Burr-Brown Products from Texas Instruments

ADS1232 ADS1234

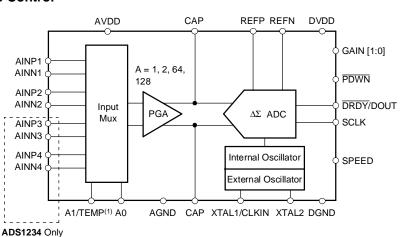
SBAS350-JUNE 2005

Ultra Low-Noise, 24-Bit Analog-to-Digital Converter

FEATURES

3 E

- Up to 23.5 Effective Bits
- RMS Noise:
 - 17nV at 10Hz
 - 44nV at 80Hz
- On-Board Low Noise Gain-Amp
- 19.2-Bit Noise-Free Resolution at Gain = 64
- Simultaneous 50Hz and 60Hz Rejection:
 - Internal Clock: 110 dB
 - External Clock: 130 dB
- ±1% Low-Drift On-Board Oscillator
- Selectable Gains of 1, 2, 64, and 128
- Selectable 10/80SPS Conversion Rates
- 2-Channel Differential Input with Built-In Temp sensor (ADS1232)
- 4-Channel Differential Input (ADS1234)
- External Reference up to AVDD
- Simple Serial Digital Interface
- Supply Range: 2.7V to 5.3V
- –40°C to +105°C Temperature Range


APPLICATIONS

- Weigh Scales
- Strain Gauges
- Bridge Sensors
- Industrial Process Control

DESCRIPTION

The ADS1232 and ADS1234 are precision analog-to-digital (A/D) converters featuring true 23.5 effective-bit performance and exceptional ease of use. Selectable gains of 1, 2, 64, or 128 allow full-scale differential input ranges of ±2.5V to ±19.5mV with a +5V reference. While the ADS1232 offers a two-channel differential input and a built-in temperature sensor, the ADS1234 features a four-channel differential input multiplexer. A very low-noise Gain-Amp features low differential input current to minimize errors when using high-impedance transducers. An on-board oscillator is provided for excellent 50Hz and 60Hz rejection without an external clock source. The devices also feature a low current driver to accommodate an external crystal; they also accept external clock sources for all applications.

All of the features of the ADS1232/ADS1234 are hard-wire selected, without software programming. Data is accessed over a simple serial interface compatible with popular microcontrollers such as the MSP430. The ADS1232 is available in the 24-pin TSSOP package, and the ADS1234 is available in the 28-pin TSSOP.

NOTE: (1) A1 for ADS1234, TEMP for ADS1232.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION⁽¹⁾

PRODUCT	PACKAGE-LEAD	PACKAGE DESIGNATOR	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER	TRANSPORT MEDIA, QUANTITY
ADS1232	TSSOP-24	TSSOP-24 PW	40°C to 105°C	ADS1232	ADS1232IPWT	Tape and Reel, 250
AD31232	1330F-24	FVV	–40°C to 105°C	AD31232	ADS1232IPWR	Tape and Reel, 2500
4004004	TSSOP-28 PW -40°C to 105°C ADS1	PW -40°C to 10		4004004	ADS1234IPWT	Tape and Reel, 250
ADS1234			-40°C 10°105°C	AD51234	ADS1234IPWR	Tape and Reel, 2500

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

	ADS1232, ADS1234	UNIT
AVDD to AGND	-0.3 to +6	V
DVDD to DGND	-0.3 to +6	V
AGND to DGND	-0.3 to +0.3	V
Input Current	100, Momentary	mA
Input Current	10, Continuous	mA
Analog Input Voltage to AGND	-0.3 to AVDD + 0.3	V
Digital Input Voltage to DGND	-0.3 to DVDD + 0.3	V
Maximum Junction Temperature	+150	°C
Operating Temperature Range	-40 to +105	°C
Storage Temperature Range	-60 to +150	°C
Lead Temperature (soldering, 10s)	+300	°C

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ADS1232 ADS1234

ELECTRICAL CHARACTERISTICS: $V_{REF} = +5V$

All specifications $T_A = -40^{\circ}$ C to +105°C, AVDD = DVDD = VREFP = +5V, VREFN = AGND, Internal Oscillator, SPEED = Low, Gain = 64 (unless otherwise specified).

		ADS1	ADS1232, ADS1234			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT	
Analog Inputs						
Full-Scale Input Voltage (AIN _P - AIN _N)		±0.	.5V _{REF} /Gain		V	
Common-mode Input Range	AINxP or AINxN with respect to GND, Gain = 1	AGND – 0.1	AVDD + 0.1		V	
	Gain = 64, 128	(0.5)AVDD - 1		(0.5)AVDD + 1	V	
Differential Input Current	Gain = 1, 2		500		nA	
	Gain = 64, 128		50		nA	
System Performance						
Resolution	No missing codes	24			Bits	
	Internal Oscillator, SPEED = High	TBD	80	TBD	SPS	
Conversion Data	Internal Oscillator, SPEED = Low	TBD	10	TBD	SPS	
Conversion Rate	External Oscillator, SPEED = High	f _C	_{LK} / 61440		SPS	
	External Oscillator, SPEED = Low	f _{CL}	_{_K} / 491520		SPS	
Digital Filter Settling Time	Full Settling		4		Conversions	
	Differential input, End point fit Gain = 1, 2		±0.0002	±0.0015	% of FSR ⁽¹⁾	
Integral Non-Linearity (INL)	Differential input, End point fit Gain = 64, 128		±0.0010	TBD	% of FSR	
Input Offset Error ⁽²⁾	Gain = 1		±0.2	TBD	ppm of FS	
	Gain = 64		±2	TBD	ppm of FS	
	Gain = 1		1		µV/°C	
Input Offset Error Drift	Gain = 64		15		nV/°C	
Gain Error ⁽³⁾	Gain = 1		0.001	TBD	%	
Gain Error ⁽⁹⁾	Gain = 64		0.001	TBD	%	
Onin Franz Drift	Gain = 1		0.5		ppm/°C	
Gain Error Drift	Gain = 64		±4		ppm/°C	
	Internal oscillator, 50Hz and 60Hz	100	110		dB	
Normal-mode Rejection ⁽⁴⁾	External oscillator, 50Hz and 60Hz, ±1Hz	120	130		dB	
Common mode Deiestien	at DC, Gain = 1, Δ VDD = 1V	TBD	100		dB	
Common-mode Rejection	at DC, Gain = 64, ΔVDD = 0.1V	TBD	75		dB	
Input-Referred Noise		Se	e Noise Perfo	rmance Tables		
Davian Cumply Daiastian	at DC, Gain = 1, Δ VDD = 1V	TBD	100		dB	
Power-Supply Rejection	at DC, Gain = 64, ΔVDD = 0.1V	TBD	85		dB	
Voltage Reference Input						
Voltage Reference Input (V _{REF})	V _{REF} = VREFP - VREFN	1	AVDD	AVDD + 0.1V	V	
Negative Reference Input (VREFN)		AGND – 0.1		VREFP – 1.0	V	
Positive Reference Input (VREFP)		VREFN + 1.0		AVDD + 0.1	V	
Voltage Reference Input Current			50		nA	

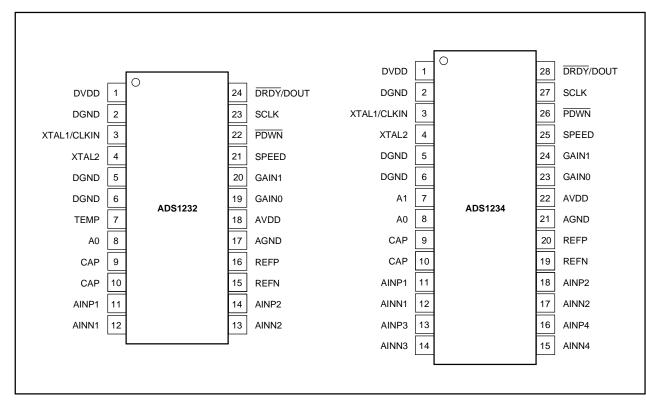
 $FSR = full scale range = V_{REF}/Gain$ (1)

(2) (3) Offset calibration can minimize these errors to the level of noise at any temperature.

Gain errors are calibrated at the factory (AVDD = +5V, all gains, $T_A = +25^{\circ}C$).

(4) Specification is assured by the combination of design and final production test.

SBAS350-JUNE 2005


ELECTRICAL CHARACTERISTICS: V_{REF} = +5V (continued)

All specifications $T_A = -40^{\circ}$ C to +105°C, AVDD = DVDD = VREFP = +5V, VREFN = AGND, Internal Oscillator, SPEED = Low, Gain = 64 (unless otherwise specified).

			32, ADS1234	ADS1232, ADS1234			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNIT		
Digital				L.			
Logic Levels							
V _{IH}		0.6 DVDD		DVDD + 0.1	V		
V _{IL}		DGND		0.3 DVDD	V		
V _{OH}	I _{OH} = 1mA	DVDD - 0.4			V		
V _{OL}	I _{OL} = 1mA		0.2 DVDD		V		
Input Leakage	0 < V _{IN} < DVDD			±10	μA		
Power Supply							
Power Supply Voltage (AVDD, DVDD)		2.7		5.3	V		
	Normal mode, AVDD = 3V, Gain = 1, 2		600	TBD	μA		
	Normal mode, AVDD = 3V, Gain = 64, 128		1500	TBD	μA		
	Normal mode, AVDD = 5V, Gain = 1, 2		700	TBD	μA		
Analog Supply Current	Normal mode, AVDD = 5V, Gain = 64, 128		1600	TBD	μA		
	Standby mode		0.1	TBD	μA		
	Power-down		0.1	TBD	μA		
	Normal mode, DVDD = 3V, Gain = 1, 2		90	TBD	μA		
	Normal mode, DVDD = 3V, Gain = 64, 128		90	TBD	μA		
Disital Curshy Cursot	Normal mode, DVDD = 5V, Gain = 1, 2		110	TBD	μA		
Digital Supply Current	Normal mode, DVDD = 5V, Gain = 64, 128		110	TBD	μA		
	Standby mode, SCLK = High		50	TBD	μA		
	Power-down		0.1	TBD	μA		
	Normal mode, AVDD = DVDD = 3V, Gain = 1, 2		2.1	TBD	mW		
	Normal mode, AVDD = DVDD = 5V, Gain = 1, 2		4	TBD	mW		
Power Dissipation, Total	Normal mode, AVDD = DVDD = 3V, Gain = 64, 128		4.8	TBD	mW		
	Normal mode, AVDD = DVDD = 5V, Gain = 64, 128		8.6	TBD	mW		
	Standby		TBD	TBD	mW		
	Power-down		TBD	TBD	mW		

SBAS350-JUNE 2005

SBAS350-JUNE 2005

DEVICE INFORMATION (continued)

PIN DESCRIPTIONS

	TERMINAL		ANALOG/DIGITAL				
NAME	ADS1232	ADS1234	INPUT/OUTPUT	DESCRIPTION			
DVDD	1	1	Digital	Digital Power Supply: 2.7V to 5.3V			
DGND	2	2	Digital	Digital Ground			
XTAL1/ CLKIN	3	3	Digital/Digital Input	External Clock Input: Typically 4.9152MHz. Ties low to activate Internal Oscillator. Can also use external Crystal Oscillator across XTAL1/CLKIN and XTAL2 pins. See text for more details.			
XTAL2	4	4	Digital	External Clock Output pin. See text for more details.			
DGND	5	5	Digital	Digital Ground			
DGND	6	6	Digital	Digital Ground			
TEMP	7	-	Digital Input	Onboard Temperature Diode Enable Input pin			
A1	-	7	Digital Input	Input Mux Select Input pin (MSB)			
A0	8	8	Digital Input	Input Mux Select Input pin (LSB):			
				A1 A0 Channel			
				0 0 AIN1			
				0 1 AIN2			
				1 0 AIN3			
				1 1 AIN4			
CAP	9	9	Analog	Gain Amp Bypass Capacitor Connection			
CAP	10	10	Analog	Gain Amp Bypass Capacitor Connection			
AINP1	11	11	Digital Input	Positive Analog Input Channel 1			
AINN1	12	12	Digital Input	Negative Analog Input Channel 1			
AINP3	-	13	Digital Input	Positive Analog Input Channel 3			
AINN3	-	14	Digital Input	Negative Analog Input Channel 3			
AINN4	-	15	Digital Input	Negative Analog Input Channel 4			
AINP4	-	16	Digital Input	Positive Analog Input Channel 4			
AINN2	13	17	Digital Input	Negative Analog Input Channel 2			
AINP2	14	18	Digital Input	Positive Analog Input Channel 2			
REFN	15	19	Digital Input	Negative Reference Input pin			
REFP	16	20	Digital Input	Positive Reference Input pin			
AGND	17	21	Analog	Analog Ground			
AVDD	18	22	Analog	Analog Power Supply, 2.7V to 5.3V			
GAIN0	19	23	Digital Input	Gain Select Input pin (LSB)			
GAIN1	20	24	Digital Input	Gain Select Input pin (MSB):			
				GAIN1 GAIN0 PGA			
				0 0 1			
				0 1 2			
				1 0 64			
				1 1 128			
SPEED	21	25	Digital Input	Output Data Rate Select Input pin:			
				SPEED DATA RATE			
				0 10Hz			
L				1 80Hz			
PDWN	22	26	Digital Input	Power Down Input pin: Holding this pin low powers down the entire converter and resets the A/D converter.			
SCLK	23	27	Digital Input	Serial Clock Input pin: Clock out data on the rising edge. Used to initiate Offset Calibration and Sleep modes. See text for more details.			
DRDY/ DOUT	24	28	Digital Input	Dual-Purpose Output:			
				Data Ready: Indicates valid data by going low. Data Output: Outputs data, MSB first, on the first rising edge of SCLK.			

NOISE PERFORMANCE

The ADS1232/1234 offer outstanding noise performance that can be optimized for a givven full-scale range using the on-chip programmable gain amplifier, Table 1, Table 2, Table 3, and Table 4 summarize the typical noise performance with inputs shorted externally for different gains, data rates and voltage reference values.

The RMS and Peak-to-Peak noise are referred to the input. The Effective Number of Bits (ENOB) is defined as:

• ENOB = In (FSR/RMS noise)/In(2)

The Noise Free Bits are defined as:

Noise-Free Bits = In (FSR/Peak-to-Peak Noise)/In(2)

Where FSR (Full-Scale Range) = V_{REF} /Gain

		- ,		
GAIN	RMS NOISE	PEAK-TO-PEAK NOISE	ENOB (rms)	NOISE-FREE BITS
1	420nV	1.79µV	23.5	21.4
2	270nV	900nV	23.1	21.4
64	19nV	125nV	22.0	19.2
128	17nV	110nV	21.1	18.4

Table 1. AVDD = 5V, V_{REF} = 5V, Data Rate = 10SPS

Table 2. AVDD = 5V, V_{RFF} = 5V, Data Rate = 80SPS

GAIN	RMS NOISE	PEAK-TO-PEAK NOISE	ENOB (rms)	NOISE-FREE BITS				
1	1.36µV	8.3µV	21.8	19.2				
2	850nV	5.5µV	21.5	18.8				
64	48nV	307nV	20.6	18				
128	44nV	247nV	19.7	17.2				

Table 3. AVDD = 3V, V_{REF} = 3V, Data Rate = 10SPS

GAIN	RMS NOISE	PEAK-TO-PEAK NOISE	ENOB (rms)	NOISE-FREE BITS
1	450nV	2.8µV	22.6	20
2	325nV	1.8µV	22.1	19.7
64	20nV	130nV	21.2	18.5
128	18nV	115nV	20.3	17.6

Table 4. AVDD = 3V, V_{REF} = 3V, Data Rate = 80SPS

GAIN	RMS NOISE	PEAK-TO-PEAK NOISE	ENOB (rms)	NOISE-FREE BITS
1	2.2µV	12µV	20.4	17.9
2	1.2µV	6.8µV	20.2	17.8
64	54nV	340nV	19.7	17.1
128	48nV	254nV	18.9	16.5

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
ADS1232IPW	PREVIEW	TSSOP	PW	24	60	TBD	Call TI	Call TI
ADS1232IPWR	PREVIEW	TSSOP	PW	24	2000	TBD	Call TI	Call TI
ADS1234IPW	PREVIEW	TSSOP	PW	28	50	TBD	Call TI	Call TI
ADS1234IPWR	PREVIEW	TSSOP	PW	28	2000	TBD	Call TI	Call TI

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

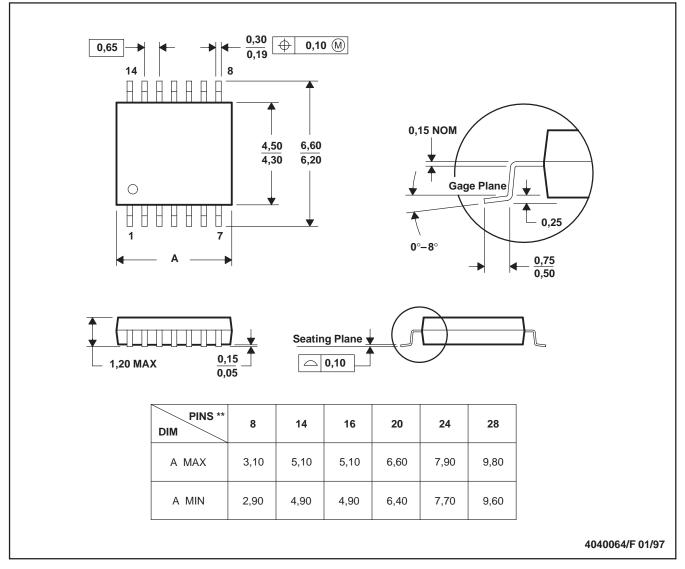
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated