

CY241V08-01,-04,-05,-06

MPEG Clock Generator with VCXC

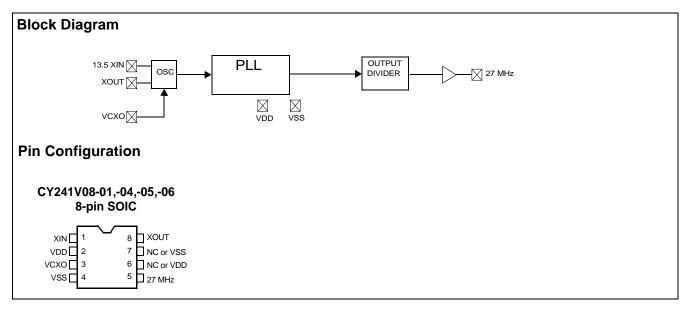
Features

- Integrated phase-locked loop (PLL)
- · Low-jitter, high-accuracy outputs
- VCXO with analog adjust
- 3.3V operation

Benefits

- · Highest-performance PLL tailored for multimedia applications
- Meets critical timing requirements in complex system designs
- · Application compatibility for a wide variety of designs

Frequency Table


Advance Features

• Lower drive strength settings (CY241V08-04, -06)

Benefits

· Electromagnetic interference (EMI) reduction for standards compliance

Part Number	Outputs	Input Frequency Range	Output Frequencies	VCXO Control Curve	Other Features
CY241V08-01	1	13.5-MHz pullable crystal input per Cypress specification	One copy of 27 MHz	linear	Pinout compatible with MK3727
CY241V08-04	1	13.5-MHz pullable crystal input per Cypress specification	One copy of 27 MHz	linear	Same as CY241V08-01 except lower drive strength settings
CY241V08-05	1	13.5-MHz pullable crystal input per Cypress specification	One copy of 27 MHz	nonlinear	Mimics MK3727 nonlinear VCXO Control Curve
CY241V08-06	1	13.5-MHz pullable crystal input per Cypress specification	One copy of 27 MHz	nonlinear	Same as CY241V08-05 except lower drive strength settings

٠

Pin Descriptions for CY241V08 -01, -04, -05, -06

Name	Pin Number	Description
XIN	1	Reference crystal input
VDD	2	Voltage supply
VCXO	3	Input analog control for VCXO
VSS	4	Ground
27 MHz	5	27-MHz clock output
NC/VDD	6	No connect or voltage supply
NC/VSS	7	No connect or ground
XOUT	8	Reference crystal output

Absolute Maximum Conditions

Supply Voltage (V _{DD})0.5 to +7.0V
DC Input Voltage –0.5V to V_{DD} + 0.5
Storage Temperature (Non-condensing)55°C to +125°C
Junction Temperature40°C to +125°C

Data Retention @ Tj = 125°C	.> 10 years
Package Power Dissipation	350 mW
ESD (Human Body Model) MIL-STD-883	>2000V
(Above which the useful life may be impaired. For lines, not tested.)	r user guide-

Pullable Crystal Specifications^[1]

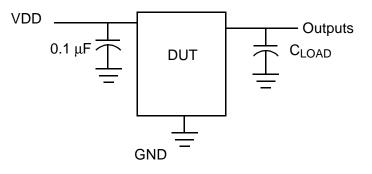
Parameter	Description	Comments	Min.	Тур.	Max.	Unit
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	-	13.5	-	MHz
C _{LNOM}	Nominal load capacitance		-	14	_	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R_1 values are much less than the maximum spec	3	-	-	-
DL	Crystal drive level	No external series resistor assumed	_	-	150	μW
F _{3SEPHI}	Third overtone separation from 3*F _{NOM}	High side	400	-	-	ppm
F _{3SEPLO}	Third overtone separation from 3*F _{NOM}	Low side	_	-	-200	ppm
C ₀	Crystal shunt capacitance		-	-	7	pF
C ₀ /C ₁	Ratio of shunt to motional capaci- tance		180	-	250	_
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Description Min.		Max.	Unit	
VDD	Operating Voltage	3.135	3.3	3.465	V	
T _A	Ambient Temperature	0	-	70	°C	
C _{LOAD}	Max. Load Capacitance	_	_	15	pF	
t _{PU}			-	500	ms	

Note:

1. Crystals that meet this specification includes: Ecliptek ECX-5788-13.500M,Siward XTL001050A-13.5-14-400, Raltron A-13.500-14-CL,PDI HA13500XFSA14XC.


DC Electrical Specifications

Parameter	Name	Description	Min.	Тур.	Max.	Unit
I _{ОН}	Output HIGH Current –001, –005	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	12	24	-	mA
I _{OL}	Output LOW Current –001, –005	V _{OL} = 0.5V, V _{DD} = 3.3V	12	24	-	mA
I _{ОН}	Output HIGH Current –004, –006	$V_{OH} = V_{DD} - 0.5V, V_{DD} = 3.3V$	6	18	-	mA
I _{OL}	Output LOW Current –004, –006	V _{OL} = 0.5V, V _{DD} = 3.3V	6	18	-	mA
C _{IN}	Input Capacitance	Except XIN, XOUT pins	-	-	7	pF
V _{VCXO}	VCXO Input Range		0	-	V _{DD}	V
$f_{\Delta XO}$	VCXO Pullability Range		±150	-	-	ppm
I _{VDD}	Supply Current		-	30	35	mA

AC Electrical Specifications $(V_{DD} = 3.3V)^{[2]}$

Parameter ^[2]	Name	Description	Min.	Тур.	Max.	Unit
DC	Output Duty Cycle	Duty Cycle is defined in <i>Figure 1</i> , 50% of V_{DD}	45	50	55	%
ER	Rising Edge Rate –001, –005	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , CLOAD = 15 pF. See <i>Figure 2</i> .	0.8	1.4	-	V/ns
EF	Falling Edge Rate –001, –005	Output Clock Edge Rate, Measured from 80% to 20% of V_{DD} , CLOAD = 15 pF. See <i>Figure 2</i> .	0.8	1.4	-	V/ns
ER	Rising Edge Rate –004, –006	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , CLOAD = 15 pF. See <i>Figure 2</i> .	0.7	1.1	-	V/ns
EF	Falling Edge Rate –004, –006	Output Clock Edge Rate, Measured from 80% to 20% of V_{DD} , CLOAD = 15 pF. See <i>Figure 2</i> .	0.7	1.1	-	V/ns
t ₉	Clock Jitter –001, –005	Peak-to-peak period jitter	-	140	-	ps
t ₉	Clock Jitter –004, –006	Peak-to-peak period jitter	-	150	-	ps
t ₁₀	PLL Lock Time		-	-	3	ms

Test and Measurement Setup

Note: 2. Not 100% tested.

Voltage and Timing Definitions

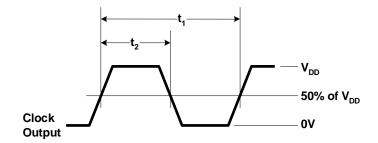
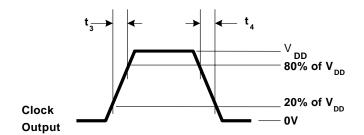
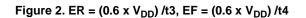
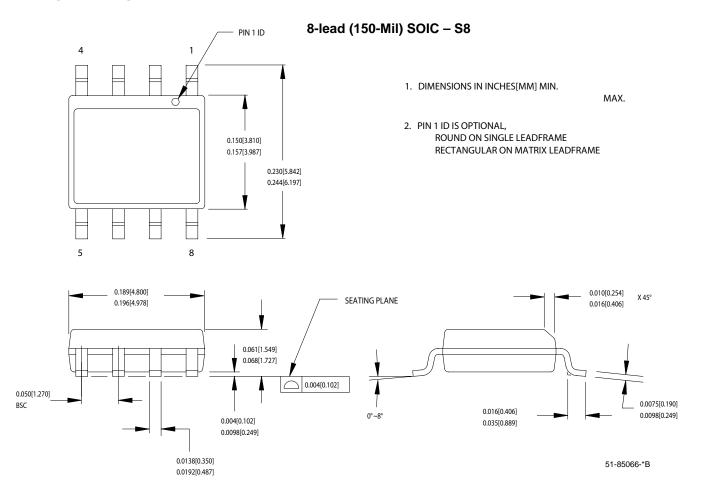




Figure 1. Duty Cycle Definition



Ordering Information

Ordering Code	Package Name	Package Type	Operating Range	Operating Voltage	Features
CY241V08SC-01	S8	8-pin SOIC	Commercial	3.3V	Linear VCXO control curve
CY241V08SC-01T	S8	8-pin SOIC – Tape and Reel	Commercial	3.3V	Linear VCXO control curve
CY241V08SC-04	S8	8-pin SOIC	Commercial	3.3V	Lower drive strength version of CY241V08-01
CY241V08SC-04T	S8	8-pin SOIC – Tape and Reel	Commercial	3.3V	Lower drive strength version of CY241V08-01
CY241V08SC-05	S8	8-pin SOIC	Commercial	3.3V	Mimics nonlinear MK3727 VCXO control curve
CY241V08SC-05T	S8	8-pin SOIC – Tape and Reel	Commercial	3.3V	Mimics nonlinear MK3727 VCXO control curve
CY241V08SC-06	S8	8-pin SOIC	Commercial	3.3V	Lower drive strength version of CY241V08-05
CY241V08SC-06T	S8	8-pin SOIC – Tape and Reel	Commercial	3.3V	Lower drive strength version of CY241V08-05

Package Drawing and Dimensions

All product or company names mentioned in this document may be the trademarks of their respective holders.

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.

Document History Page

Document Title: CY241V08-01,-04,-05,-06 MPEG Clock Generator with VCXO Document Number: 38-07520							
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change			
**	123982	03/05/03	CKN	New Data Sheet			
*A	128430	07/31/03	IJATMP	Changed "Advance Information" to "Preliminary" on top of every page. Added dashes to empty field in tables. Changed Part numbers			