

The EL2125C is an ultra-low noise, wideband amplifier that runs on half the supply current of competitive parts. It is intended for use in

systems such as ultrasound imaging where a very small signal needs to

be amplified by a large amount without adding significant noise. Its

low power dissipation enables it to be packaged in the tiny SOT23

package, which further helps systems where many input channels cre-

The EL2125C is stable for gains of 10 and greater and uses traditional

voltage feedback. This allows the use of reactive elements in the feedback loop, a common requirement for many filter topologies. It

operates from $\pm 2.5V$ to $\pm 15V$ supplies and is available in a 5-pin

SOT23 package and 8-pin SO and 8-pin PDIP packages.

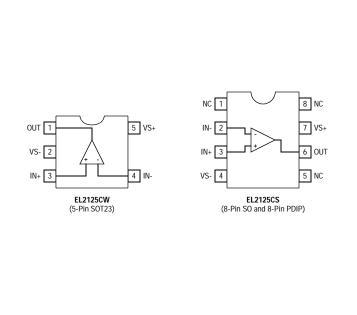
ate both space and power dissipation problems.

Features

- Voltage noise of only $0.83 nV/\sqrt{Hz}$
- Current noise of only $2.4 \text{pA}/\sqrt{\text{Hz}}$
- Low offset voltage ≤200µV
- 180MHz -3dB BW for $A_V=10$
- Low supply current 10mA
- SOT23 package available
- ± 2.5 V to ± 15 V operation

Applications

- Ultrasound input amplifiers
- Wideband instrumentation
- Communication equipment
- AGC & PLL active filters
- AGC & PLL active in
 Wideband sensors


Ordering Information

Part No	Package	Tape & Reel	Outline #
EL2125CW	5-Pin SOT23		MDP0038
EL2125CS	8-Pin SO		MDP0027
EL2125CN	8-Pin PDIP		MDP0031

The EL2125C is fabricated in Elantec's proprietary complementary bipolar process, and is specified for operation from -45°C to +85°C.

General Description

Connection Diagrams

Note: All information contained in this data sheet has been carefully checked and is believed to be accurate as of the date of publication; however, this data sheet cannot be a "controlled document". Current revisions, if any, to these specifications are maintained at the factory and are available upon your request. We recommend checking the revision level before finalization of your design documentation.

© 2001 Elantec Semiconductor, Inc.

October 2, 200

EL2125C - Preliminary

Ultra-low Noise, Low Power, Wideband Amplifier

Absolute Maximum Ratings (T_A = 25°C)

V_{S} + to V_{S} -	33V	Power Dissipation	See Curves
Continuous Output Current	40mA	Operating Temperature	-45°C to +85°C
Any Input	V_{S} 0.3V to V_{S} + + 0.3V	Storage Temperature	-60°C to +150°C

Important Note:

Al parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

Electrical Characteristics

 V_S = ±5V, T_A = 25°C, R_F = 180 $\Omega,$ R_G = 20 $\Omega,$ R_L = 500 Ω unless otherwise specified.

Parameter	Description	Conditions	Min	Тур	Max	Unit
DC Performa	nce					
V _{OS}	Input Offset Voltage (SO8 & PDIP8)			-0.2	2	mV
	Input Offset Voltage (SOT23-5)				3	mV
T _{CVOS}	Offset Voltage Temperature Coefficient			TBD		µV/°C
IB	Input Bias Current		-30	-21		μΑ
I _{OS}	Input Bias Current Offset			0.2	1	μΑ
T _{CIB}	Input Bias Current Temperature Coefficient			TBD		nA/°C
CIN	Input Capacitance			2.2		pF
A _{VOL}	Open Loop Gain		65	81		dB
PSRR	Power Supply Rejection Ratio ^[1]		75	96		dB
CMRR	Common Mode Rejection Ratio ^[2]		65	100		dB
CMIR	Common Mode Input Range					V
VOUT	Output Voltage Swing	No load, $R_F = 1k\Omega$	3.5	3.8		V
VOUTL	Output Voltage Swing	$R_L = 100\Omega$	2.8	3.1		V
I _{OUT}	Output Short Circuit Current [3]		80	100		mA
IS	Supply Current			10.1	12	mA
AC Performa	nce - $R_G = 20\Omega$, $C_L = 5pF$					
BW	-3dB Bandwidth			175		MHz
BW ±0.1dB	±0.1dB Bandwidth			34		MHz
$BW \pm 1 dB$	±1dB Bandwidth			150		MHz
Peaking	Peaking			0.4		dB
SR	Slew Rate	$V_{OUT} = 2V_{PP}$, measured at 20% to 80%	TBD	190		V/µs
OS	Overshoot, 4Vpk-pk Output Square Wave	Positive	0.6			%
		Negative	2.7			%
T _S	Settling Time to 0.1% of ±1V Pulse			TBD		ns
V _N	Voltage Noise Spectral Density			0.83		nV/√Hz
I _N	Current Noise Spectral Density			2.4		pA/√Hz
HD2	2nd Harmonic Distortion ^[4]			TBD		dBc
HD3	3rd Harmonic Distortion ^[4]			TBD		dBc
THD	Total Harmonic Distortion ^[5]			TBD		dBc
IMD	Intermodulation Distortion ^[6]			TBD		%

1. Measured by moving the supplies from $\pm 4V$ to $\pm 6V$

2. Measured by moving the inputs from +3.5V to -4.4V

3. Pulse test only

4. Frequency = 10MHz, $V_{OUT} = 1$ Vpk-pk, into 100Ω and 5pF load

5. Frequency = 20MHz, V_{OUT} = -20dBm (0.0274V_{RMS}) into 500 Ω and 15pF load

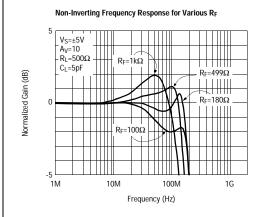
6. Two-tone IMD, frequencies = 5MHz and 6MHz at -20dBm output level, $R_{\rm LOAD}$ = 500 Ω and 15pF

Parameter	Description	Conditions	Min	T	Max	Unit
DC Performa	Description	Conditions	Min	Тур	Max	Unit
V _{OS}	Input Offset Voltage (SO8 & PDIP8)			-0.2	2	mV
VOS	Input Offset Voltage (SOT23-5)			-0.2	3	mV
T _{CVOS}	Offset Voltage Temperature Coefficient			TBD	5	μV/°C
IB	Input Bias Current		-30	-21		μν/ C
I _{OS}	Input Bias Current Offset		-30	0.16	1	μΑ
T _{CIB}	Input Bias Current Temperature Coefficient			TBD	1	nA/°C
CIN	Input Bias Current Temperature Coerricient Input Capacitance			2.2		pF
AVOL	Open Loop Gain		75	86		dB
PSRR	Power Supply Rejection Ratio ^[1]		75	80 95		dB
CMRR	Common Mode Rejection Ratio ^[2]		75	100		dB
CMIR	Common Mode Input Range		TBD	100		V
V _{OUT}	Output Voltage Swing	No load, $R_F = 1k\Omega$	IBD	13.5		v V
VOUT	Output Voltage Swing Output Voltage Swing	Positive, $R_F = 180\Omega$, $R_L = 500\Omega$	12.1	15.5		v V
	Output Voltage Swing	Negative	-11.3			v V
IOUT	Output Short Circuit Current ^[3]	Negative	100	150		mA
IS	Supply Current		100	10.8	12	mA
~	suppry Current nce - $R_G = 20\Omega$, $C_L = 5pF$			10.8	12	шА
BW	-3dB Bandwidth			220	1	MHz
BW ±0.1dB	±0.1dB Bandwidth			220		MHz
BW ±0.1dB	±1dB Bandwidth			63		MHz
Peaking	Peaking			2.5		dB
SR	Slew Rate	$V_{OUT} = 2V_{PP}$, measured at 20% to 80%	TBD	2.3		UB V/μs
OS	Overshoot, 4Vpk-pk Output Square Wave	• 001 2 v pp, measured at 20% to 80%		0.6		ν/μs %
T _S	Settling Time to 0.1% of $\pm 1V$ Pulse			TBD		ns
V _N	Voltage Noise Spectral Density			0.95		nV/√H
V _N I _N	Current Noise Spectral Density			2.1		pA/√H
HD2	2nd Harmonic Distortion ^[4]			TBD		dBc
HD2 HD3	3rd Harmonic Distortion ^[4]			TBD		dBc
THD	Total Harmonic Distortion ^[5]			TBD		dBc
IMD	Intermodulation Distortion ^[6]			TBD		авс %

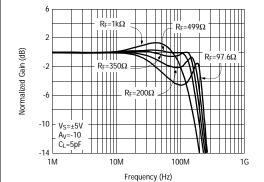
1. Measured by moving the supplies from $\pm 13.5V$ to $\pm 16.5V$

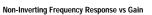
2. Measured by moving the inputs from +13.5V to -14.4V

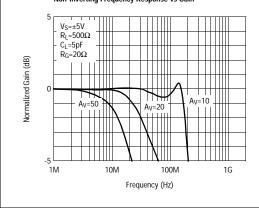
3. Pulse test only

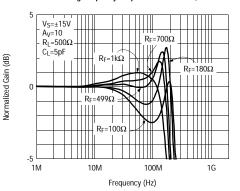

4. Frequency = 10MHz, $V_{OUT} = 1$ Vpk-pk, into 100Ω and 5pF load

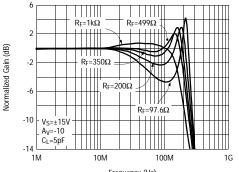
5. Frequency = 20MHz, V_{OUT} = -20dBm (0.0274 $V_{RMS})$ into 500 Ω and 15pF load


6. Two-tone IMD, frequencies = 5MHz and 6MHz at -20dBm output level, R_{LOAD} = 500 Ω and 15pF

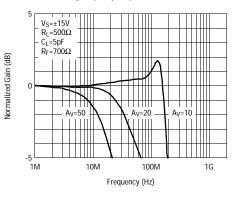



Typical Performance Curves


Inverting Frequency Response for Various R_F

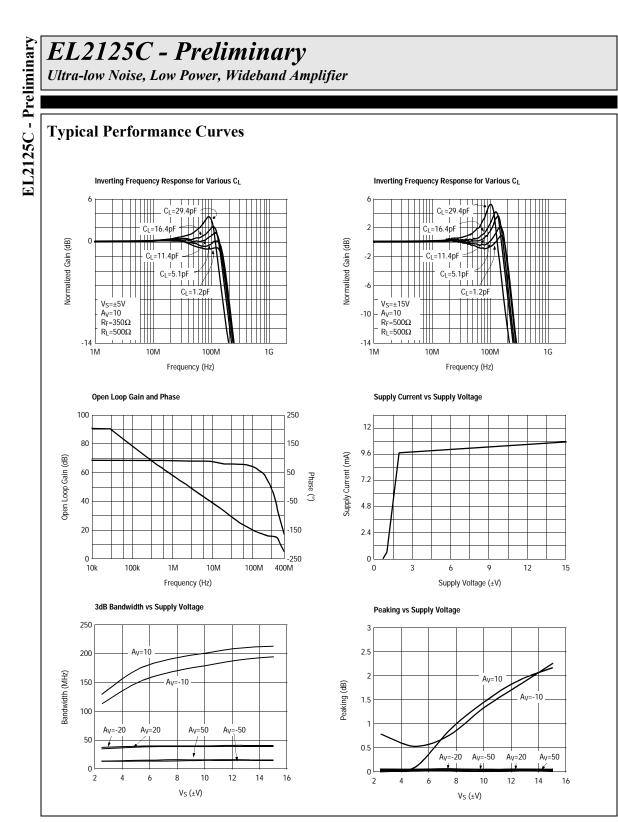


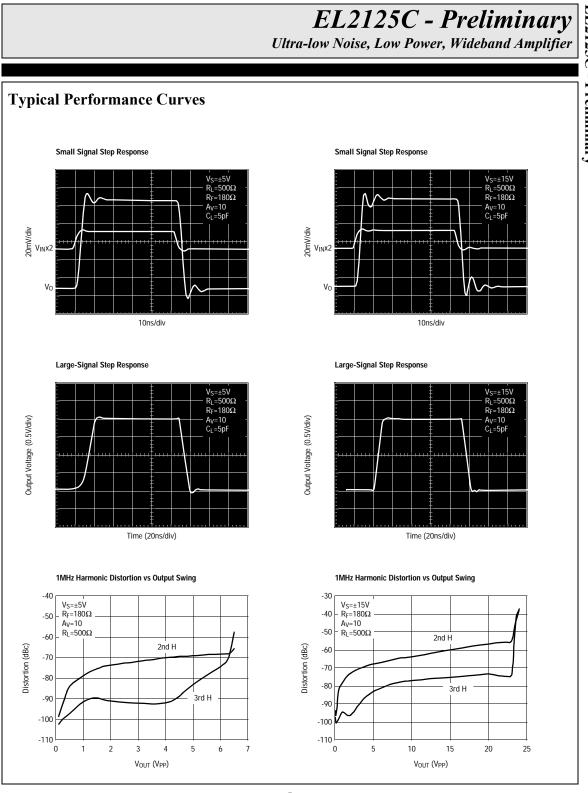
Non-Inverting Frequency Response for Various R_F



Inverting Frequency Response for Various R_F

Frequency (Hz)

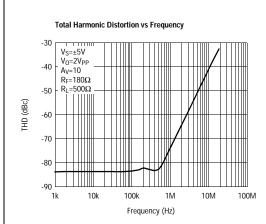


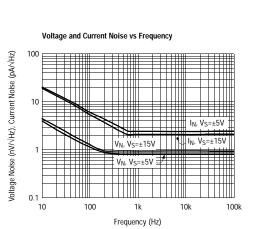


EL2125C - Preliminary Ultra-low Noise, Low Power, Wideband Amplifier **Typical Performance Curves** Inverting Frequency Response vs Gain Inverting Frequency Response vs Gain 6 $V_S=\pm 5V$ RL=500 Ω 2 CL=5pF $A_{V}=-10$ R_F=350k Ω Av=-10 Normalized Gain (dB) 0 Normalized Gain (dB) \square ſΜ +++++ -2 Av=-20 Av=-20 Av=-50 Av=-50 $R_F = 700 k\Omega$ $R_F=1.75k\Omega$ ЦÌШ -6 $\substack{V_S=\pm 15V\\R_L=500\Omega}$ -10 CL=5pF $R_{G}=50\Omega$ N -14 -14 1M 1M 10M 100M 1G 10M 100M 1G Frequency (Hz) Frequency (Hz) Non-Inverting Frequency Response for Various Output Inverting Frequency Response for Various Output Signal Signal Levels Levels 5 6 $\begin{array}{l} V_{S}=\pm 5V\\ A_{V}=10\\ R_{F}=180\Omega \end{array}$ 3mV_{PP} $250 \text{mV}_{\text{PP}}$ $R_L=500\Omega$ 30mV_{PP} 0 C_L=5pF Normalized Gain (dB) Normalized Gain (dB) 500mV_{PP} 3.3VPP -+++ HHĤ 0 500mV_{PP} 11//// 2.5V_{PP} +++++++ 4V_{PP} $V_{S=\pm}5V$ $1V_{PP}$ A_V=-10 $1V_{PP}$ 2V_{PF} $R_F=350\Omega$ $R_L = 500 \Omega$ CL=5pF -5 -1M -14 10M 100M 1G 1M 10M 100M 1G Frequency (Hz) Frequency (Hz) Non-Inverting Frequency Response for Various CL Non-Inverting Frequency Response for Various CL V_S=±5V $V_{S}=\pm 5V$ CL=17pF $\begin{array}{l} \mathsf{A}_V = 10 \\ \mathsf{R}_F = 180 \Omega \end{array}$ Ay=10 C_L=28.5pF 3 $R_F = 700\Omega$ C_L=11pF ++1111 RL=500Ω RL=500Ω Normalized Gain (dB) C_L=16pF Normalized Gain (dB) +++++ 1 C_L=5pF 0 C_L=5pF -1 C_L=1pF CL=1.2pF -3 -5 -5 1M 1M 10M 100M 1G 10M 100M 1G Frequency (Hz) Frequency (Hz)

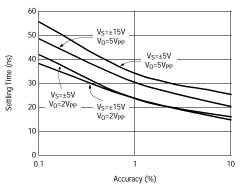
EL2125C - Preliminary

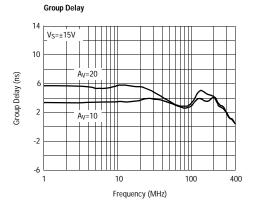
5

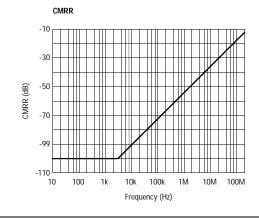


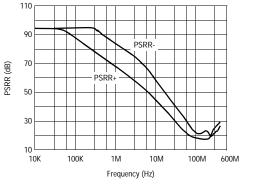

EL2125C - Preliminary

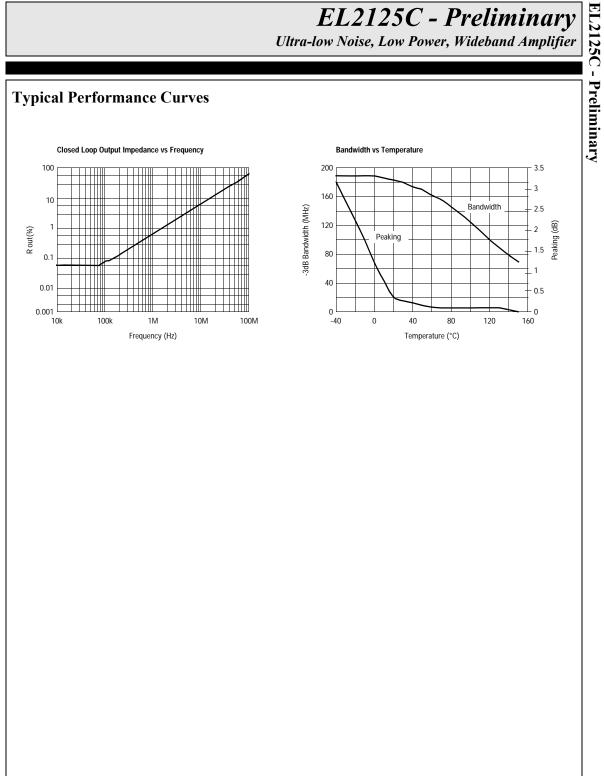
EL2125C - Preliminary


Ultra-low Noise, Low Power, Wideband Amplifier


Typical Performance Curves







General Disclaimer

October 2, 2001

Specifications contained in this data sheet are in effect as of the publication date shown. Elantec, Inc. reserves the right to make changes in the circuitry or specifications contained herein at any time without notice. Elantec, Inc. assumes no responsibility for the use of any circuits described herein and makes no representations that they are free from patent infringement.

Elantec Semiconductor, Inc. 675 Trade Zone Blvd. Milpitas, CA 95035 Telephone: (408) 945-1323 (888) ELANTEC Fax: (408) 945-9305 Europeon Officie: 444 118 077 6020

Fax: (408) 945-9305 European Office: +44-118-977-6020 Japan Technical Center: +81-45-682-5820

WARNING - Life Support Policy

Elantec, Inc. products are not authorized for and should not be used within Life Support Systems without the specific written consent of Elantec, Inc. Life Support systems are equipment intended to support or sustain life and whose failure to perform when properly used in accordance with instructions provided can be reasonably expected to result in significant personal injury or death. Users contemplating application of Elantec, Inc. Products in Life Support Systems are requested to contact Elantec, Inc. factory headquarters to establish suitable terms & conditions for these applications. Elantec, Inc.'s warranty is limited to replacement of defective components and does not cover injury to persons or property or other consequential damages.