <u>\</u>	DV6	DV5	DV4		0	1	1	0	1	0	0

(Read address: BH)

(At the time of reset: $\{DV6\sim DV0\} = 00H$)

Mark shows "Don't care"

The DV register can control V0 voltage.

The DV register has 7-bits, so can select 128 level voltage.

DV6	DV5	DV4	DV3	DV2	DV1	DV0	Output voltage
0	0	0	0	0	0	0	Smaller
0	0	0	0	0	0	1	:
			:				:
			:				:
1	1	1	1	1	1	0	:
1	1	1	1	1	1	1	Larger

The output voltage at VREG is specified by equation (1).

VREG = VREF * N * 0.9-----(1)

(N: Number of boosting steps)

The LCD driver voltage V0 is determined by VREG level and electronic volume code equation (2).

V0 = 0.5 * VREG + M * (VREG - 0.5VREG) / 127 -----(2)

(M: DV6 to DV0 register values)

In order to prevent transient voltage from generating when an electronic volume code is set, the circuit design is such that the set value is not reflected as a level immediately after only the upper bits (DV6-DV4) of the electronic code have been set.

The set value becomes valid when the lower bits (DV3-DV0) of the electronic control volume code have also been set.

8.2.22 Internal Register Read Address

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	0	1	RA3	RA2	RA1	RA0	0	1	1	0	1	0	0

(At the time of reset: {RA3, RA2, RA1, RA0} = 0H, read address: CH)

The RA register set to specify the address for register read operation. The EM65567 has many registers and has register bank. Therefore, it is need 4-steps to read to read the specific register in maximum case.

- (1) Write 04H to RE register for access to RA register.
- (2) Writes specific register address to RA register.
- (3) Write specific register bank to RE register.
- (4) Read specific contents.

8.2.23 Resistance Ratio of CR Oscillator

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	0	1	*	RF2	RF1	RF0	0	1	1	0	1	0	0

(At the time of reset: {RF2, RF1, RF0} = 0H, read address: DH)

Mark shows "Don't care"

The RF registers can control resistance ratio of CR oscillator. Therefore frame frequency can change RF registers setting. When change RF registers value, should be need to check LCD display quality.

RF2	RF1	RF0	Operation
0	0	0	Initial Resistance Ratio
0	0	1	0.8 times of initial Resistance Ratio
0	1	0	0.9 times of initial Resistance Ratio
0	1	1	1.1 times of initial Resistance Ratio
1	0	0	1.2 times of initial Resistance Ratio
1	0	1	Prohibit Code
1	1	0	Prohibit Code
1	1	1	Prohibit Code

8.2.24 Extended power control

D7	D6	D5	D4	D3	D2	D1	D0	CSB	RS	RDB	WRB	RE2	RE1	RE0
1	1	1	0	*	*	HPM	DIS	0	1	1	0	1	0	0

At the time of reset: {HPM, DIS} = 0H, {BF1,BF0}=0H;read address: EH)

*mark shows "Don't care"

The DIS register can control capacitors discharged that connected between the power supply V1-V4 for LCD drive voltage and VSS. **Caution**: V0 is discharged to VDD.

DIS = "0": Discharge OFF

DIS = "1": Discharge start

The HPM register is the power control for the power supply circuit for liquid crystal drive.

HPM = "H": High power mode

HPM = "L": Normal mode

BF1~BF0: The operating frequency in the booster is selected. When the boosting frequency is high, the driving ability of booster become high, but the current consumption is increased. Adjust the boosting frequency considering the external capacitors and the current consumption.

BF1	BF0	Operating clock frequency in the booster
0	0	1.5K Hz * 8
0	1	1.5K Hz * 4
1	0	1.5K Hz * 2
1	1	1.5 K Hz

9. Relationship between Setting and Common/Display RAM

The relationship between the COM pin numbers and the addresses in the Y-direction on the display RAM changes according to the SHIFT command. LCD Duty Set command. Display Starting Common Position Set command, and Display Starting Line Set command.

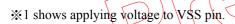
When "0" is selected for the display starting line:

The relationship between the COM pin and the addresses in the vertical direction of the display RAM (hereafter called MY) changes on an 8-dots basis according to the LCD Duty Set command and the Display Starting Common Position Set command. When the SHIFT bit is "0", the common position change in the forward direction. When "1" they change reverse direction. When "0" is selected as the values for LA5 to LA0 in the Display Starting Line Set command, the MY number corresponding to the display starting position is "0". The MY numbers are sequentially shifted backward when display occurs. In any case, the relations of COMA = MY64 and COMB = MY65 do not change.

When non-zero is selected for the display starting line:

The relationship between the COM pins and the addresses in the vertical direction on the display RAM, MY changes on an 8-dots basis according to the information in the LCD Duty Set command and Display Starting Common Position Set command. The common positions change in the forward when the SHIFT bit is "0", and change in the reverse direction when the SHIFT bit is "1". If non-zero is selected for the values for LA5 to LA0 by the Display Starting Line set command. the MY number corresponding to the display starting position shifts by the set value. The MY number shifts backward when display occurs. If it exceeds 63, it returns to 0, and the shifts sequentially. In any case, the relations of COMA = MY64 and COMB = MY65 do not change.

10. Absolute maximum ratings


10.1 Absolute maximum ratings

Item	Symbol	Condition	Pin use	Rating	Unit
Supply voltage (1)	VDD		VDD	$-0.3 \sim +4.0$	V
Supply voltage (2)	VEE		VEE	$-0.3 \sim +4.0$	V
Supply voltage (3)	VOUT		VOUT	0.3 ~ + 13.0	V
Supply voltage (4)	VREG		VREG	-0.3 ~ + 13.0	V
Supply voltage (5)	V0	Ta=25°C	V0	-0.3 ~ + 13.0	V
Supply voltage (6)	V1,V2,V3,V4]	V1,V2,V3,V4	-0.3 ~ V0+ 0.3	V
Input voltage	VI]	*1	-0.3 ~ VDD+ 0.3	V
Storage	Tata			-45 ~ +125	$^{\circ}\!\mathbb{C}$
temperature	Tstg			[-43 ~ ±123	

1: D0~D15, CSB, RS, M/S, M86, P/S, WRB, RDB, CK, CKS, LP, FLM, M, CLK, RESB, TEST, VREF Pins

10.2 Recommended operating conditions

Item	Symbol	Application Pin	Min.	Max.	Unit	Note
Supply voltage	VDD1	VDD	1.8	3.3	V	*1
Supply voltage	VEE	VEE	2.4	3.3	V	*2
	V0	V0	5	12	Y	*3
Operating valtage	VOUT	VOUT	_	$12 \bigcirc \bigcirc$	$V \setminus V$	
Operating voltage	VREG	VREG		10.8	$V \setminus$	7
	VREF	VREF \	2.4 ^V	3.3	V	*4
Operating temperature	Topr		-30	80	$^{\circ}$ C	

^{*2} shows applying voltage to VSS pin. Usually, if applying voltage is same as VDD. Connect to VDD pin.

^{*3} shows the voltage relationship of V0>V1>V2>V3>V4>VSS is required.

³⁴ shows applying voltage to VSS pin.. In the case of using the voltage regulator. The voltage relationship of VREF \leq VEE is required.

11. DC characteristics

VSS=0V , VDD = 1.8 \sim 3.3V , Ta = -30 \sim 80 $^{\circ}$ C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
High level input voltage	VIH		0.8VDD	0.9VDD	VDD	V	※ 1
Low level input voltage	VIL		0	0.1VDD	0.2VDD	V	※ 1
High level output current	IOH1	VOH = VDD-0.4V	-0.4	-0.5	-0.6	mA	※ 2
Low level output current	IOL1	VOL= 0.4V	0.4	0.5	0.6	mA	※ 2
High level output current	ЮН2	VOH = VDD-0.4V	-0.1	-0.2	-0.3	mA	※ 3
Low level output current	IOL2	VOL= 0.4V	0.1	0.2	0.3	mA	※ 3
Input leakage current	ILI	VI = VSS or VDD	-2	0	2	μΑ	※ 4
Output leakage current	ILO	VI = VSS or VDD	-2	0	2	μΑ	※ 5
LCD driver output resistance	RON	$\Delta Von = 0.5V \qquad \frac{V0=10V}{V0=6V}$	1.0	1.3	1.6	ΚΩ	※ 6
LCD driver output resistance	RON	$\Delta Von = 0.5V, VDD=3V$	1.5	2	2.5	ΚΩ	※ 7
Standby current through VDD pin	ISTB	CK=0, CSB=VDD, Ta=25°C, VDD=3V		5	15	μΑ	※ 8
Oscillator frequency (variable gradation mode)	fosc	VDD=3V, Ta=25°C, Rf setting = (Rf2,Rf1,Rf0)=(000)	260	372	484	KHz	※ 9
Oscillator frequency (8 gradation mode)	fosc	VDD=3V, Ta=25 °C, Rf setting = (Rf2,Rf1,Rf0)=(00 0)	58	84	110	KHz	※ 10
Oscillator frequency (monochrome mode)	fosc	VDD=3V, Ta=25°C, Rf setting = (Rf2,Rf1,Rf0)=(000)	8	12	16	KHz	※ 11
Booster output	VOUT1	Four times boosting $RL = 500K\Omega$ (VOUT-VSS)	4*VEE *0.95			V	※ 12
voltage on VOUT pin	VOUT2	Three times boosting $RL = 500K\Omega$ (VOUT-VSS)	3*VEE *0.95			V	※ 13
on voorpin	VOUT3	Two times boosting $RL = 500K\Omega(VOUT-VSS)$	2*VEE *0.95			V	※ 14
	IDD1	VDD = 3V, 4 times booster All ON pattern		55	70	μΑ	※ 15
Current consumption	IDD2	VDD = 3V, 4 times booster Checker pattern		130	160	μΑ	% 16
Carrent Consumption	IDD2	VDD = 3V, 3 times booster All ON pattern		30	40	μΑ	※ 17
	IDD2	VDD = 3V, 3 times booster Checker pattern		65	80	μΑ	※ 18
VREG output voltage	VREG	VEE =2.4V~3.3V, VREF=2.4~3.3, N times boosting (N=2 to 4)	(VREF*N*0.9) *0.95	VREF*N *0.9	(VREF*N*0.9) *1.05	V	% 19

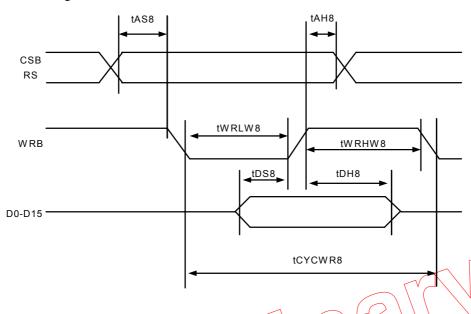
^{*} This specification is subject to be changed without notice.

Relationship of oscillating frequency (fosc) and external clock frequency (fCK) to LCD frame frequency (fFLM) is each display mode

Original	Dianlay mada		Ratio of display	duty cycle (1/D)		Pin used
oscillating clock	Display mode	1/66, 1/58, 1/50	1/42, 1/34, 1/26	1/18	1/10	Pili used
When use	Variable	fosc/(2*31*D)	fosc/(4*31*D)	fosc/(8*31*D)	fosc/(16*31*D)	
built-in	gradation					
oscillating	Simple gradation	fosc/(2*7*D)	fosc/(4*7*D)	fosc/(8*7*D)	fosc/(16*7*D)	
circuit (fosc)	Monochrome	fosc/(2*1*D)	fosc/(4*1*D)	fosc/(8*1*D)	fosc/(16*1*D)	FLM
When use	Variable	fCK/(2*31*D)	fCK /(4*31*D)	fCK /(8*31*D)	fCK /(16*31*D)	I LIVI
external clock	gradation					
from CK pin.	Simple gradation	fCK /(2*7*D)	fCK /(4*7*D)	fCK /(8*7*D)	fCK /(16*7*D)	
(fCK)	Monochrome	fCK /(2*1*D)	fCK /(4*1*D)	fCK /(8*1*D)	fCK /(16*1*D)	

Pin used:

- * 1 D0-D15, CSB, RS, M/S, M86, RDB, WRB, CK, CKS, CLK, LP, FLM, M, P/S, RESB, TEST pins.
- **2** D0~D15 pins
- 3 LP, FLM, M, CLK pins
- * 4 CSB, RS, M/S, M86, RDB, WRB, CK, CKS, P/S, RESB, TEST pins v
- * 5 Applied when D0~D15, CLK, LP, FLM, and M are in the state of high impedance.
- * 6 SEGA0~SEGA95, SEGB0~SEGB95, SEGC0~SEGC95. COM0~COM63, COMA, COMB pins Resistance when being applied 0.5V between each output pin and each power supply (V0, V1, V2, V3, V4) and when being applied 1/9 bias.
- 7 SSEG, SCOM pins
- * 8 VDD pin, VDD pin current without load at the stoppage of original oscillating clock and at non-select (CSB=VDD)
- * 9 Oscillating frequency, when using the built-in oscillating circuit (variable gradation display mode)
- * 10 Oscillating frequency, when using the built-in oscillating circuit (8 gradation fixed display mode)
- * 11 Oscillating frequency, when using the built-in oscillating circuit (monochrome display mode)
- ** 12 VOUT pin. When using the built-in oscillating circuit, the built-in power supply is used, and boosting 4 times is used, this pin is applied. VEE=2.4~3.3 V, The electronic control is preset (The code is ("1 1 1 1 1 1 1")). Measuring conditions: bias=1/5~1/9, 1/66 duty, without load. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1"
- ** 13 VOUT pin. When using the built-in oscillating circuit, the built-in power supply is used, and boosting 3 times is used, this pin is applied. VEE=2.4~3.3 V, The electronic control is preset (The code is ("1 1 1 1 1 1 1")). Measuring conditions: bias=1/5~1/9, 1/66 duty, without load. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1"
- ** 14 VOUT pin. When using the built-in oscillating circuit, the built-in power supply is used, and boosting 2 times is used, this pin is applied. VEE=2.4~3.3 V, The electronic control is preset (The code is ("1 1 1 1 1 1 1")). Measuring conditions: bias=1/5~1/9, 1/66 duty, without load. RL=500 KΩ (between VOUT and VSS), C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1"
- * 15 VDD, VEE pin. When the built-in oscillating circuit and built-in power supply are used and there is no access from


MPU. This pin is applied. Boosting 4 times is used the electronic control is preset (The code is ("1 1 1 1 1 1")). Display ALL ON pattern (on monochrome display mode) and LCD driver pin with no load. Measuring conditions: $VDD=VEE=VREF, C1=C2=1.0\mu F, C3=0.1\mu F, DCON=AMPON="1"$

- ** 16 VDD, VEE pin. When the built-in oscillating circuit and built-in power supply are used and there is no access from MPU. This pin is applied. Boosting 4 times is used the electronic control is preset (The code is ("1 1 1 1 1 1 1")). Display a checkered pattern (on monochrome display mode) and LCD driver pin with no load. Measuring conditions: VDD=VEE=VREF, C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1"
- ** 17 VDD, VEE pin. When the built-in oscillating circuit and built-in power supply are used and there is no access from MPU. This pin is applied. Boosting 3 times is used the electronic control is preset (The code is ("1 1 1 1 1 1 1")). Display ALL ON pattern (on monochrome display mode) and LCD driver pin with no load. Measuring conditions: VDD=VEE=VREF, C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1"
- ** 18 VDD, VEE pin. When the built-in oscillating circuit and built-in power supply are used and there is no access from MPU. This pin is applied. Boosting 3 times is used the electronic control is preset (The code is ("1 1 1 1 1 1 1")). Display a checkered pattern (on monochrome display mode) and LCD driver pin with no load. Measuring conditions: VDD=VEE=VREF, C1=C2=1.0μF, C3=0.1μF, DCON=AMPON="1".
- * 19 VREG pin. Measuring conditions: VEE=VREF=2,4~3.3 V, bias=1\5~1/9, 1\66 duty.

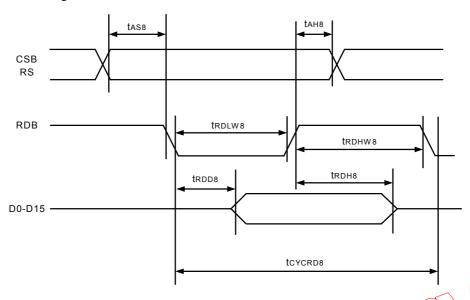
12. AC characteristic

(1) 80-family MCU write timing

 $VSS=0V, VDD = 2.7 \sim 3.3V, Ta = -30 \sim +85^{\circ}C$

,		-	_ \	1 1 1 1	\sim		
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH8		$\bigcirc \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			ns	CSB
Address setup time	tAS8		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ns	RS
System cycle time in write	tCYCWR8		250			ns	WRB
Write pulse "L" width	tWRLW8		60			ns	(R/WB)
Write pulse "H" width	tWRHW8		185			ns	(IV WD)
Data setup time	tD\$8	1	60			ns	D0~D15
Data hold time	tDH8		5			ns	D0~D13

 $VSS=0V, VDD = 2.4\sim2.7V, Ta = -30\sim +85^{\circ}C$


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in write	tCYCWR8		330			ns	WRB
Write pulse "L" width	tWRLW8		80			ns	(R/WB)
Write pulse "H" width	tWRHW8		240			ns	(IC/WD)
Data setup time	tDS8		80			ns	D0~D15
Data hold time	tDH8		10			ns	D0~D13

$VSS=0V, VDD = 2.4\sim3.3V, Ta = -30\sim+85^{\circ}C$

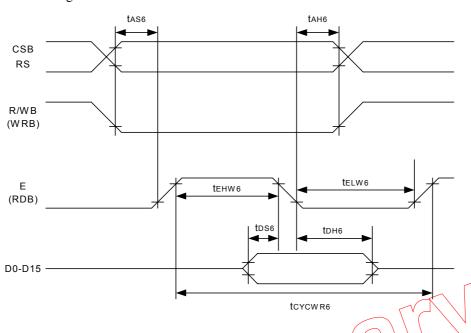
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in write	tCYCWR8		660			ns	WRB
Write pulse "L" width	tWRLW8		140			ns	(R/WB)
Write pulse "H" width	tWRHW8		500			ns	(K/WD)
Data setup time	tDS8		100			ns	D0~D15
Data hold time	tDH8		20			ns	רוע~טע

(2) 80-family MCU read timing

VSS=0V , VDD = $2.7\sim3.3$ V , Ta = $-30\sim+85$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH8		9	1 1 1 1		ns	CSB
Address setup time	tAS8					ns	RS
System cycle time in read	tCYCRD8		450			ns	
Read pulse "L" width	tRDLW8		200	•		ns	RDB(E)
Read pulse "H" width	tRDHW8 ($\geq 1 \mid 1 $	185			ns	
Data setup time	tRDD8	CL ≠ 80 pF			250	ns	D0~D15
Data hold time	tRDH8		10			ns	D0~D13

VSS=0V, $VDD = 2.4 \sim 2.7V$, $Ta = -30 \sim +85$ °C


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in read	tCYCRD8		600			ns	
Read pulse "L" width	tRDLW8		220			ns	RDB(E)
Read pulse "H" width	tRDHW8		240			ns	
Data setup time	tRDD8	CL = 80 pF			350	ns	D0~D15
Data hold time	tRDH8		10			ns	נוע~טע

VSS=0V, $VDD = 1.8\sim2.4V$, $Ta = -30\sim+85^{\circ}C$

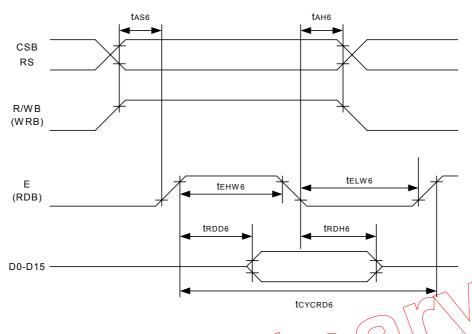
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH8		0			ns	CSB
Address setup time	tAS8		0			ns	RS
System cycle time in read	tCYCRD8		1000			ns	
Read pulse "L" width	tRDLW8		450			ns	RDB(E)
Read pulse "H" width	tRDHW8		500			ns	
Data setup time	tRDD8	CL = 80 pF			650	ns	D0~D15
Data hold time	tRDH8		10			ns	טט~טוט

(3) 68-family MCU write timing

VSS=0V, $VDD = 2.7 \sim 3.3V$, $Ta = -30 \sim +85$ °C

*	·		_ \	. \ \ \ \			
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH6		/ Ø \			ns	CSB
Address setup time	tAS6		\ \0\ _	,		ns	RS
System cycle time in write	tCYCWR6	(250			ns	
Write pulse "L" width	tELW6		60			ns	RDB(E)
Write pulse "H" width	tEHW6		185			ns	
Data setup time	tD\$6		60			ns	D0~D15
Data hold time	tDH6		5			ns	טע~טוט

VSS=0V , VDD = 2.4 ~2.7V , Ta = -30~+85 $^{\circ}\text{C}$


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in write	tCYCWR6		330			ns	
Write pulse "L" width	tELW6		80			ns	RDB(E)
Write pulse "H" width	tEHW6		240			ns	
Data setup time	tDS6		80			ns	D0~D15
Data hold time	tDH6		10			ns	D0~D13

VSS=0V , VDD = 1.8 ~2.4V , Ta = -30~+85 $^{\circ}\text{C}$

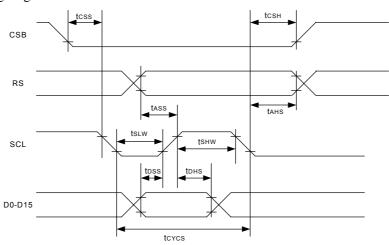
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in write	tCYCWR6		660			ns	
Write pulse "L" width	tELW6		140			ns	RDB(E)
Write pulse "H" width	tEHW6		500			ns	
Data setup time	tDS6		100			ns	D0~D15
Data hold time	tDH6		20			ns	טע~טון

(4) 68-family MCU read timing

VSS=0V, $VDD = 2.7 \sim 3.3V$, $Ta = -30 \sim +85$ °C

*				1 1 1 1			
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH6		(0/ /		•	ns	CSB
Address setup time	tAS6		$\setminus 0$	1		ns	RS
System cycle time in write	tCYCRD6		450			ns	
Write pulse "L" width	tELW6		200			ns	RDB(E)
Write pulse "H" width	tEHW6		185			ns	
Data setup time	tRDD6	CI =00°E			250	ns	D0~D15
Data hold time	tRDH6	CL=80pF	10			ns	D0~D13

VSS=0V , VDD = $2.4\sim2.7V$, Ta = $-30\sim+85$ °C


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in write	tCYCRD6		600			ns	
Write pulse "L" width	tELW6		220			ns	RDB(E)
Write pulse "H" width	tEHW6		240			ns	
Data setup time	tRDD6	CL=80pF			350	ns	D0~D15
Data hold time	tRDH6	СС-80рг	10			ns	רוש~טע

VSS=0V, VDD = $1.8\sim2.4$ V, $Ta = -30\sim+85$ °C

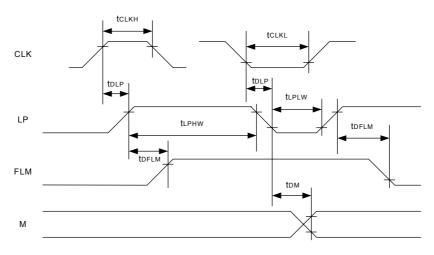
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Address hold time	tAH6		0			ns	CSB
Address setup time	tAS6		0			ns	RS
System cycle time in write	tCYCRD6		1000			ns	
Write pulse "L" width	tELW6		450			ns	RDB(E)
Write pulse "H" width	tEHW6		500			ns	
Data setup time	tRDD6	CL=80pF			650	ns	D0~D15
Data hold time	tRDH6	CL-80pr	10			ns	D0~D13

(5) Serial interface timing diagram

VSS=0V , VDD = $2.7\sim3.3$ V , Ta = $-30\sim+85$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Serial clock period	tCYCS		200			ns	
SCL pulse "H" width	tSHW		80			ns	SCL
SCL pulse "L" width	tSLW		80			ns	
Address setup time	tASS		40			\ \ ns	RS
Address hold time	tAHS		40	$ \bigcirc $	(0,)	ns 🗀) KS
Data setup time	tDSS		80			ns	SDA
Data hold time	tDHS		V 80 \			ns	SDA
CSB-SCL time	tCSS		40	1		ns	CSB
CSB hold time	tCSH		\ \ 40			ns	CSB

VSS=0V, $VDD = 2.4 \sim 2.7V$, $Ta = -30 \sim +85$ °C


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Serial clock period	tCYCS		250			ns	
SCL pulse "H" width	tSHW		100			ns	SCL
SCL pulse "L" width	tSLW		100			ns	
Address setup time	tASS		50			ns	RS
Address hold time	tAHS		50			ns	KS
Data setup time	tDSS		100			ns	SDA
Data hold time	tDHS		100			ns	SDA
CSB-SCL time	tCSS		50			ns	CSB
CSB hold time	tCSH		50			ns	CSB

VSS=0V , VDD = 1.8~2.4V , Ta = -30~+85 $^{\circ}\text{C}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Serial clock period	tCYCS		1000			ns	
SCL pulse "H" width	tSHW		400			ns	SCL
SCL pulse "L" width	tSLW		400			ns	
Address setup time	tASS		80			ns	RS
Address hold time	tAHS		80			ns	KS
Data setup time	tDSS		400			ns	SDA
Data hold time	tDHS		400			ns	SDA
CSB-SCL time	tCSS		80			ns	CSB
CSB hold time	tCSH		80			ns	CSD

(6) Display control timing

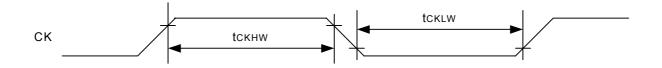
Input timing (Slave mode) VSS=0V, VDD = $2.4 \sim 3.3 \text{V}$, Ta = $-30 \sim +85 ^{\circ}\text{C}$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
CLK pulse "H" width	tCLKH		1.6			μs	CLK
CLK pulse "L" width	tCLKL		1.6			μs	CLK
LP pulse "H" width	tLPHW		80			μs	
LP pulse "L" width	tLPLW	7	80			μs	LP
LP delay time	tDLP		(-J/ / /		1	μs	
FLM delay time	tDFLM		\ \-1\ \ '		1	μs	FLM
M delay time	tDM		1		1	μs	M

Input timing (Slave mode) VSS=0V, $VDD = 1.8\sim2.4V$, $Ta = -30\sim +85^{\circ}C$

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
CLK pulse "H" width	tCLKH		1.6			μs	CLK
CLK pulse "L" width	tCLKL		1.6			μs	CLK
LP pulse "H" width	tLPHW		80			μs	
LP pulse "L" width	tLPLW		80			μs	LP
LP delay time	tDLP		-1		1	μs	
FLM delay time	tDFLM		-1		1	μs	FLM
M delay time	tDM		-1		1	μs	M

output timing (Master mode) VSS=0V , VDD = $2.4 \sim 3.3 \text{V}$, Ta = $-30 \sim +85 ^{\circ}\text{C}$


Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
LP delay time	tDLP		10		500	ns	LP
FLM delay time	tDFLM	CL = 15 pF	10		500	ns	FLM
M delay time	tDM		10		500	ns	M

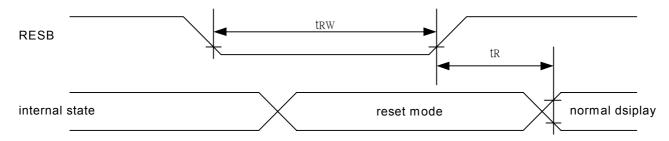
output timing (Master mode) VSS=0V , VDD = $1.8\sim2.4$ V , Ta = $-30\sim+85$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
LP delay time	tDLP		10		1000	μs	LP
FLM delay time	tDFLM	CL = 15 pF	10		1000	μs	FLM
M delay time	tDM		10		1000	μs	M

(7) Master clock input timing

VSS=0V , VDD = $2.4\sim3.3$ V , Ta = $-30\sim+85$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
CK pulse "H" width (1)	tCKHW1		1.2		1.4	μs	CK
CK pulse "L" width (1)	tCKLW1		1.2		1.4	μs	※ 1
CK pulse "H" width (2)	tTCKHW2		5.4		6.5	μs	CK
CK pulse "L" width (2)	tCKLW2		5.4		6.5	μs	※ 2
CK pulse "H" width (3)	tCKHW3		38		45	μs	CK
CK pulse "L" width (3)	tCKLW3		38		45	μs	※ 3


VSS=0V , VDD = $1.8\sim2.4$ V , Ta = $-30\sim+85$ °C

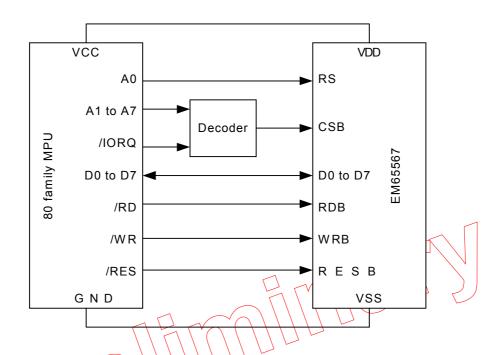
					\ \ \ \		
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
CK pulse "H" width (1)	tCKHW1	Note1	1.2		1.4	μs	CK
CK pulse "L" width (1)	tCKLW1	Note1	1,2	$\Gamma'() \setminus ($	1.4	μs	※ 1
CK pulse "H" width (2)	tCKHW2	Note2	5.4	1117	6.5	μs	CK
CK pulse "L" width (2)	tCKLW2	Note2	5.4		6.5	μs	※ 2
CK pulse "H" width (3)	tCKHW3	Note3	3.8		4.5	μs	CK
CK pulse "L" width (3)	tCKLW3	Note3	3.8		4.5	μs	※ 3

- Applied when the gradation display mode.
- * 2 Applied when the simple gradation mode.
- **※** 3 Applied when the monochrome mode.

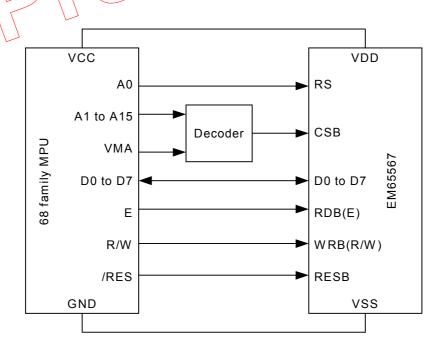
(8) Reset timing

VSS=0V, VDD = $2.4 \sim 3.3$ V, Ta = $-30 \sim +85$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Reset time	tR				1	μs	
Reset pulse "L" width	tRW		10			μs	RESB

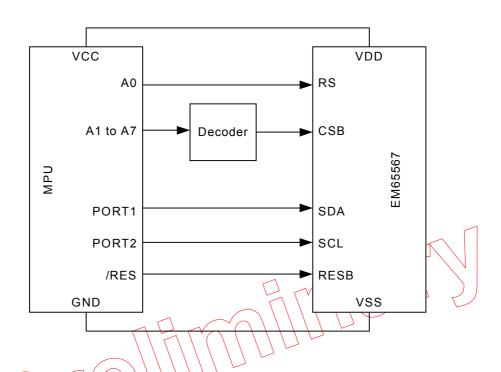

VSS=0V, VDD = $1.8\sim2.4$ V, Ta = $-30\sim+85$ °C

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Pin used
Reset time	tR				1.5	μѕ	
Reset pulse "L" width	tRW		10 🦯			μs	RESB

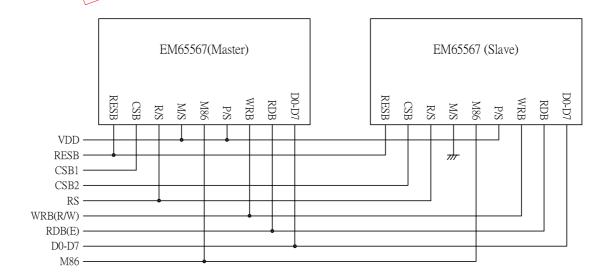


13. Application circuit

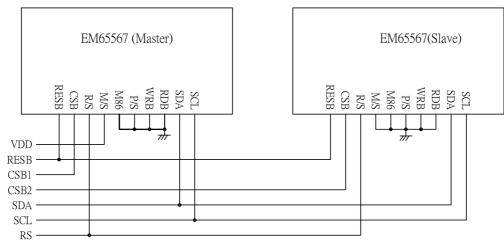
(1) Connection to 80-family MCU



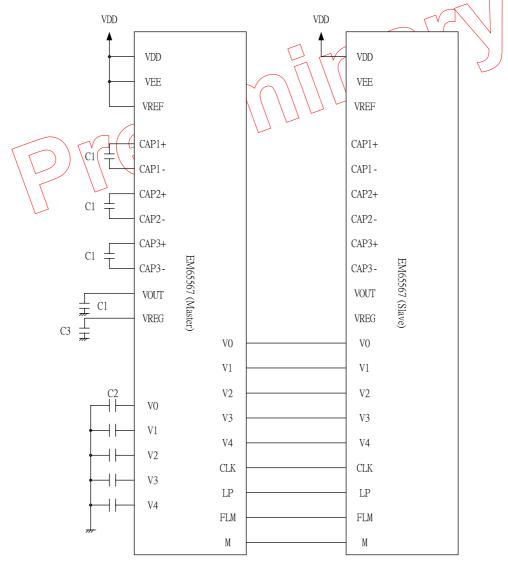
(2) Connection to 68-family MCU



(3) Connection to the MCU with serial interface



(4) Connection to Master / Slave about interface (parallel interface)



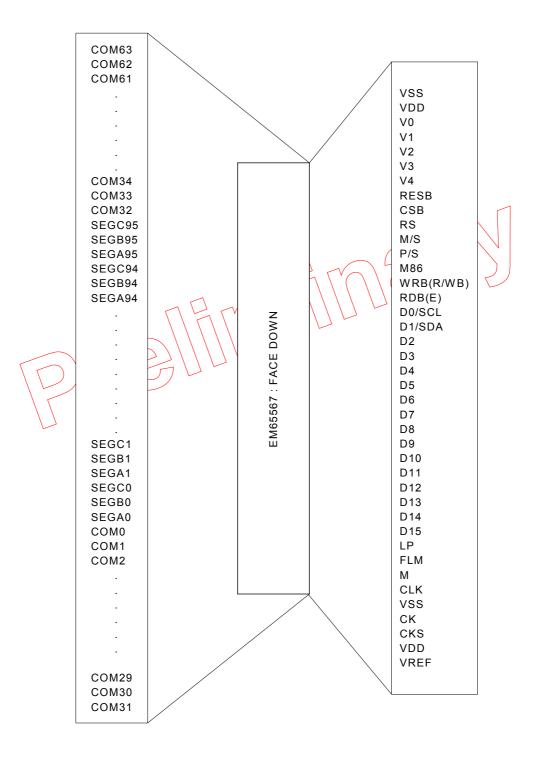
(5) Serial interface

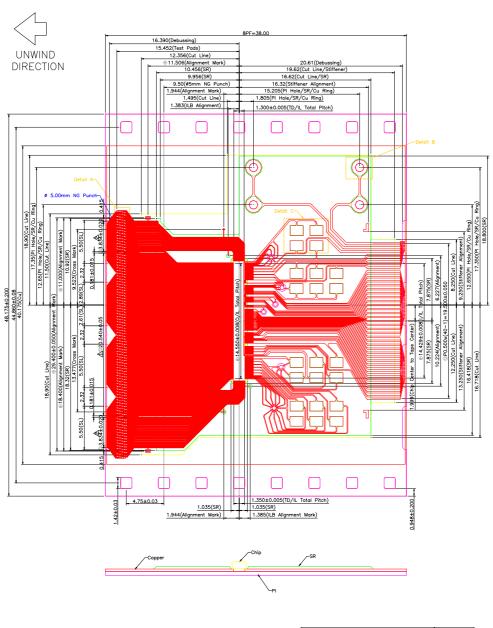
(6) Connection to master / slave about power block

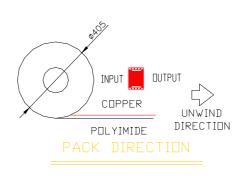
Caution of application about master / slave

- * The master chip control display timing (CLK,LP,FLM, and M). When making display OFF on the master chip, the master chip can not output the display timing. When making display OFF , beforehand set display OFF to the slave chip and set display OFF to the master chip.
- * When setting halt command, turn off the internal power supply, and output VSS level from LCD drive output pins, is set display OFF state. Because the master chip can not supply output voltage to the slave chip, beforehand set display OFF to the slave chip.

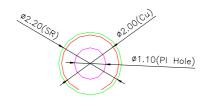
*In above connection example, the master chip is only available the electronic volume control.

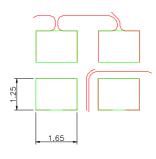


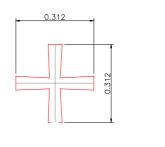

14. COF information

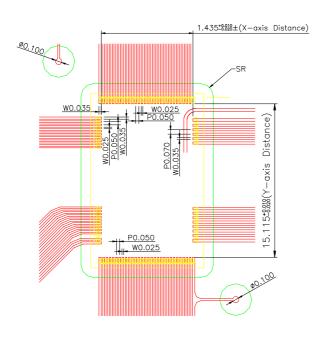

EM65567AF package

Pin connection diagram (64 x 96RGB outputs)




	Inner	Lead Cross	Section	
	Item	A (Top)	B (Bottom)	ام
	Input IL	Min. 25um	35±8um	<u></u>
	Output IL	Min. 18um	25±5um	0.008(TrP.)
	TD IL	Min. 18um	25±5um	°
	⊕ Outer	Lead Cross	Section	†/\
	Input OL	Min. 290um	310±20um	
Δ	Output OL	Min. 30um	40±10um	 -
Æ	Output OL	Min. 35um	50±15um	


	TAPE SPEC	48SW
PRODUCT PITCH		8 PERFORATIONS (38.00mm)
	Toyo CCL	PI: Kapton 38±3μm
٩L	TOYO CCL	Copper: 8±1.5 μ m
MATERIAL	SOLDER RESIST	NPR−90 5~25 μ m
MA	PLATING	⊕Au 0.5±0.15μm ⊕Ni Min 0.50μm



NOTES:

- NOTES:

 All Chamfer is R0.20mm if not specified

 2. All SR Dimension Tolerance ±0.200mm if not specified

 3. All SL Dimension Tolerance ±0.05mm if not specified

 4. PKG Reel Size: Ø405mm

 5. Input IL total pitch from top 2nd to bottom 2nd

 6. Output IL total pitch from top 2nd to bottom 2nd

 7. IL total pitch in TD from right 2nd to left 2nd

 8. MIN Pitch=55um(IL)

 9. NG Punch size is Ø5.00mm