

Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.
© 2001 Elantec Semiconductor, Inc.

EL2228C - Preliminary Dual Low Noise Amplifier

Electrical Characteristics
$V_{S^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=500 \Omega$ and $\mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$ to $0 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=420 \Omega \& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Parameter	Description	Condition	Min	Typ	Max	Unit
Input Characteristics						
Vos	Input Offset Voltage	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$		0.6	3	mV
$\mathrm{TCV}_{\text {OS }}$	Average Offset Voltage Drift	${ }^{[1]}$		4.9		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	-9	-4.5	-1	$\mu \mathrm{A}$
$\mathrm{R}_{\text {IN }}$	Input Impedance			6		$\mathrm{M} \Omega$
C IN	Input Capacitance			1.2		pF
CMIR	Common-Mode Input Range		-4.7		+3.4	V
CMRR	Common-Mode Rejection Ratio	for $\mathrm{V}_{\text {IN }}$ from -4.7 V to +3.4 V	60	90		dB
		for $\mathrm{V}_{\text {IN }}$ from -2 V to +2 V				dB
AVOL	Open-Loop Gain	$-2.5 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq 2.5 \mathrm{~V}$	60	72		dB
e_{n}	Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		4.7		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
i_{n}	Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		1.2		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Output Characteristics						
V ${ }_{\text {OL }}$	Output Swing Low	$\mathrm{R}_{\mathrm{L}}=500 \Omega$		-3.8	-3.5	V
		$\mathrm{R}_{\mathrm{L}}=250 \Omega$		-3.7	-3.5	V
V_{OH}	Output Swing High	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	3.5	3.7		V
		$\mathrm{R}_{\mathrm{L}}=250 \Omega$	3.5	3.6		V
$\mathrm{I}_{\text {SC }}$	Short Circuit Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$	60	100		mA
Power Supply Performance						
PSRR	Power Supply Rejection Ratio	V_{S} is moved from $\pm 4.5 \mathrm{~V}$ to $\pm 5.5 \mathrm{~V}$	65	83		dB
IS	Supply Current (Per Amplifier)	No load	3.5	4.5	5.5	mA
Dynamic Performance						
SR	Slew Rate ${ }^{[2]}$	$\pm 2.5 \mathrm{~V}$ square wave, measured $25 \%-75 \%$	35	50		$\mathrm{V} / \mu \mathrm{s}$
ts	Settling to $+0.1 \%\left(\mathrm{~A}_{\mathrm{V}}=+1\right)$	$\left(\mathrm{A}_{\mathrm{V}}=+1\right), \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}$ step		50		ns
BW	-3dB Bandwidth			75		MHz
HD2	2nd Harmonic Distortion	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		-90		dBc
		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		-71		dBc
HD3	3rd Harmonic Distortion	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		-99		dBc
		$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~A}_{\mathrm{V}}=2$		-69		dBc

1. Measured over operating temperature range
2. Slew rate is measured on rising and falling edges

EL2228C - Preliminary

EL2228C - Preliminary

Dual Low Noise Amplifier

Typical Performance Curves

50ns/div

Typical Performance Curves

Package Power Dissipation vs Ambient Temp. JEDEC JESD51-3 Low Efective Thermal Conductivity Test Board

Applications Information

Dual Low Noise Amplifier

General Disclaimer

Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Elantec Semiconductor, Inc
675 Trade Zone Blvd.
Milpitas, CA 95035
Telephone: (408) 945-1323
(888) ELANTEC

Fax: (408) 945-9305
European Office: $+44-118-977-6020$
Japan Technical Center: +81-45-682-5820

WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms \& conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.

