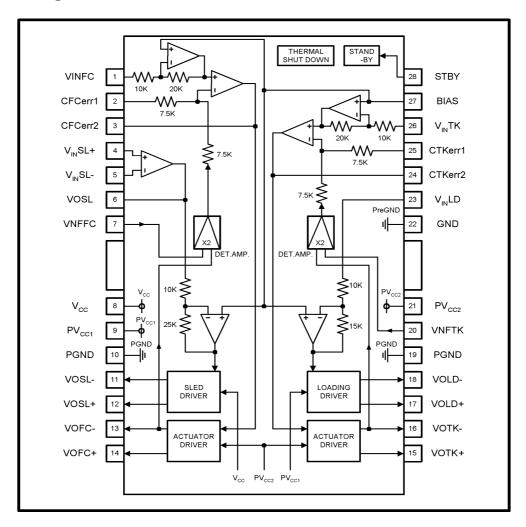


# CMD5954 4-Channel BTL Motor Driver for CD-ROM

#### **Features**


- CMD5954 is a 4 channel driver for cptical disc motor driver. Dual channel current feedback type drivers are built in, in addition to dual channel motor driver.
- Separating Vcc into Pre-power of sled motor, Power of loading motor and Power of actuator, can make batter power efficiency, by low supply voltage drive.
- Stand-by mode built in.
- Thermal shutdown circuit on chip.

#### Description

The CMD5954 is a 4-channel BTL driver IC for driving the motors and actuators in products as CD-ROM/DVD-ROM/DVD-Player such drives. Two of the channels use current feedback to minimize the current phase shift caused by the influence of load inductance.

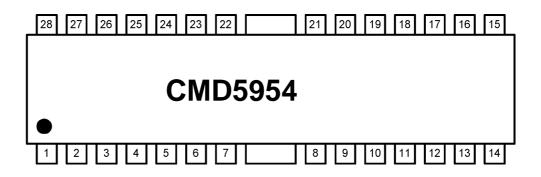
#### **Applications**

CD-ROM drives, DVD drives, DVD-ROM drives.



## **Block Diagram**




#### **Pin Descriptions**

| Pin No. | Pin name | Function                                             |  |  |  |
|---------|----------|------------------------------------------------------|--|--|--|
| 1       | VINFC    | Focus drive input                                    |  |  |  |
| 2       | CFCerr1  | For connection of capacitor for the error amp filter |  |  |  |
| 3       | CFCerr2  | For connection of capacitor for the error amp filter |  |  |  |
| 4       | VINSL +  | Op-amp input (+) for the sled driver                 |  |  |  |
| 5       | VINSL -  | Op-amp input (-) for the sled driver                 |  |  |  |
| 6       | VOSL     | Op-amp output for the sled driver                    |  |  |  |
| 7       | VNFFC    | Focus driver feedback pin                            |  |  |  |
| 8       | Vcc      | Vcc                                                  |  |  |  |
| 9       | PVcc1    | Power Vcc for sled driver block                      |  |  |  |
| 10      | PGND     | Ground for Sled driver block                         |  |  |  |
| 11      | VOSL -   | sled driver output (-)                               |  |  |  |
| 12      | VOSL +   | sled driver output (+)                               |  |  |  |
| 13      | VOFC -   | Focus driver output (-)                              |  |  |  |
| 14      | VOFC +   | Focus driver output (+)                              |  |  |  |
| 15      | VOTK +   | Tracking driver output (+)                           |  |  |  |
| 16      | VOTK -   | Tracking driver output (-)                           |  |  |  |
| 17      | VOLD +   | Loading driver output (+)                            |  |  |  |
| 18      | VOLD -   | Loading driver output (-)                            |  |  |  |
| 19      | PGND     | Ground for Actuator driver block                     |  |  |  |
| 20      | VNFTK    | Tracking driver feedback pin                         |  |  |  |
| 21      | PVcc2    | Power Vcc for Actuator driver block                  |  |  |  |
| 22      | GND      | Ground                                               |  |  |  |
| 23      | VINTK    | Loading driver input                                 |  |  |  |
| 24      | CTKerr2  | For connection of capacitor for the error amp filter |  |  |  |
| 25      | CTKerr1  | For connection of capacitor for the error amp filter |  |  |  |
| 26      | VINTK    | Tracking driver input                                |  |  |  |
| 27      | BIAS     | Bias input                                           |  |  |  |
| 28      | MUTE     | Mute control                                         |  |  |  |

Notes: The indicated polarities for the output pins are for when all inputs are (+).

The output H bridge supply pins are PVcc1 for the loading channel, PVcc2 for the focus, tracking channels, and Vcc for the pre-block and sled channel. Always ensure that  $Vcc \ge PVcc1, 2$ .

#### **PinOut**





## Absolute maximum ratings ( $Ta = 25^{\circ}C$ )

| Parameter             | Symbol                 | Limits   | unit |
|-----------------------|------------------------|----------|------|
| Power supply voltage  | $V_{CC} \cdot PVcc1,2$ | 13.5     | V    |
| Power dissipation     | P <sub>d</sub>         | 1.7*     | W    |
| Operating temperature | T <sub>opr</sub>       | -35~+85  | °C   |
| Storage temperature   | T <sub>stg</sub>       | -55~+150 | °C   |

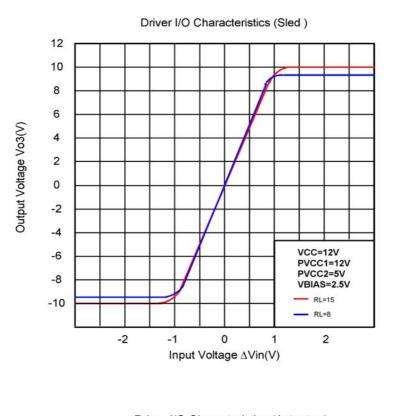
\* Reduce by 13.6 mW for each increase in  $T_a$  of 1°C over 25°C.

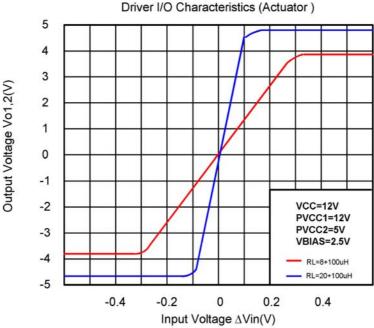
When mounted on a 70mm  $\times$  70mm  $\times$  1.6 mm glass epoxy board.

## Recommended operating conditions (Ta = 25°C)

| Parameter            | Symbol | Limits   | unit |
|----------------------|--------|----------|------|
| Power supply voltage | Vcc    | 4.5~13.2 | V    |
|                      | PVcc1  | 4.5~Vcc  | V    |
|                      | PVcc2  | 4.5~Vcc  | V    |

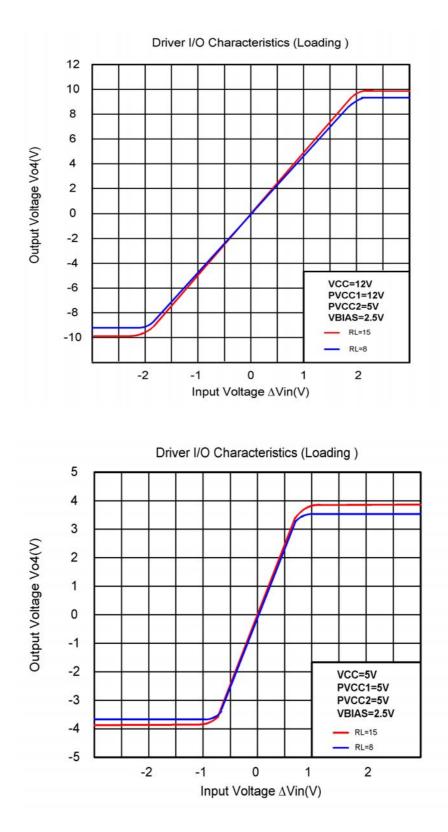
#### **Electrical characteristics**


(unless otherwise noted, Ta = 25°C,  $V_{CC} = PV_{CC1} = 12V$ ,  $PV_{CC2} = 5V$ ,  $V_{BIAS} = 2.5V$ ,  $R_{L1} = R_{L2} = 8\Omega$ ,  $R_{L3} = R_{L4} = 15\Omega$ )


| Parameter                                         | Symbol                  | Min. | Тур. | Max. | Unit | Conditions                   |  |
|---------------------------------------------------|-------------------------|------|------|------|------|------------------------------|--|
| Quiescent current                                 | I <sub>CC</sub>         | -    | 18   | 27   | mA   |                              |  |
| Stand-by quiescent current                        | I <sub>ST</sub>         | -    | -    | 0.5  | mA   |                              |  |
| Voltage for Stand-by ON                           | V <sub>STON</sub>       | 0    | -    | 0.5  | V    |                              |  |
| Voltage for Stand-by OFF                          | V <sub>STOFF</sub>      | 2.0  | -    | -    | V    |                              |  |
| <actuator driver=""></actuator>                   |                         |      |      |      |      |                              |  |
| Output offset current                             | I <sub>01,2</sub>       | -6   | -    | 6    | mA   |                              |  |
| Maximum output amplitude                          | V <sub>01,2</sub>       | 3.6  | 4.0  | -    | V    | $V_{IN} = V_{BIAS} \pm 1.5V$ |  |
| Trans conductance                                 | Gm                      | 1.3  | 1.5  | 1.7  | A/V  | $V_{IN} = V_{BIAS} \pm 0.2V$ |  |
| <sled driver="" motor="" op-amp="" pre=""></sled> |                         |      |      |      |      |                              |  |
| Common mode input range                           | V <sub>ICM</sub>        | -0.3 | -    | 11.0 | V    | V <sub>BIAS</sub> =6 V       |  |
|                                                   | V <sub>ICM</sub>        | -0.3 | -    | 4.0  | V    | Vcc=PVcc1=5V                 |  |
| Input bias current                                | I <sub>BOP</sub>        | -    | 30   | 300  | nA   |                              |  |
| Low level output voltage                          | V <sub>OLOP</sub>       | -    | 0.1  | 0.3  | V    |                              |  |
| Output source current                             | I <sub>so</sub>         | 0.3  | 0.5  | -    | mA   |                              |  |
| Output sink current                               | I <sub>SI</sub>         | 1    | -    | -    | mA   |                              |  |
| <sled driver="" motor=""></sled>                  |                         |      |      |      |      |                              |  |
| Output offset voltage                             | V <sub>OFFSL</sub>      | -100 | 0    | 100  | mV   |                              |  |
| Maximum output voltage                            | V <sub>O3</sub>         | 7.5  | 9.0  | -    | V    | $V_{IN} = V_{BIAS} \pm 1.5V$ |  |
| Closed loop voltage gain                          | G <sub>VSL</sub>        | 18.0 | 20.0 | 22.0 | dB   | $V_{IN} = V_{BIAS} \pm 0.2V$ |  |
| <loading driver="" motor=""></loading>            |                         |      |      |      |      |                              |  |
| Output offset voltage                             | V <sub>OFFLD</sub>      | -50  | 0    | 50   | mV   |                              |  |
| Maximum output voltage                            | V <sub>04-1</sub>       | 7.5  | 9.0  | -    | V    | $V_{IN} = V_{BIAS} \pm 1.5V$ |  |
| Maximum output voltage                            | V <sub>04-2</sub>       | 3.6  | 4.0  | -    | V    | $V_{IN} = V_{BIAS} \pm 1.5V$ |  |
|                                                   |                         |      |      |      |      | Vcc=PVcc1=5V                 |  |
| Closed loop voltage gain                          | G <sub>VLD</sub>        | 13.5 | 15.5 | 17.5 | dB   | $V_{IN} = BIAS \pm 0.2V$     |  |
| Gain error by polarity                            | $\Delta G_{\text{VLD}}$ | 0    | 1    | 2    | dB   | $V_{IN} = BIAS \pm 0.2V$     |  |

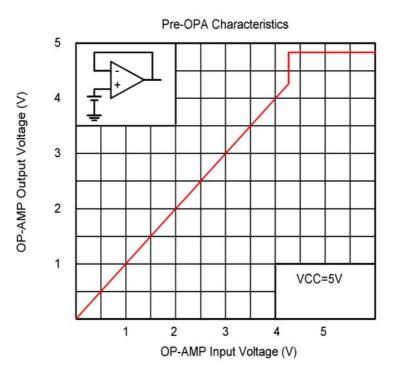
\*This product is not designed for protection against radioactive rays.




## **Typical Curve**





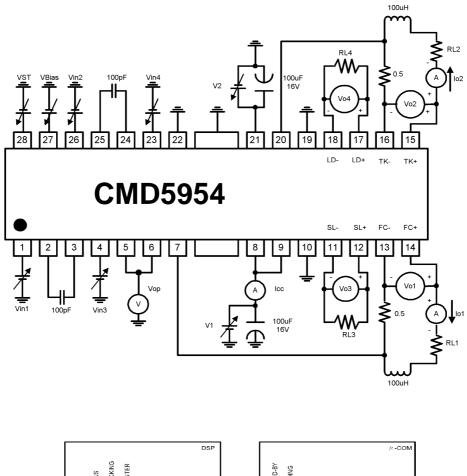

\* All specs and applications shown above subject to change without prior notice. 1F-5 NO.66 SEC.2 NAN-KAN RD ., LUCHU , TAOYUAN, TAIWAN, R.O.C Email: server Tel:886-3-3214525 Http: www.c Fax:886-3-3521052 Page 4 of 9

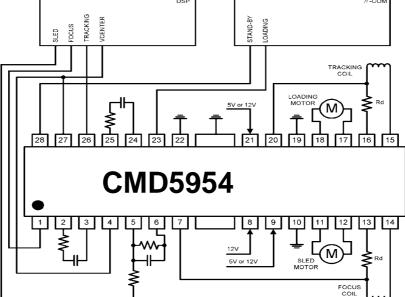




\* All specs and applications shown above subject to change without prior notice. 1F-5 NO.66 SEC.2 NAN-KAN RD ., LUCHU , TAOYUAN, TAIWAN, R.O.C Emai Tel:886-3-3214525 Http:





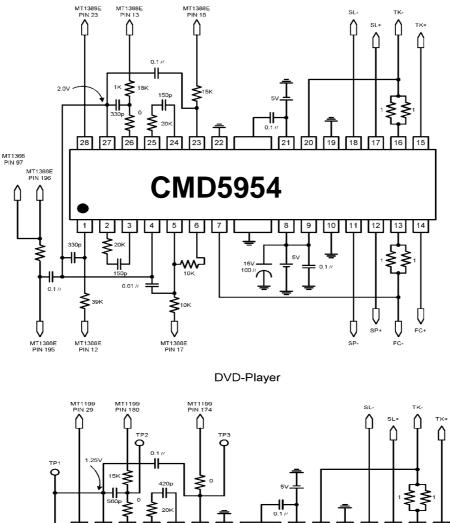


**Pre-OPA Characteristics** 12 10 **OP-AMP** Output Voltage (V) 8 6 4 2 VCC=12V VBIAS=6V 10 2 4 6 8 12 OP-AMP Input Voltage (V)

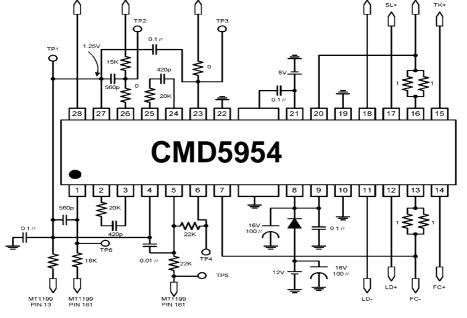
\* All specs and applications shown above subject to change without prior notice. 1F-5 NO.66 SEC.2 NAN-KAN RD ., LUCHU , TAOYUAN, TAIWAN, R.O.C Tel:886-3-3214525 Fax:886-3-3521052 Page 6 of 9











\* All specs and applications shown above subject to change without prior notice. 1F-5 NO.66 SEC.2 NAN-KAN RD ., LUCHU , TAOYUAN, TAIWAN, R.O.C Emai Tel:886-3-3214525 Http: Fax:886-3-3521052 Page 7 of 9



**CMD5954** 4-Channel BTL Motor Driver for CD-ROM

## **Application example**





52X CD-ROM

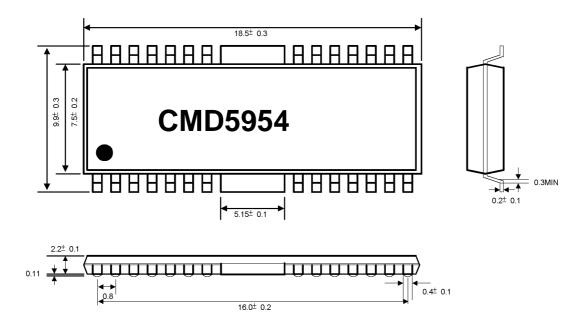


## **Operation notes**

- (1) Thermal-shut-down circuit built in. In case IC chip temperature rise to  $175 \degree C$  (typ.), thermal-shut-down circuit operates and output current muted. Next time IC chip temperature falls below 150 °C (typ.), the driver blocks start.
- (2) In case stand-by-pin voltage under 0.5V or opened, quiescent current is muted. stand-bypin voltage should be over 2.0V for normal application.
- (3) Bias-pin (pin 27) should be pulled up more than 1.2V. In case bias-pin voltage is pulled down under 0.9V (typ.), output current is muted.
- (4) Insert the by-pass capacitor between Vcc-pin and GND-pin of IC as possible as near

(approximately 0.1  $\mu$  F).

(5) Heat dissipation fins are attached to the GND on the inside of the package. Make sure to connect these to the external GND.


< Supplement >

Current-feedback driver

Trans conductance (output current/input voltage) is show as follows.

$$g_m = \frac{1}{R_d + R_{WIRE}} (A/V)$$
  
R<sub>WIRE</sub> = 0.15 \Omega (± 0.05 \Omega) Au wire

#### Package Outlines (units:mm): HSOP-28

