FEATURES

- Double Side Cooling
- High Reliability In Service
- High Voltage Capability
- Fault Protection Without Fuses
- High Surge Current Capability
- Turn-off Capability Allows Reduction In Equipment Size And Weight. Low Noise Emission Reduces Acoustic Cladding Necessary For Environmental Requirements

APPLICATIONS

- Variable speed A.C. motor drive inverters (VSD-AC)
- Uninterruptable Power Supplies
- High Voltage Converters
- Choppers
- Welding
- Induction Heating
- DC/DC Converters

KEY PARAMETERS

$\mathrm{I}_{\text {TCM }}$	3000 A
$\mathrm{~V}_{\text {DRM }}$	4500 V
$\mathrm{I}_{\text {(AV }}$	1180 dt
$\mathrm{dV} / \mathrm{dt}$	$1000 \mathrm{~V} / \mu \mathrm{s}$
$\mathrm{di} / \mathrm{dt}$	$300 \mathrm{~A} / \mu \mathrm{s}$

Figure 1. Package outline

VOLTAGE RATINGS

Type Number	Repetitive Peak Off-state Voltage $\mathrm{V}_{\text {DRM }}$	Repetitive Peak Reverse Voltage $\mathrm{V}_{\text {RRM }}$	Conditions
DG858BW45	4500	16	$\begin{gathered} \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{DM}}=100 \mathrm{~mA}, \\ \mathrm{I}_{\text {RRM }}=50 \mathrm{~mA} \end{gathered}$

CURRENT RATINGS

Symbol	Parameter	Conditions	Max.	Units
$\mathrm{I}_{\mathrm{TCM}}$	Repetitive peak controllable on-state current	$\mathrm{V}_{\mathrm{D}}=66 \% \mathrm{~V}_{\mathrm{DRM}}, \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{di} / \mathrm{GQ} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s}, \mathrm{Cs}=3 \mu \mathrm{~F}$	3000	A
$\mathrm{I}_{\mathrm{T}(\mathrm{AV})}$	Mean on-state current	$\mathrm{T}_{\mathrm{HS}}=80^{\circ} \mathrm{C}$. Double side cooled, half sine 50 Hz	1180	A
$\mathrm{I}_{\mathrm{T}(\mathrm{RMS})}$	RMS on-state current	$\mathrm{T}_{\mathrm{HS}}=80^{\circ} \mathrm{C}$. Double side cooled, half sine 50 Hz	1850	A

DG858BW45

SURGE RATINGS

Symbol	Parameter	Conditions	Max.	Units
$\mathrm{I}_{\text {TSM }}$	Surge (non-repetitive) on-state current	10 ms half sine. $\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	20.0	kA
12 t	$1^{2} \mathrm{t}$ for fusing	$10 \mathrm{~ms} \mathrm{half} \mathrm{sine}. \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	2.0×10^{6}	$\mathrm{A}^{2} \mathrm{~S}$
$\mathrm{di}_{T} / \mathrm{dt}$	Critical rate of rise of on-state current	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=3000 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=3000 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \\ & \mathrm{I}_{\mathrm{FG}}>40 \mathrm{~A}, \text { Rise time }>1.0 \mu \mathrm{~s} \end{aligned}$	300	A/ $\mu \mathrm{s}$
$\mathrm{dV} \mathrm{D}_{\mathrm{D}} / \mathrm{dt}$	Rate of rise of off-state voltage	To $66 \% \mathrm{~V}_{\text {DRM }} ; \mathrm{R}_{\text {GK }} \leq 1.5 \Omega, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	130	V/us
		To $66 \% \mathrm{~V}_{\mathrm{DRM}} ; \mathrm{V}_{\mathrm{RG}}=-2 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	1000	$\mathrm{V} / \mu \mathrm{s}$
$\mathrm{L}_{\text {s }}$	Peak stray inductance in snubber circuit	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=3000 \mathrm{~A}, \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{DRM}},-\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}, \mathrm{dl} /{ }_{\mathrm{GQ}}=40 \mathrm{~A} \\ & \mu \mathrm{~s}, \mathrm{Cs}=3.0 \mu \mathrm{~F} \end{aligned}$	200	nH

GATE RATINGS

Symbol	Parameter	Conditions	Min.	Max.	Units
$\mathrm{V}_{\mathrm{RGM}}$	Peak reverse gate voltage	This value maybe exceeded during turn-off	-	16	V
$\mathrm{I}_{\mathrm{FGM}}$	Peak forward gate current		20	100	A
$\mathrm{P}_{\mathrm{FG}(\mathrm{AV})}$	Average forward gate power		-	20	W
$\mathrm{P}_{\mathrm{RGM}}$	Peak reverse gate power		-	24	kW
$\mathrm{di}_{\mathrm{GQ}} / \mathrm{dt}$	Rate of rise of reverse gate current		20	60	$\mathrm{~A} / \mu \mathrm{s}$
$\mathrm{t}_{\mathrm{ON}(\text { min })}$	Minimum permissable on time		50	-	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{OFF}(\min)}$	Minimum permissable off time		100	-	$\mu \mathrm{s}$

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions		Min.	Max.	Units
$\mathrm{R}_{\mathrm{tt}(\mathrm{t}-\mathrm{hs})}$	DC thermal resistance - junction to heatsink surface	Double side cooled		-	0.011	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Anode side cooled		-	0.017	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		Cathode side cooled		-	0.03	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thl(chs) }}$	Contact thermal resistance	Clamping force 40.0 kN With mounting compound	per contact	-	0.0021	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{vj}	Virtual junction temperature			-40	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {op }} / \mathrm{T}_{\text {stg }}$	Operating junction/storage temperature range			-40	125	${ }^{\circ} \mathrm{C}$
-	Clamping force			36.0	44.0	kN

CHARACTERISTICS

$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$ unless stated otherwise					
Symbol	Parameter	Conditions	Min.	Max.	Units
$\mathrm{V}_{\text {TM }}$	On-state voltage	At 4000A peak, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}=10 \mathrm{Ad.c}$.	-	4.0	V
$\mathrm{I}_{\text {M }}$	Peak off-state current	$\mathrm{V}_{\text {DRM }}=4500 \mathrm{~V}, \mathrm{~V}_{\text {RG }}=0 \mathrm{~V}$	-	100	mA
$\mathrm{I}_{\text {RRM }}$	Peak reverse current	At $\mathrm{V}_{\text {RRM }}$	-	50	mA
$V_{G T}$	Gate trigger voltage	$\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	1.2	V
${ }_{\text {at }}$	Gate trigger current	$\mathrm{V}_{\mathrm{D}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{T}}=100 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	-	4.0	A
$\mathrm{I}_{\text {gGm }}$	Reverse gate cathode current	$\mathrm{V}_{\text {RGM }}=16 \mathrm{~V}$, No gate/cathode resistor	-	50	mA
$\mathrm{E}_{\text {ON }}$	Turn-on energy	$\mathrm{V}_{\mathrm{D}}=2000 \mathrm{~V}$	-	2700	mJ
t_{d}	Delay time	$\mathrm{I}_{T}=3000 \mathrm{~A}, \mathrm{dl}_{T} / \mathrm{dt}=300 \mathrm{~A} / \mu \mathrm{s}$	-	2.0	$\mu \mathrm{s}$
t_{r}	Rise time	$I_{F G}=40 \mathrm{~A}, \text { rise time }<1.0 \mu \mathrm{~s}$	-	6.0	$\mu \mathrm{s}$
$\mathrm{E}_{\text {OfF }}$	Turn-off energy	$\begin{aligned} & \mathrm{I}_{\mathrm{T}}=3000 \mathrm{~A}, \mathrm{~V}_{\mathrm{DM}}=\mathrm{V}_{\mathrm{DRM}} \\ & \text { Snubber Cap Cs }=3.0 \mu \mathrm{~F}, \\ & \mathrm{di}_{\mathrm{Gd}} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	-	13500	mJ
t_{gs}	Storage time		-	25.0	$\mu \mathrm{s}$
t_{gf}	Fall time		-	2.5	$\mu \mathrm{s}$
t_{99}	Gate controlled turn-off time		-	27.5	$\mu \mathrm{s}$
$Q_{G Q}$	Turn-off gate charge		-	12000	$\mu \mathrm{C}$
$Q_{\text {Gat }}$	Total turn-off gate charge		-	24000	$\mu \mathrm{C}$
$\mathrm{I}_{\text {gam }}$	Peak reverse gate current		-	950	A

CURVES

Figure 2. Maximum gate trigger voltage/current vs junction temperature

Figure 3. On-state characteristics

Figure 4. Maximum dependence of $\mathrm{I}_{\text {тСм }}$ on Cs

Figure 5. Maximum (limit) transient thermal impedance - double side cooled

Figure 6. Surge (non-repetitive) on-state current vs time

Figure 7. Steady state rectangular wave conduction loss - double side cooled

Figure 8. Steady state sinusoidal wave conduction loss - double side cooled

Figure 9. Turn-on energy vs on-state current

Figure 10. Turn-on energy vs peak forward gate current

Figure 11. Turn-on energy vs on-state current

Figure 12. Turn-on energy vs peak forward gate current

Rate of rise of on-state current $\mathrm{dl}_{\mathrm{T}} / \mathrm{dt}-(\mathrm{A} / \mu \mathrm{s})$
Figure 13. Turn-on energy vs rate of rise of on-state current

Fig.ure 14. Delay and rise time vs on-state current

Figure 15. Delay and rise time vs peak forward gate current

Figure 16. Turn-off energy loss vs on-state current

Figure 17. Turn-off energy vs rate of rise of reverse gate current

Figure 18. Turn-off energy vs on-state current

Figure 19. Turn-off energy loss vs rate of rise of reverse gate current

Figure 20. Turn-off energy vs on-state current

Figure 21. Gate storage time vs on-state current

Figure 22. Gate storage time vs rate of rise of reverse gate current

Figure 23. Gate fall time vs on-state current

Figure 24. Gate fall time vs rate of rise of reverse gate current

Figure 25. Peak reverse gate current vs on-state current

Figure 26. Reverse gate current vs rate of rise of reverse gate current

Figure 27. Turn-off gate charge vs on-state current

Figure 28. Turn-off gate charge vs rate of rise of reverse gate current

Figure 29. Rate of rise of off-state voltage vs gate cathode resistance

Recommended gate conditions:

$$
\begin{aligned}
& \mathrm{I}_{\text {TCM }}=3000 \mathrm{~A} \\
& I_{F G}=40 \mathrm{~A} \\
& I_{\mathrm{G}(\mathrm{ON})}=10 \mathrm{~A} \text { d.c. } \\
& \mathrm{t}_{\mathrm{w} 1(\text { min })}=20 \mu \mathrm{~s} \\
& I_{\text {Gam }}=950 \mathrm{~A} \\
& \mathrm{di}_{\mathrm{GQ}} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s} \\
& \mathrm{Q}_{\mathrm{GQ}}=12000 \mu \mathrm{C} \\
& \begin{array}{l}
\mathrm{V}_{\mathrm{RG}(\text { min })}=2 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{RG}(\text { max })}=16 \mathrm{~V}
\end{array}
\end{aligned}
$$

These are recommended Dynex Semiconductor conditions. Other conditions are permitted
Figure 30. General switching waveforms

DG858BW45

PACKAGE DETAILS

For further package information, please contact your local Customer Service Centre. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

ASSOCIATED PUBLICATIONS

Title	Application Note				
Number		$	$	Calculating the junction temperature or power semiconductors	AN4506
:---	:---				
GTO gate drive units	AN4571				
Recommendations for clamping power semiconductors	AN4839				
Use of $\mathrm{V}_{\mathrm{TO}}, r_{T}$ on-state characteristic	AN5001				
Impoved gate drive for GTO series connections	AN5177				

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink / clamping systems in line with advances in device types and the voltage and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group continues to offer high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the up to date CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete solution (PACs).

DEVICE CLAMPS

Disc devices require the correct clamping force to ensure their safe operation. The PACs range offers a varied selection of preloaded clamps to suit all of our manufactured devices. This include cube clamps for single side cooling of ' T ' 22 mm Clamps are available for single or double side cooling, with high insulation versions for high voltage assemblies.
Please refer to our application note on device clamping, AN4839

HEATSINKS

Power Assembly has it's own proprietary range of extruded aluminium heatsinks. They have been designed to optimise the performance or our semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest Sales Representative or the factory.

HEADQUARTERS OPERATIONS
DYNEX SEMICONDUCTOR LTD
Doddington Road, Lincoln.
Lincolnshire. LN6 3LF. United Kingdom.
Tel: 00-44-(0)1522-500500
Fax: 00-44-(0)1522-500550

DYNEX POWER INC.

Unit 7-58 Antares Drive,
Nepean, Ontario, Canada K2E 7W6.
Tel: 613.723.7035
Fax: 613.723.1518
Toll Free: 1.888.33.DYNEX (39639)

CUSTOMER SERVICE CENTRES
France, Benelux, Italy and Spain Tel: +33 (0)1 691890 00. Fax: +33 (0)1 64465450
North America Tel: 011-800-5554-5554. Fax: 011-800-5444-5444
UK, Germany, Scandinavia \& Rest Of World Tel: +44 (0)1522 500500. Fax: +44 (0)1522 500020
SALES OFFICES
France, Benelux, Italy and Spain Tel: +33 (0)1 691890 00. Fax: +33 (0)1 64465450
Germany Tel: 07351827723
North America Tel: (613) 723-7035. Fax: (613) 723-1518. Toll Free: 1.888.33.DYNEX (39639) / Tel: (831) 440-1988. Fax: (831) 440-1989 / Tel: (949) 733-3005. Fax: (949) 733-2986.
UK, Germany, Scandinavia \& Rest Of World Tel: +44 (0)1522 500500. Fax: +44 (0)1522 500020
These offices are supported by Representatives and Distributors in many countries world-wide. © Dynex Semiconductor 2000 Publication No. DS4096-4 Issue No. 4.0 January 2000
TECHNICAL DOCUMENTATION - NOT FOR RESALE. PRINTED IN UNITED KINGDOM

Datasheet Annotations:

Dynex Semiconductor annotate datasheets in the top right hard corner of the front page, to indicate product status. The annotations are as follows:-
Target Information: This is the most tentative form of information and represents a very preliminary specification. No actual design work on the product has been started. Preliminary Information: The product is in design and development. The datasheet represents the product as it is understood but details may change.
Advance Information: The product design is complete and final characterisation for volume production is well in hand.
No Annotation: The product parameters are fixed and the product is available to datasheet specification.

