Energy Management Multifunction indicator Type WM12-DIN

- Accuracy ± 0.5 F.S. (current/voltage)
- Multifunction indicator
- Display of instantaneous variables: 3x3 digit
- Variable system and phase measurements: W, W $\mathbf{W d m d}_{\text {, }}$ var, VA, VA ${ }_{\text {dmd }}$, PF, V, A, An, Hz
- $\mathbf{A}_{\text {max }}, \mathbf{W}_{\text {dmd max }}$ indication
- TRMS meas. of distorted sine waves (voltages/currents)
- Power supply: 24V, 48V, 115V, 230V, 50-60Hz; 18 to 60VDC
- Protection degree (front): IP 40
- Front dimensions: 6 DIN modules
- Optional RS422/485 serial output
- Alarms (visual only) V LN, An

Product Description

3-phase multifunction power indicator with built-in programming key-pad. Particularly recommended for displaying the main electrical
variables.
Housing for DIN-rail mounting, (front) protection degree IP40 and optional RS485 serial output.

How to order
Model
Range code
System
Power supply
Option

Type Selection

Range codes

AV5: 380/660V ${ }_{\text {L-L }} / 5(6) A A C$
VL-N: 185 V to 460 V
VL-L: 320 V to 800 V
AV6: 120/208V ${ }_{\text {L-L }} / 5(6) A A C$
VL-N: 45 V to 145 V
VL-L: 78 V to 250 V
Phase current: 0.03 A to 6 A
Neutral current: 0.09 to 6A

| System |
| :--- | :--- |
| $3: \quad$1-2-3-phase,
 unbalanced load,
 with or without
 neutral |

Power supply		Options	
A:	24VAC	X:	None
	$-15+10 \%, 50-60 \mathrm{~Hz}$	S:	RS485 output
B:	48VAC		
	$-15+10 \%, 50-60 \mathrm{~Hz}$		
C:	115VAC		
	-15+10\%, $50-60 \mathrm{~Hz}$		
D:	230VAC		
	$-15+10 \%, 50-60 \mathrm{~Hz}$		
3 :	18 to 60VDC		

Input specifications

Rated inputs Current Voltage	$\begin{aligned} & 3 \text { (shunt) } \\ & 4 \end{aligned}$
Accuracy (display, RS485) (@25 ${ }^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$, R.H. $\leq 60 \%$)	with $\mathrm{CT}=1$ and $\mathrm{VT}=1 \mathrm{AV} 5$: 1150W-VA-var, FS:230VLN, 400VLL; AV6: 285W-VA-var, FS:57VLN, 100VLL
Current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(0.5 \% \text { FS }+1 \mathrm{DGT}) \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Neutral current	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1.5 \% \mathrm{FS}+1 \mathrm{DGT}) \\ & 0.09 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm 7 \mathrm{DGT} \end{aligned}$
Phase-phase voltage	$\pm(1.5 \%$ FS +1 DGT)
Phase-neutral voltage	$\pm(0.5 \%$ FS + 1 DGT)
Active and Apparent power, Power factor	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(1 \% \text { FS }+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(1 \% \mathrm{FS} \\ & \text { +5DGT) } \end{aligned}$
Reactive power	$\begin{aligned} & 0.25 \text { to } 6 \mathrm{~A}: \pm(2 \% \text { FS }+1 \mathrm{DGT}) \text {; } \\ & 0.03 \mathrm{~A} \text { to } 0.25 \mathrm{~A}: \pm(2 \% \text { FS } \\ & \text { +5DGT) } \end{aligned}$
Frequency	$\pm 0.1 \% \mathrm{~Hz}$ (48 to 62Hz)
Additional errors Humidity	S0.3\% FS, 60\% to 90\% RH
Temperature drift	$\leq 200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Sampling rate	1400 samples/s @ 50 Hz 1700 samples $/ \mathrm{s} @ 60 \mathrm{~Hz}$
Display refresh time	700 ms
Display	LED, 9 mm Type Read-out for the instant. var.
3x3 DGT	

CARLO GAVAZZI

RS485 Serial Output Specifications

RS422/RS485 (on request)	Multidrop bidirectional (static and Type
	dynamic variables) 2 or 4 wires, max. distance $1200 m$, termination directly
Connections	on the instrument
	1 to 255, key-pad selectable
Addresses	MODBUS/JBUS

Data (bidirectional)

Dynamic (reading only) Static (writing only)
Data format
Baud-rate

System and phase variables All configuration parameters 1 bit di start , 8 data bit, no parity, 1 stop bit 9600 bit/s

Software functions

Displaying 3-phase system with neutral	Up to 3 variables per page Page 1: V L1, V L2, V L3 Page 2: V L12, V L23, V L31 Page 3: AL1, AL2, AL3 Page 4: An Page 5: WL1, WL2, WL3 Page 6: PF L1, PF L2, PF L3 Page 7: var L1, var L2, var L3 Page 8: VA L1, VA L2, VA L3 Page 9: VA $\sum, W \sum, \operatorname{var} \sum$ Page 10: VA dmd, W dmd, Hz Page 11: W dmd MAX Page 12: VL-L \sum, PF Σ Page 13: AMAX
Alarms	Programmable, for the VL \sum and An (neutral current). Note: the alarm is only visual, by means of LED on the front of the instrument.
Reset	Independent alarm (VLE, An) max: A, Wdmd

Power Supply Specifications

Auxiliary power supply
$230 V A C$
$-15+10 \%, 50-60 \mathrm{~Hz}$
115 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$
48 VAC
$-15+10 \%, 50-60 \mathrm{~Hz}$

	24 VAC
	$-15+10 \%, 50-60 \mathrm{~Hz}$
	18 to 60 VDC
Power consumption	AC: 4.5 VA
	DC: 4 W

General Specifications

Operating temperature Storage	0 to $+50^{\circ} \mathrm{C}\left(32\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ (RH < 90% non condensing at $40^{\circ} \mathrm{C}$) $-30 \text { to }+60^{\circ} \mathrm{C}\left(-22 \text { to } 140^{\circ} \mathrm{F}\right)$		500VAC/DC between measuring inputs and RS485. 4000VAC, 500VDC between power supply and RS485.
Storage temperature	(RH < 90\% non condensing at $40^{\circ} \mathrm{C}$)	Dielectric strength	4000 VAC (for 1 minute)
Installation category	Cat. III (IEC 60664, EN60664)	EMC	
Insulation (for 1 minute)	4000VAC, 500VDC between measuring inputs and power supply.		residential environment, commerce and light industry

General Specifications (cont.)

Immunity	EN 61000-6-2 (class A) industrial environment.	Material	ABS self-extinguishing: UL 94 V-0
Pulse voltage (1.2/50 $\mu \mathrm{s}$)	EN61000-4-5	Mounting	DIN-rail
Safety standards	IEC 60664, EN60664	Protection degree	Front: IP40
Approvals	CE, UL		Connections: IP20
Connections 5(6) A Max cable cross sect. area	$\begin{aligned} & \text { Screw-type } \\ & 2.5 \mathrm{~mm}^{2} \end{aligned}$	Weight	Approx. 400 g (pack. incl.)
Housing			
Dimensions (WxHxD)	$107.8 \times 80 \times 64.5 \mathrm{~mm}$		

Waveform of the signals that can be measured

Figure A

Sine wave, undistorted

Fundamental content Harmonic content

100\%
$\mathrm{A}_{\mathrm{rms}}=$

Figure \mathbf{B}
Sine wave, indented
Fundamental content Harmonic content
10...100\% 0...90\%

Frequency spectrum: 3rd to 16th harmonic
Additional error: <1\% FS

Figure C
Sine wave, distorted
Fundamental content
70...90\%

Harmonic content
10...30\%

Frequency spectrum: 3rd to 16th harmonic
Additional error: <0.5\% FS

Display pages

Display variables in 3-phase systems (in a 3-phase system with neutral)

No	$1^{\text {st }}$ variable	$2^{\text {nd }}$ variable	$3^{\text {rd }}$ variable	Note
1	V L1	V L2	V L3	
2	V L12	V L23	V L31	Decimal point blinking on the right of the display
3	A L1	A L2	A L3	
4	An	AL.n		AL.n if neutral current alarm is active
5	W L1	W L2	W L3	Decimal point blinking on the right of the display if generated power
6	PF L1	PF L2	PF L3	
7	VAR L1	VAR L2	VAR L3	Decimal point blinking on the right of the display if generated power
8	VA L1	VA L2	VA L3	
9	VA system	W system	VAR system	
10	VA dmd (system)	W dmd (system)	$\begin{gathered} \mathrm{Hz} \\ \text { (system) } \end{gathered}$	dmd = demand (integration time selectable from 1 to 30 minutes)
11		W dmd MAX		Maximum sys power demand
12	V LL system	AL.U	PF system	AL.U= is activated only if one of VLN is not within the set limits
13	A MAX			max. current among the three phases

Used calculation formulas

Phase variables

Instantaneous effective voltage
$V_{I N}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{1 N}\right)_{1}^{2}}$
Instantaneous active power
$W_{1}=\frac{1}{n} \cdot \sum_{1}^{n}\left(V_{T N}\right) \cdot\left(A_{1}\right)_{1}$
Instantaneous power factor
$\cos \phi_{1}=\frac{W_{1}}{V A_{1}}$
Instantaneous effective current
$A_{1}=\sqrt{\frac{1}{n} \cdot \sum_{1}^{n}\left(A_{1}\right)_{1}^{2}}$

Instantaneous apparent power
$V A_{1}=V_{I N} \cdot A_{1}$
Instantaneous reactive power
$V A r_{1}=\sqrt{\left(V A_{1}\right)^{2}-\left(W_{1}\right)^{2}}$
System variables
Equivalent 3-phase voltage
$V_{=}=\frac{V_{1}+V_{2}+V_{3}}{3} * \sqrt{3}$
3-phase reactive power
$V A r_{\mathbf{\Sigma}}=\left(V A r_{1}+V A r_{2}+V A r_{3}\right)$

3-phase active power
$W_{\Sigma}=W_{1}+W_{2}+W_{3}$
3-phase apparent power
$V A_{\Sigma}=\sqrt{W{ }_{\Sigma}{ }^{2}+V A r_{\Sigma}{ }^{2}}$
3-phase power factor
$\cos \phi_{\Sigma}=\frac{W_{\Sigma}}{V A_{\Sigma}}$
Neutral current
$\mathbf{A n}=\overline{\mathbf{A}}_{\mathrm{L} 1}+\overline{\mathbf{A}}_{\mathrm{L} 2}+\overline{\mathbf{A}}_{\mathrm{L} 3}$

Wiring diagrams

NOTE: the current inputs can be connected to the lines ONLY by means of current transformers. The direct connection is not allowed.
ATTENTION: Only one ammeter input can be connected to earth, as shown in the electrical diagrams.

Front Panel Description

1. Key-pad

To program the configuration parameters and the display of the variables.

S

Key to enter programming and confirm selections;
Δ -
Keys to:

- programme values;
- select functions;
- display measuring pages.

2. Display

LED-type with alphanumeric indications to:

- display configuration parameters;
- display all the measured variables.

Dimensions and Panel Cut-out

