

Low Power, 400MHz High Speed Triple Buffer

CVA4401

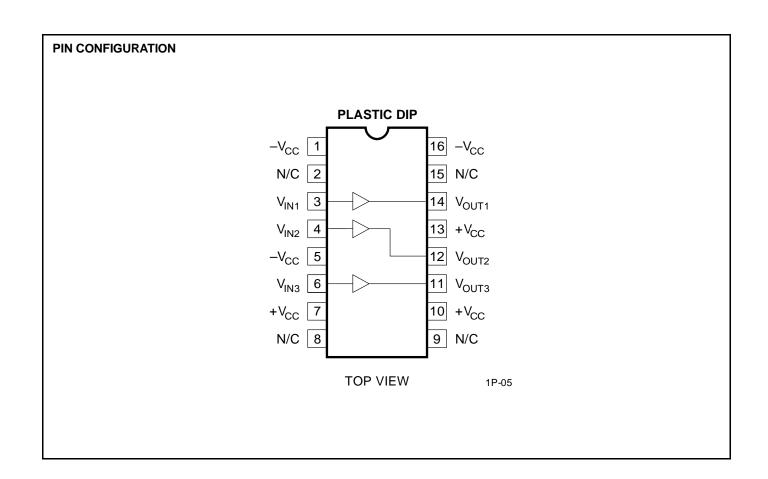
FEATURES

• Slew Rate	11000V/μs
Wide Bandwidth	400MHz
Output Current	150mA
Wide Supply Voltage	
Supply Current	

- Short Circuit Product
- Low Bias Current

APPLICATIONS

- CRT Amplifier Drivers
- Coaxial Cable Driver


GENERAL DESCRIPTION

The CVA4401 is a low power, wide bandwidth triple buffer amplifier. The CVA4401 delivers a -3dB bandwidth of 400MHz, 150mA, and 11000V/ μ s while only drawing 5mA of supply current. The CVA4401 operates over a wide supply voltage range of \pm 5V to \pm 18V.

This product is an excellent choice for driving the video signal from Pre-Amp active load CRT driver.

ORDERING INFORMATION

Part	Package	Temperature Range
CVA4401	Plastic Dip 16 Lead	-20°C to +100°C

CVA4401

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage ±20V	ESD Tolerance (Note 3)	±2000V
Input Voltage ±Vsupply	Thermal Resistance (θJA)	
Storage Temperature Range65°C to +150°C	N Package	95°C/W
Lead Temperature	Thermal Resistance (θ_{JC})	_
(Soldering 10 seconds)	N Package	
Power Dissipation (Note 4)	Maximum Junction Temperature	. 150°C

DC ELECTRICAL CHARACTERISTICS

The following specifications apply for Supply Voltage = ± 12 V, $V_{CM} = 0$, $R_L \ge 100$ K Ω and $R_S = 50$ Ω unless otherwise noted.

SYMBOL	CHARACTERISTICS	TYP	Limit (Note 5)	UNITS	CONDITIONS
A _{V1}	Voltage Gain 1	0.99	0.96	V/V Min	$R_L = \infty$, $V_{IN} = \pm 10V$
A _{V2}	Voltage Gain 2	0.95	0.90	V/V IVIIII	$R_L = 100\Omega, V_{IN} = \pm 10V$
Vos	Offset Voltage	10	50	mV Max	R _L = ∞
IB	Input Bias Current	1	25	μΑ Мах	R _L = ∞
R _{IN}	Input Resistance	0.5		MΩ	$R_L = 100\Omega$
C _{IN}	Input Capacitance	3.5		pF	
Ro	Output Resistance	3	10	Ω Max	$R_L = 100\Omega$, $V_{IN} = \pm 2V$
Is	Supply Current	5	7.5	mA Max	R _L = ∞
Vo	Output Swing	8	8	±V Min	$R_L = 100\Omega$, $V_{IN} = \pm 10V$
Гоит	Output Current	150	100	mA	V _{IN} = 10V

AC ELECTRICAL CHARACTERISTICS

The following specifications apply for Supply Voltage = $\pm 12V$, $V_{CM} = 0$, $R_L \ge 100 K\Omega$ and $R_S = 50\Omega$ unless otherwise noted.

SYMBOL	CHARACTERISTICS	TYP	Limit (Note 5)	UNITS	CONDITIONS
SR ₁	Slew Rate 1	11000	8000	V/µs	$V_{IN} = \pm 10V, R_L = 100\Omega \text{ (Note 2)}$
SS _{BW}	Small Signal Bandwidth	400	200	MHz	$V_{IN} = \pm 100 \text{mV}_{PP}, R_L = 100 \Omega$ $C_L \le 10 \text{pF}$
P _{BW}	Power Bandwidth	100		IVII IZ	$V_{IN} = \pm 4V$, $R_L = 100\Omega$ $C_L \le 10pF$
t _r , t _f	Rise Time Fall Time	1.2	1.7	ns	$\begin{aligned} R_L &= 100\Omega, \ C_L \leq 10 pF \\ V_{1N} &= 0.5 V \end{aligned}$
t _{pd}	Propagation Delay Time	2.0		ns	$\begin{aligned} R_L &= 100\Omega, \ C_L \leq 10 pF \\ V_{IN} &= 0.5 V \end{aligned}$

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its rated operating conditions.

- Note 2: Slew rate is measured with 50Ω source impedance at 25° C. Slew rate is measured between $V_0 = +5V$ and -5V.
- **Note 3:** The test circuit consists of the human body model of 120pF in series with 1500 Ω .
- **Note 4:** The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$.
- Note 5: Limits are guaranteed by testing, correlation or periodic characterization.