

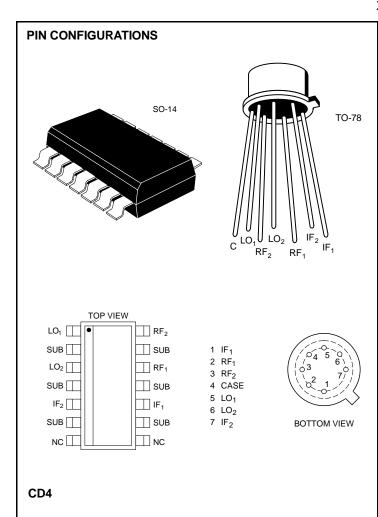
Wideband, Ring Demodulator

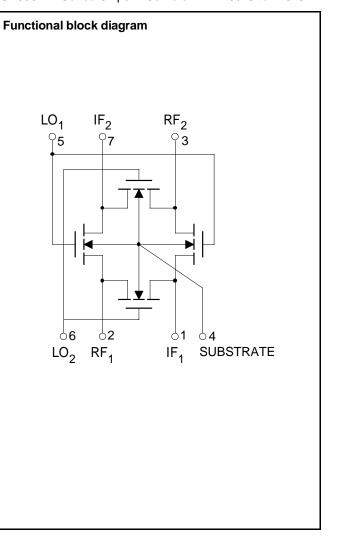
SD8901

FEATURES

- High Frequency Operation
- Wide Dynamic Range
- Low Capacitance

APPLICATIONS


- Communications
- RF Mixers

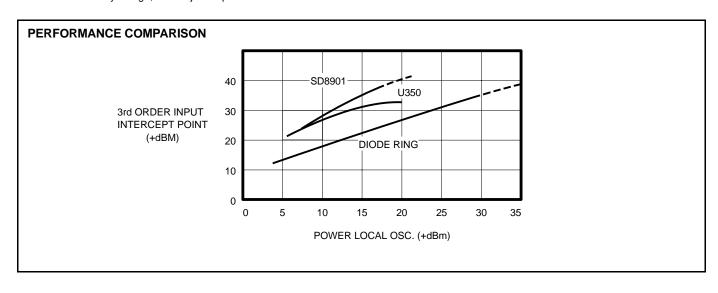

DESCRIPTION

The SD8901 is a ring demodulator/balanced mixer. Designed to utilize Calogic's ultra high speed and low capacitance lateral DMOS process. The SD8901 offers significant performance improvements over JFET and diode balanced mixers when low third order harmonic distortion has been a problem.

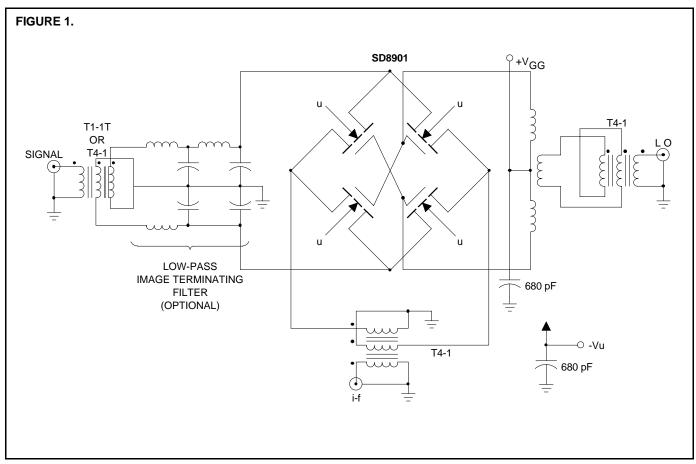
PACKAGE INFORMATION

Part	Package	Temperature Range
SD8901HD	Hermetic TO-78	-55°C to 125°C
SD8901CY	Plastic Surface Mount	-55°C to 125°C
XSD8901	Sorted Chips in Carriers	-55°C to 125°C

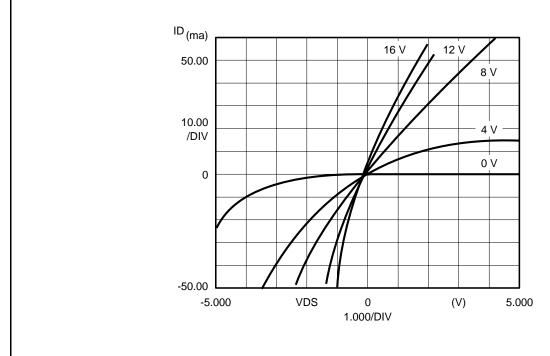
SD8901


ABSOLUTE MAXIMUM RATINGS ($T_A = +25^{\circ}C$ unless otherwise noted)

V_{DS}	Drain to Source	I _D Drain Current
V_{DB}	Drain to Substrate	Operating Temperature55 to 125°C
V_{SB}	Source to Substrate	Storage Temperature65 to 150°C
V_{GS}	Gate to Source22.5 V to 30 V	Power Dissipation (A Package)* 640 mW
V_{GB}	Gate to Substrate0.3V to 30 V	* Derate 5 mW/ °C above 25°C
Vgn	Gate to Drain22.5V to 30 V	


ELECTRICAL CHARACTERISTCIS (T_A = +25°C unless otherwise noted)

SYMBOL	CHARACTERISTICS	MIN	TYP	MAX	UNIT	TEST CONDITIONS					
STATIC											
V _{(BR)DS}	Drain-Source Breakdown Voltage	15	25			V _{GS} = V _{SB} = -5 V Is = 10 nA					
V _(BR) SD	Source-Drain Breakdown Voltage	15				$V_{GD} = V_{DB} = -5 \text{ V}$ $I_D = 10 \text{ nA}$					
V _{(BR)DB}	Drain-Substrate Breakdown Voltage	22.5			V	Source Open V _{GB} = 0 V, I _D = 10 nA					
V _(BR) SB	Source-Substrate Breakdown Voltage	22.5				Drain Open V _{GB} = 0 V, I _D = 10 nA					
VT	Threshold Voltage	0.1	1	2.0		$V_{DS} = V_{GS} = V_T$ $I_S = 1 \mu A, V_{SB} = 0 V$					
	Drain-Source "ON" Resistance		50	75	Ω	I _D = 1 mA V _{SB} = 0 V	V _{GS} = 5 V				
r _{DS(ON)}			30				V _{GS} = 10 V				
1D3(ON)			23				V _{GS} = 15 V				
			19				V _{GS} = 20 V				
$\Delta r_{DS(ON)}$	Resistance Matching		3	7			V _{GS} = 5 V				
DYNAMIC											
C _{gg}	LO ₁ - LO ₂ Capacitance		4.4		pF	V _{DS} = 0 V, V _{BS} = -5.5 V V _{GS} = 4 V					
Lc	Conversion Loss		8		dB See Figure 1, PLO = +17 dBm		∩ = ±17 dBm				
IMD ₃	Third Order Intercept		+35		ub	See Figure 1, FLO = +17 dbill					
f _{MAX}	Maximum Operation Frequency		250		MHz						


Note: Guaranteed by design, not subject to production test

