Data sheet

MMIC DPDT Reflective Switch, DC - 6GHz

The P35-4245-000-200 is a high performance Gallium Arsenide double pole double throw broadband RF switch MMIC. It is suitable for use in broadband communications and instrumentation applications. A short circuit reflective termination is presented at the isolated output of the switch. The switch is controlled by the application of complimentary $0 \mathrm{~V} /-5 \mathrm{~V}$ or $0 /-8 \mathrm{~V}$ signals to the control lines in accordance with the truth table below.

This die is fabricated using Bookham Technology's $0.5 \mu \mathrm{~m}$ gate length MESFET process (S20) and is fully protected using Silicon Nitride passivation for excellent performance and reliability.

Features

- Broadband performance
- Low insertion loss; 0.5 dB typ at 2 GHz
- Ultra low DC power consumption
- Fast switching speed; 3ns typical

Electrical Performance

Ambient temperature $=22 \pm 3^{\circ} \mathrm{C}, \mathrm{Zo}=50$ ohms, Control voltages $=0 \mathrm{~V} /-5 \mathrm{~V}$ unless otherwise stated

Parameter	Conditions	Min	Typ	Max
Insertion Loss ${ }^{1}$	$\mathrm{DC}-3 \mathrm{GHz}$	-	0.5	0.6
	$3-6 \mathrm{GHz}$	-	0.8	0.9
Isolation 2	$\mathrm{DC}-3 \mathrm{GHz}$	40	45	-
	$3-6 \mathrm{GHz}$	30	35	-
Input Return Loss ${ }^{3}$	$\mathrm{DC}-3 \mathrm{GHz}$	20	25	dB
	$3-6 \mathrm{GHz}$	15	18	dB
Output Return Loss 3	$\mathrm{DC}-3 \mathrm{GHz}$	20	22	dB
	$3-6 \mathrm{GHz}$	12	14	dB
1dB power compression point	$40 /-5 \mathrm{~V}$ Control; 50 MHz	-	19.5	-
	$0 /-5 \mathrm{~V}$ Control; $0.5-4 \mathrm{GHz}$	-	25.5	dB
	$0 /-8 \mathrm{~V}$ Control; 50 MHz	-	21.5	-
Switching Speed	$0 /-8 \mathrm{~V}$ Control; $0.5-4 \mathrm{GHz}$	-	28	dB

Notes

1. Insertion loss refers to each pole of the switch.
2. Isolation measured between RF IN \& RF OUT (2 poles).
3. Return Loss measured in low loss switch state.
4. Input power at which insertion loss compresses by 1 dB .

Typical Performance at $22^{\circ} \mathrm{C}$

Input Return Loss

Absolute Maximum Ratings

Max control voltage
Max I/P power
Operating temperature Storage temperature
-8V
$+30 \mathrm{dBm}$
$-60^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Chip Outline

$\begin{array}{ll}\text { Die size: } & 0.99 \times 0.64 \mathrm{~mm} \\ \text { Minimum Bond pad size: } & 90 \mu \mathrm{~m} \times 90 \mu \mathrm{~m} \\ \text { Die thickness: } & 200 \mu \mathrm{~m}\end{array}$

Thinking RF solutions

MMICS

Bookham Technology plc
Caswell
Towcester
Northamptonshire
NN12 8EQ
UK

- Tel: +44 (0) 1327356789
- Fax: +44 (0) 1327356698
rfsales@bookham.com

Important Notice
Bookham Technology has a policy of continuous improvement. As a result certain parameters detailed on this flyer may be subject to change without notice. If you are interested in a particular product please request the product specification sheet, available from any RF sales representative.

Switching Truth Table

A	B	RF IN-RF1	RF IN-RF2
		RF3-RF OUT	RF4-RF OUT
0 V	-5 V	Low Loss	Isolated
-5 V	0 V	Isolated	Low Loss

Handling, Mounting and Bonding

The back of the die is gold metallized and can be die-attached manually onto gold, eutectically with Au-Sn (80:20) or with low temperature conductive epoxy. The maximum allowable die temperature is $310^{\circ} \mathrm{C}$ for 2 minutes. Bonds should be made onto the exposed gold pads with 17 or 25 microns pure gold, half-hard gold wire. Bonding should be achieved with the die face at $225^{\circ} \mathrm{C}$ to $275^{\circ} \mathrm{C}$ with a heated thermosonic wedge (approx. $125^{\circ} \mathrm{C}$) and a maximum force of 60 grams. Ball bonds may be used but care must be taken to ensure the ball size is compatible with the bonding pads shown. The length of the bond wires should be minimised to reduce parasitic inductance, particularly those to the RF and ground pads. Note that there is a choice of control pads (A \& B) to aid circuit layout.

Ordering Information
P35-4245-000-200

