
Product Overview

® ARM10 Thumb Family
300MHz low-power system-on-a-chip processor

solutions delivered at a consumer price point

Applications

•

© Copyright ARM Limited. All rights reserved.

®

ARM DVI 0014A

• Next-generation hand-held
products:
- Communicators
- Smartphones
- Subnotebook computers

• Digital consumer
appliances featuring:
- 3D graphics
- Web content
- Voice recognition and
 synthesis
- Digital video
- High-speed connectivity

Benefits

• Multi-sourced high-perfor-
mance, low-power
processor macrocells

• High-performance vector
floating point delivers 3D
graphics and floating point
DSP

• Access to existing ARM
architecture, tools, OS,
and code-base

• Low system cost via
excellent code density

• High performance allows
cost saving via migration of
hardware features to soft-
ware implementations

• System-on-a-chip ready
allowing rapid integration
with short time to market

• Designed to run sophisti-
cated OS such as Linux,
EPOC, and WindowsCE

The ARM10 Thumb Family
The ARM10 Thumb Family of processors will deliver 400 Dhrystone 2.1 MIPS
at 300MHz, and 600 MFLOPS for 3D graphics and floating point DSP. Process
portable to high performance 0.25 micron and 0.18 micron CMOS fabrication
processes, the ARM10 processor units will be licensed to multiple semicon-
ductor partners, offering OEMs guaranteed continuity of supply. The ARM10
Thumb Family maintains traditional ARM values of low system cost, low power
consumption, and use within larger system-on-chip designs. The Thumb 16-
bit compressed instruction set gives a reduction in the required memory size
and bandwidth, which directly reduces system cost. The ARM10TDMI™ inte-
ger unit features the ARM 32-bit RISC instruction set, and Thumb compressed
16-bit instruction set. The ARM10TDMI unit employs parallel instruction exe-
cution, branch prediction, and a non-blocking data cache interface to achieve
high performance on real applications. The ARM1020T™ cached processor
macrocell is built around the ARM10TDMI unit, and also features large on-
chip instruction and data caches, an MMU with demand paged virtual memory

support, a write buffer, and a new high-bandwidth AMBA™ system-on-a-chip
bus interface.

The optional VFP10™ Vector Floating-point coprocessor offers high perfor-
mance single and double precision IEEE floating-point in a small die size by
adopting the RISC approach of implementing simple, common operations in
silicon and allowing software to handle rare exceptional cases.

System-on-a-chip Ready
The ARM10 processors feature EmbeddedICE™ JTAG software debug, and
the AMBA multimaster on-chip bus architecture that provides for peripheral
design reuse and efficient production test. ARM and its partners provide ASIC
simulation models, and cosimulation tools to enable the design process.

Compatible with ARM7™, ARM9™ and StrongARM®
The ARM10 Thumb Processor Family is backwards compatible with the ARM7
Thumb Family, the ARM9 Thumb Family, and StrongARM processor families,
giving designers software-compatible processors with a range of price/perfor-
mance points from 60 MIPS to 400 MIPS. Support for the ARM architecture
today includes the WindowsCE, EPOC, JavaOS, and Linux operating sys-
tems, more than 25 Real Time Operating Systems, Cosimulation tools from
leading EDA vendors, and a variety of software development tools.

ARM1020T

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 2

ARM1020T
The ARM1020T includes cache and
memory management functions to
support a full demand-paged virtual
memory operating system and sup-
port for real-time embedded operat-
ing systems.

MMUs
Twin 64-entry Translation Lookaside
Buffers (TLBs) provide fast access to
the most recent address transla-
tions. ARM1020T also provides TLB
lock-down. This allows critical trans-
lations to remain in the TLB to
ensure predictable access to real-
time code.

Caches
Two 32KB caches are implemented,
one for instructions, the other for
data, both with an eight-word line
size. These caches connect to the
integer unit via 64-bit buses, to allow
two instructions to be passed into
the instruction prefetch unit every
cycle, and to allow load and store
multiple instructions to transfer two
32-bit registers every cycle.

Cache lock-down
Cache lock-down is provided to
allow critical code sequences to be
locked into the cache to ensure pre-
dictability for real-time code. The
cache replacement policy can be
selected by the operating system as
either fully random or round-robin.
Both caches are 64-way set-associa-
tive.

Data cache features
The data cache supports nonblock-
ing hit-under-miss operation. Non-
blocking operation allows instructions
that occur after a data cache miss to

continue execution before the data is
returned. The hit-under-miss opera-
tion allows subsequent load or store
instructions after a cache miss to
access the data cache. Together
these mechanisms can provide sig-
nificantly higher performance for
applications that incur high data
cache miss rates.

Write buffer
ARM1020T also incorporates a dou-
ble word 8-entry write buffer, to avoid
stalling the processor when writes to
external memory are performed.

32KByte data
cache

32KByte instruction
cache

AMBA Bus Interface

Instruction
MMU and

TLB
ARM10TDMI
Integer unit

Data
MMU and

TLB

Debug and System Control coprocessor

VFP10 Floating-point coprocessor

ARM1020T

Write buffer

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 3

ARM10TDMI integer unit
The ARM10TDMI integer unit is an
implementation of the ARM Architec-
ture Version 5T, the latest implemen-
tation of the ARM Architecture.
ARMv5T is a superset of the ARMv4
ISA implemented by the StrongARM
processors and the ARMv4T ISA
implemented by the ARM7 Thumb
and ARM9 Thumb Family proces-
sors.

Performance and code
density
ARM10TDMI executes two instruc-
tion sets, the 32-bit ARM instruction
set, and the 16-bit Thumb instruction
set. The ARM instruction set allows a
program to achieve maximum perfor-
mance with the minimum number of
instructions. The simpler Thumb
instruction set offers much increased
code density for code that does not
require maximum performance. Code
can switch between the ARM and
Thumb instruction sets on any proce-
dure call.

Registers
The Integer Unit consists of a 32-bit
datapath and associated control
logic. The datapath contains 31 gen-
eral-purpose registers, coupled to a
full shifter, Arithmetic Logic Unit, and
multiplier. At any one time 16 regis-
ters are visible to the user. The
remainder are synonyms used to
speed up exception processing. Reg-
ister 15 is the Program Counter (PC)
and can be used in all instructions to
reference data relative to the current
instruction. R14 holds the return
address after a subroutine call. R13
is used (by software convention) as a
stack pointer.

Modes and exception
handling
All exceptions have banked registers
for R14 and R13. After an exception
R14 holds the return address for
exception processing. This address
is used both to return after the excep-
tion is processed and to address the
instruction that caused the exception.
R13 is banked across exception
modes to provide each exception
handler with a private stack pointer.
The fast interrupt mode also banks
registers 8 to 12 so that interrupt pro-
cessing can begin without the need
to save or restore these registers. A
seventh processing mode, System
mode, does not have any banked
registers. It uses the User mode reg-
isters. System mode runs tasks that
require a privileged processor mode
and allows them to invoke all classes
of exceptions.

Status registers
All other processor states are held in
status registers. The current operat-
ing processor status is in the Current
Program Status Register (CPSR).
The CPSR holds 4 ALU flags (Nega-
tive, Zero, Carry and Overflow), two
interrupt disable bits (one for each
type of interrupt), a bit to indicate
ARM or Thumb execution, and 5 bits
to encode the current processor
mode. All 5 exception modes also
have a Saved Program Status Regis-
ter (SPSR) which holds the CPSR of
the task immediately before the
exception occurred.

Exception types
ARM10TDMI supports 5 types of
exception, and a privileged process-
ing mode for each type. The 5 types
of exceptions are:

• fast interrupt (FIQ)

• normal interrupt (IRQ)

• memory aborts (used to imple-
ment memory protection or vir-
tual memory)

• attempted execution of an unde-
fined instruction

• software interrupts (SWIs).

Conditional execution
All ARM instructions (with the excep-
tion of BLX) are conditionally exe-
cuted. Instructions optionally update
the four condition code flags (Nega-
tive, Zero, Carry and Overflow)
according to their result. Subsequent
instructions are conditionally exe-
cuted according to the status of flags.
Fifteen conditions are implemented.

4 classes of instructions
The ARM and Thumb instruction sets
can be divided into four broad
classes of instruction

• data processing instructions

• load and store instructions

• branch instructions

• coprocessor instructions.

Data processing
The data processing instructions
operate on data held in general pur-
pose registers. Of the two source
operands, one is always a register.
The other has two basic forms, an
immediate value, or a register value
optionally shifted. If the operand is a
shifted register the shift amount may
have an immediate value or the value
of another register. Four types of shift
can be specified. Most data process-
ing instructions can perform a shift
followed by a logical or arithmetic
operation. Multiply instructions come
in two classes, (normal) 32-bit result
and (long) 64-bit result variants. Both

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 4

 Modes and Registers

User and
System mode

Supervisor
mode

Abort mode
Undefined

mode
Interrupt mode

Fast Interrupt
mode

R0 R0 R0 R0 R0 R0

R1 R1 R1 R1 R1 R1

R2 R2 R2 R2 R2 R2

R3 R3 R3 R3 R3 R3

R4 R4 R4 R4 R4 R4

R5 R5 R5 R5 R5 R5

R6 R6 R6 R6 R6 R6

R7 R7 R7 R7 R7 R7

R8 R8 R8 R8 R8 R8_FIQ

R9 R9 R9 R9 R9 R9_FIQ

R10 R10 R10 R10 R10 R10_FIQ

R11 R11 R11 R11 R11 R11_FIQ

R12 R12 R12 R12 R12 R12_FIQ

R13 R13_SVC R13_ABORT R13_UNDEF R13_IRQ R13_FIQ

R14 R14_SVC R14_ABORT R14_UNDEF R14_IRQ R14_FIQ

PC PC PC PC PC PC

CPSR CPSR CPSR CPSR CPSR CPSR

- SPSR_SVC SPSR_ABORT SPSR_UNDEF SPSR_IRQ SPSR_FIQ

types of multiply instruction can
optionally perform an accumulate
operation.

Load and store
The second class of instruction is
load and store instructions. These
instructions come in two main types:

• load or store the value of a single
register

• load and store multiple register
values.

Load and store single register
instructions can transfer a 32-bit
word, a 16-bit halfword and an 8-bit

byte between memory and a register.
Byte and halfword loads can be auto-
matically zero or sign extended as
they are loaded. Swap instructions
perform an atomic load and store as
a synchronization primitive.

Mode-specific banked registers

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 5

Addressing modes

Load and store instructions have
three primary addressing modes

• offset

• pre-indexed

• post-indexed.

They are formed by adding or sub-
tracting an immediate or register
based offset to or from a base regis-
ter. Register based offsets can also
be scaled with shift operations. Pre-
indexed and post-indexed addressing
modes update the base register with
the base plus offset calculation. As
the PC is a general purpose register,
a 32-bit value can be loaded directly
into the PC to perform a jump to any
address in the 4Gigabyte memory
space.

Block transfers
Load and store multiple instructions
perform a block transfer of any num-
ber of the general purpose registers
to or from memory. Four addressing
modes are provided:

• pre-increment addressing

• post-increment addressing

• pre-decrement addressing

• post-decrement addressing.

 The base address is specified by a
register value (which may be option-
ally updated after the transfer). As
the subroutine return address and
the PC values are in general purpose
registers, very efficient subroutine
calls can be constructed.

Branch
The third class of instructions is
branch instructions. As well as allow-
ing any data processing or load

instruction to change control flow (by
writing the Program Counter) a stan-
dard branch instruction is provided
with 24-bit signed offset, allowing for-
ward and backward branches of up to
32Megabytes.

Branch with Link

There is a Branch with Link (BL)
which allows efficient subroutine
calls. BL preserves the address of
the instruction after the branch in
R14 (the Link Register or LR). This
allows a move instruction to put the
LR in to the PC and return to the
instruction after the branch.

The third type of branch (BX and
BLX) is used to switch between ARM
and Thumb instruction sets optionally
with the return address preserving
link option.

Coprocessor
The fourth class of instruction is
coprocessor instructions. There are
three types of coprocessor instruc-
tions:

• coprocessor data processing
instructions

These are used to invoke a copro-
cessor specific internal operation.

• coprocessor register transfer
instructions

These allow a coprocessor value to
be transferred to or from an ARM
register.

• coprocessor data transfer
instructions.

 These transfer coprocessor data to
or from memory, where the ARM cal-
culates the address of the transfer.

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 6

The ARM Instruction Set
Mnemonic Operation Mnemonic Operation
MOV Move MVN Move Not
ADD Add ADC Add with Carry
SUB Subtract SBC Subtract with Carry
RSB Reverse Subtract RSC Reverse Subtract with Carry
CMP Compare CMN Compare Negated
TST Test TEQ Test Equivalence
AND Logical AND BIC Bit Clear
EOR Logical Exclusive OR ORR Logical (inclusive) OR
MUL Multiply MLA Multiply Accumulate
SMULL Sign Long Multiply SMLAL Signed Long Multiply Accumulate
UMULL Unsigned Long Multiply UMLAL Unsigned Long Multiply Accumulate
CLZ Count Leading Zeroes BKPT Breakpoint
MRS Move From Status Register MSR Move to Status Register
B Branch
BL Branch and Link BLX Branch and Link and Exchange
BX Branch and Exchange SWI Software Interrupt
LDR Load Word STR Store Word
LDRH Load Halfword STRH Store Halfword
LDRB Load Byte STRB Store Byte
LDRSH Load Signed Halfword LDRSB Load Signed Byte
LDMIA Load Multiple STMIA Store Multiple
SWP Swap Word SWPB Swap Byte
CDP Coprocessor Data Processing
MRC Move From Coprocessor MCR Move to Coprocessor
LDC Load To Coprocessor STC Store From Coprocessor

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 7

The Thumb Instruction Set
Mnemonic Operation Mnemonic Operation
MOV Move MVN Move Not
ADD Add ADC Add with Carry
SUB Subtract SBC Subtract with Carry
RSB Reverse Subtract RSC Reverse Subtract with Carry
CMP Compare CMN Compare Negated
TST Test NEG Negate
AND Logical AND BIC Bit Clear
EOR Logical Exclusive OR ORR Logical (inclusive) OR
LSL Logical Shift Left LSR Logical Shift Right
ASR Arithmetic Shift Right ROR Rotate Right
MUL Multiply BKPT Breakpoint
B Unconditional Branch Bcc Conditional Branch
BL Branch and Link BLX Branch and Link and Exchange
BX Branch and Exchange SWI Software Interrupt
LDR Load Word STR Store Word
LDRH Load Halfword STRH Store Halfword
LDRB Load Byte STRB Store Byte
LDRSH Load Signed Halfword LDRSB Load Signed Byte
LDMIA Load Multiple STMIA Store Multiple
PUSH Push Registers to stack POP Pop Registers from stack

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 8

The ARM instruction set opcode map

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing immediate shift cond 0 0 0 opcode S Rn Rd shift immed shift 0 Rm

Move status register to register cond 0 0 0 1 0 R 0 0 SBO Rd SBZ 0 0 0 0 SBZ

Move register to status register cond 0 0 0 1 0 R 1 0 Mask SBO SBZ 0 0 0 0 Rm

Data processing register shift cond 0 0 0 opcode S Rn Rd Rs 0 shift 1 Rm

Branch/Exchange instruction set cond 0 0 0 1 0 0 1 0 SBO SBO SBO 0 0 L 1 Rm

Software breakpoint 1 1 1 0 0 0 0 1 0 0 1 0 immed 0 1 1 1 immed

Count leading zeros cond 0 0 0 1 0 1 1 0 SBO Rd SBO 0 0 0 1 Rm

Multiply (-accumulate) cond 0 0 0 0 0 0 A S Rd Rn Rs 1 0 0 1 Rm

Multiply (-accumulate) long cond 0 0 0 0 1 U A S RdHi RdLo Rs 1 0 0 1 Rm

Swap/swap byte cond 0 0 0 1 0 B 0 0 Rn Rd SBZ 1 0 0 1 Rm

Load/store halfword register offset cond 0 0 0 P U 0 W L Rn Rd SBZ 1 0 1 1 Rm

Load/store halfword immediate
offset

cond 0 0 0 P U 1 W L Rn Rd Hi Offset 1 0 1 1 Lo Offset

Load signed halfword/byte register
offset

cond 0 0 0 P U 0 W 1 Rn Rd SBZ 1 1 H 1 Rm

Load signed halfword/byte
immediate offset

cond 0 0 0 P U 1 W 1 Rn Rd Hi Offset 1 1 H 1 Lo Offset

Data processing immediate cond 0 0 1 opcode S Rn Rd rotate immediate

Move immediate to status register cond 0 0 1 1 0 R 1 0 Mask SBO rotate immediate

Load/store immediate offset cond 0 1 0 P U B W L Rn Rd immediate

Load/store register offset cond 0 1 1 P U B W L Rn Rd shift immed shift 0 Rm

Load/store multiple cond 1 0 0 P U S W L Rn Register List

Branch and branch with link cond 1 0 1 L 24_bit_offset

Branch with link/change to Thumb 1 1 1 1 1 0 1 H 24_bit_offset

Coprocessor load and store cond 1 1 0 P U N W L Rn CRd cp_num 8_bit_offset

Coprocessor data processing cond 1 1 1 0 opcode1 CRn CRd cp_num opcode2 0 CRm

Coprocessor register transfers cond 1 1 1 0 opcode1 L CRn Rd cp_num opcode2 1 CRm

Software interrupt cond 1 1 1 1 swi_number

The ARMv5T Architecture

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 9

ARM10TDMI integer
pipeline stages
The integer pipeline consists of 6
stages to maximize instruction
throughput on ARM10TDMI.

F: Instruction Fetch and Branch Pre-
diction

I: Instruction issue

D: Instruction Decode and Register
Read

E: Execute
Shift and ALU, or
Address Calculate, or
Multiply

M: Memory Access and Multiply

W: Register Write

Pipelining

By overlapping the various stages of
execution, ARM10TDMI maximizes
the clock rate achievable to execute
each instruction. It delivers a
throughput approaching one instruc-
tion per cycle. Furthermore, due to
multiple execution units ARM10TDMI
allows multiple instructions to exist in
the same pipeline stage, allowing
simultaneous execution of some
instructions. The Fetch stage can
hold up to three instructions, where

branch prediction is performed on
instructions ahead of execution of
earlier instructions. The Issue and
Decode stage can contain any
instruction in parallel with a predicted
branch. The Execute, Memory and
Write stages can contain a predicted
branch, an ALU or Multiply instruc-
tion, a load or store multiple instruc-
tion and a coprocessor instruction in
parallel execution.

64-bit data buses
ARM10TDMI provides 64-bit data
buses between the processor integer
unit and the instruction and data
caches, and between coprocessors
and the integer unit. These 64-bit

The Thumb instruction set opcode map
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Shift by immediate 0 0 0 opcode immediate Rm Rd

Add/subtract register 0 0 0 1 1 0 op Rm Rn Rd

Add/subtract immediate 0 0 0 1 1 1 op immediate Rn Rd

Add/subtract/move/compare immediate 0 0 1 opcode Rd|Rn immediate

Data-processing register 0 1 0 0 0 0 opcode Rm|Rs Rd|Rn

Special data processing 0 1 0 0 0 1 opcode H1 H2 Rm Rd|Rn

Branch/exchange instruction set 0 1 0 0 0 1 1 1 L H2 Rm SBZ

Load from literal pool 0 1 0 0 1 Rd PC-relative offset

Load/store register offset 0 1 0 1 opcode Rm Rn Rd

Load/store word/byte immediate offset 0 1 1 B L immediate Rn Rd

Load/store halfword immediate offset 1 0 0 0 L immediate Rn Rd

Load/store from/to stack 1 0 0 1 L Rd SP-relative offset

Add to SP or PC 1 0 1 0 SP Rd immediate

Adjust stack pointer 1 0 1 1 0 0 0 0 op immediate

Push/pop register list 1 0 1 1 L 1 0 R register list

Software breakpoint 1 0 1 1 1 1 1 0 immediate

Load/store Multiple 1 1 0 0 L Rn register_list

Conditional branch 1 1 0 1 cond offset

Software interrupt 1 1 0 1 1 1 1 1 immediate

Unconditional branch 1 1 1 0 0 offset

BLX suffix 1 1 1 0 1 offset 0

BL/BLX prefix 1 1 1 1 0 offset

BL suffix 1 1 1 1 1 offset

ARM10TDMI

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 10

paths allow two instructions to be
loaded into the branch prediction
unit, so that branches are predicted
before they are executed, and so that
load and store multiple instructions
can transfer 64 bits (two ARM regis-
ters) every cycle. This allows
ARM10TDMI to achieve very high
performance on many code
sequences, especially those that
require data movement in parallel
with data processing.

Coprocessors and pipe-
lines
The ARM10TDMI coprocessor inter-
face allows full independent process-
ing in both the ARM execution
pipeline and the pipelines of up to 4
independent coprocessors.

Branch prediction
The branch prediction unit can often
completely resolve branches, effec-
tively removing them from the
instruction stream. The Load-Store
unit can sustain load and store multi-

ple transfers in parallel with data pro-
cessing instructions. The Branch
Prediction Unit works by prefetching
instructions beyond the fetch stage,
decoding branch instructions, calcu-
lating branch target addresses, and
fetching the target instruction.

Benefits of speculative
branch prediction
Under normal operation, branch pre-
diction can be completed before the
fetch stage requests the branch
instruction, so that the instruction at
the target of the branch can be spec-

Memory Write

Read Port A

Program Status

Read Port B

Immediate

Instruction

Incrementer

Address
Out

Exception PC
ALU
LoadData

Program
Counter

Multiplier

Address Out

Write Port D

Write Port L1

Read Port S1

Read Port S2

Write Port L2

Fetch Decode Execute

The ARM10TDMI Integer Pipeline

Address

Issue

Instruction Decode

Instruction
Queue

Branch
Predictor

ARM10TDMI

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 11

ulatively given to the integer unit
instead of the branch.This reduces
the execution time impact of the
branch to zero. The branch prediction
scheme is static. Backward branches
are assumed taken as these are usu-
ally loops. Forward branches are
assumed untaken. If the prediction is
wrong (a branch mis-predict), the
integer unit takes three cycles to
resume execution. On average this
scheme correctly predicts 80% of
branch destinations.

Debug features
The integer unit also incorporates a
sophisticated debug unit to allow
both software tasks or external
debug hardware to perform hardware
and software breakpoint, single step-
ping, register and memory access.
This functionality is made available to
software as a coprocessor and is
accessible from hardware via the
JTAG port. Full speed, real time exe-
cution of the processor is maintained
until a breakpoint is hit, at which point
control is either passed to a software
handler, or to JTAG control.

ARM10TDMI instruction execution timing

Instruction class Issue Cycles Result delay

Condition failed 1 NA

Branch Predict 0,1 NA

Branch Mispredict 3 NA

ALU instruction 1 0

ALU instruction with register shift 2 0

MOV PC, Rx 3 NA

ALU instruction dest = PC 4 0

MUL 1..3 1..3

MSR (flags only) 1 0

MSR (mode change) 3 NA

MRS 1 0

LDR (base register value) 1 0

LDR (loaded value) 1 1

LDR with shifted offset +1 0

STR 1 NA

STR with shifted offset 2 NA

LDM 1 Position in list / 2 + 1

STM 1 NA

SWP 2 1

CDP 1 NA

MRC 1 1

MCR 1 NA

LDC 1 Number of words / 2

STC 1 NA

VFP10 - Vector Floating-point Unit

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 12

VFP10 floating-point
unit
The VFP10 Floating-point Unit is the
first implementation of the Vector
Floating-point architecture (VFP).
VFP is designed to provide high-per-
formance, low-cost floating-point
(FP) computation for a wide spec-
trum of applications. VFP uses a reg-
ister bank consisting of 32 single
precision values or 16 double preci-
sion values. The individual elements
of the register bank can be used as a
vector of data, allowing a single
instruction to operate on multiple
data values. In vector mode, the 32
single precision registers are used to
provide 8 scalar values and (most
commonly) either 6 vectors each
containing 4 elements, or 3 vectors
each containing 8 elements.

The VFP10 pipeline
VFP data processing instructions use
a multiple-add pipeline. Fundamen-
tal operations include multiply-add,
negated multiply-add, multiply-sub-
tract, multiply, add, subtract, and
compare. Divide, remainder and
square root are implemented as iter-
ative processes that use the multiply-
accumulate pipeline. Instructions are
also provided for data movement of
integer values between the VFP reg-
ister and ARM registers, and conver-
sion between integer values and
floating-point values.

Single instructions and
multiple data
The vector nature of the VFP archi-
tecture allows a single instruction to
specify an operation on multiple data
items. This allows multiple instruc-
tions to be in execution at once,
greatly increasing the performance of
FP-intensive applications.

 IEEE 754 compatibility
VFP is fully IEEE 754 compatible. To
allow faster execution for some algo-
rithms VFP can optionally avoid the
overhead necessary to perform IEEE
gradual underflow, instead rounding
to zero when the floating point expo-
nent underflows such that the man-
tissa can no longer remain
normalized. This option can be
enabled from software via a control
register configuration bit.

Load and store instruc-
tions
VFP provides both single and vector
load and store instructions, which
perform a transfer between memory
and the VFP registers. Both single
and double precision values are sup-
ported. The transfer address is speci-
fied in an ARM register. If a multiple
transfer is performed the instruction
specifies both the first register to
transfer, and the number of registers
to transfer. After the transfer the base
register may be updated for auto
indexing for array stack access.

Branch instructions
VFP does not provide branch instruc-
tions. Instead the result of an FP
compare instruction can be stored in
the ARM condition code flags. This
allows the ARM branch instruction to
be used for executing conditional FP
code.

VFP10 floating-point
pipeline
VFP10 uses two pipelines, a five
stage pipe for load and store instruc-
tions, and a 7-stage pipe for arith-
metic instructions. These two pipes
share the first two stages, and can
issue one instruction per cycle. The

vector nature of the VFP architecture
allows a vector arithmetic instruction
to execute in parallel with a vector
load or store instruction or an integer
instruction.

The 5-stage pipeline
The five stage Load and Store tracks
the final 5 stages of the ARM pipe-
line. If a multiple transfer is being per-
formed, the memory stage of the
pipeline is repeatedly used for each
data item. Two single precision val-
ues or one double precision value
can be transferred every cycle. Load
and store instructions, and data
transfers, stay in lock step with the
integer unit to transfer data when the
VFP instruction owns the memory
stage.

The 7-stage arithmetic
pipeline
VFP10 data processing instructions
use a 7-stage pipeline. The first two
stages match the issue and decode
stages of the integer unit, followed by
four stages that perform the actual
floating point arithmetic, and the sev-
enth and final stage is for register
write. The four arithmetic stages are
broken into two parts, multiply and
round, and add and round, each part
taking two cycles.

Ensuring IEEE 754 accu-
racy
To ensure full IEEE 754 accuracy, the
pipeline forms a complete result
between the multiply and accumulate
portions of a multiply-accumulate
instruction. All add, subtract and
compare operations align the smaller
value to the larger value to maintain
maximum precision.

VFP10 - Vector Floating-point Unit

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 13

Performance
The VFP design uses a deep pipeline
to achieve a high clock frequency. A
single precision multiply-add can be
issued every cycle, with a result
delay of three cycles. For many com-
mon algorithms the result delay has
little impact on achieved performance
as several operations can be started
before the first result is required. FIR
filters and array multiplies are exam-
ples. Coding these algorithms using
vector instructions boosts perfor-
mance further by allowing parallel

execution with load or store or integer
instructions.

Issue Decode Execute 1 Execute 2 Execute 3 Execute 4 Write

Multiply

MCOL

Read Port A

Read Port B

Read Port C

Read Port S

+1

Data out Data in

Multiply
result

Align
Add Find

first
one

Normalize

Round
Write Port D

Write Port L

VFP10 Pipeline

System issues and Third Party Support

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 14

AMBA Bus Architecture
The ARM10 Thumb Family proces-
sors are designed for use with the
AMBA multi-master on-chip bus
architecture. AMBA includes an
advanced high performance bus
(AHB) connecting processors and
high-bandwidth peripherals and
memory interfaces, and a low-power
peripheral bus allowing a large num-
ber of low-bandwidth peripherals.
The AHB bus is re-used to allow effi-
cient production test of the
ARM1020T processor macrocell and
VFP10 coprocessor.

The ARM1020T AHB implementation
provides a 32-bit address bus and a
64-bit data bus for high-bandwidth
data transfers made possible by on-
chip memory and modern SDRAM
and RAMBUS memories.

Everything you need
ARM provides a wide range of prod-
ucts and services to support its pro-
cessor families, including software
development tools, development
boards, models, applications soft-

ware, training, and consulting ser-
vices.

The ARM Architecture today enjoys

broad 3rd party support. The ARM10
Thumb Family processors’ strong
software compatibility with existing
ARM families will ensure that its
users benefit immediately from this
existing support. ARM is working with
its software, EDA, and semiconduc-
tor partners to extend this support to
use new ARM10 Family features.

Current support
Support for the ARM Architecture
today includes:

• ARM SDT Software Develop-
ment Toolkit

 - Integrated development
 environment
 - C, C++, assembler, simulators
 and windowing source level
 debugger
 - Available on Windows95,
 WindowsNT, and Unix

• ARM Multi-ICE™ JTAG interface
 - allows debug of ARM proces
 sor systems through JTAG
 interface
 - integrates with the ARM SDT

• ARMulator instruction accurate
software simulator

• Development boards

• Design Simulation Models pro-
vide signoff quality ASIC simula-
tion

• Software toolkits available from
ARM, Cygnus/GNU,Greenhills,
JavaSoft, MetaWare, Microtec,
and Windriver allowing software

VFP10 instruction execution timing
 Instruction class Issue Cycles Result delay

Multiply (Single Precision) 1 3
Multiply (Double Precision) 2 3
Add/ Subtract/Compare/Move 1 3
Multiply Accumulate (Single Precision) 1 3
Multiply Accumulate (Double Precision) 2 3
Divide/Square Root (Single Precision) 19 N/A
Divide/Square Root (Double Precision) 33 N/A
Load 1 1
Store 1 NA
Convert 1 3

System issues and Third Party Support

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 15

development in C, C++,
Java,FORTRAN, Pascal, Ada,
and assembler.

• 20+ Real Time Operating Sys-
tems including Windriver
VxWorks, Sun Microsystems
Chorus and JavaOS, Microtec
VRTX, JMI, Embedded System-
Products RTXC, and Integrated
Systems pSOS.

• Major OS including Microsoft
WindowsCE,PSION EPOC, Net-
BSD and Linux UNIX, Geoworks

• Application software compo-
nents: DSP, Speech and image
compression, software modems,
Chinese character input, net-
work protocols, and so on.

• Hardware/Software Cosimula-
tion tools from leading EDA Ven-
dors.

For more information, see
www.arm.com

VFP instruction set opcode map

VFP instruction set
Mnemonic Operation Mnemonic Operation
FADD Add FCPY Copy (Move)
FSUB Subtract
FMUL Multiply FNMUL Negated multiply
FMAC Multiply-Accumulate FNMAC Negated Multiply-Accumulate
FMSC Multiply-Subtract FNMSC Negated Multiply-Subtract
FDIV Divide FSQRT Square Root
FABS Absolute Value FNEG Negate
FCMP Compare Register with Register FCMPZ Compare with Zero
FCVTDS Convert Double to Single FCVTSD Convert Single to Double
FITOF Convert Integer to Float FFTOI Convert Float to Integer
FLDR Load Single Value FSTR Store Single Value
FLDM Load Multiple Values (Vector) FSTM Store Multiple Values (Vector)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Data processing Immediate cond 1 1 1 0 E D F G Fn Fd 1 0 1 S N H M 0 Fm

Move to FP register cond 1 1 1 0 opcode 0 Fn Rd 1 0 1 S N R R 1 Reserved

Move to ARM register cond 1 1 1 0 opcode 1 Fn Rd 1 0 1 S N R R 1 Reserved

Load cond 1 1 0 P U D W 1 Rd Rn 1 0 1 S Offset or Transfer Length

Store cond 1 1 0 P U D W 0 Rn Fd 1 0 1 S Offset or Transfer Length

Contacting ARM

ARM DVI 0014A © Copyright ARM Limited 2000. All rights reserved. Page 16

ARM, Thumb, StrongARM, and ARM Powered are registered trademarks of ARM Limited

ARM7, ARM9, ARM10, ARM7TDMI, ARM10TDMI, ARM1020T, ARM9TDMI, EmbeddedICE, and AMBA are trademarks of ARM Limited
All other brands or product names are the property of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except
with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document
are given by ARM Limited in good faith. However, all warranties implied or expressed, including but not limited to implied warranties or merchantability, or fitness
for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any
information in this document, or any error or omission in such information, or any incorrect use of the product.

Addresses

America

ARM INC.
750 University Avenue
Suite 150
Los Gatos
California 95032
USA

Tel: +1-408-579-2200
Fax:+1-408-579-1205
Email: info@arm.com

Austin Design Center
ARM
1250 Capital of Texas Highway
Building 3, Suite 560
Austin
Texas 78746
USA

Tel: +1-512-327-9249
Fax:+1-512-314-1078
Email: info@arm.com

Seattle
ARM
10900 N.E. 8th Street
Suite 920
Bellevue
Washington 98004
USA

Tel: +1-425-688-3061
Fax:+1-425-454-4383
Email: info@arm.com

Boston
ARM
300 West Main St
Suite 215
Northborough
MA 01532
USA

Tel: +1-508-351-1670
Fax:+1-508-351- 1668
Email: info@arm.com

England

ARM Ltd
48-49 Bateman Street
Cambridge
Cambridgeshire
CB2 1LR
England

Tel: +44 1223 400500
Fax:+44 1223 400408
Email: info@arm.com

France

ARM France
12, Avenue des Prés
BL 204 Montigny le Bretonneux
78059 Saint Quentin en Yvelines
Cedex
Paris
France

Tel: +33 1 30 79 05 10
Fax: +33 1 30 79 05 11
Email: info@arm.com

Germany
ARM
Otto Hahn Str. 13B
85521 Ottobrunn-Riemerling
Munich 85521
Germany

Tel: +49 89 608 75545
Fax:+49 89 608 75599
Email: info@arm.com

Japan
ARM K.K.
Plustaria Building 4F
3-1-4 Shin-Yokohama
Kohoku-ku,
Yokohama-shi
Kanagawa 222-0033

Tel: +81 45 477 5260
Fax: +81 45 477 5261
Email: info-armkk@arm.com

Korea
ARM
Room #1115
Hyundai Building
9-4 Soonae-Dong
Boondang-Ku, Sungam
Kyunggi-Do 463-020
Korea

Tel: +82-342-712-8234
Fax: +82-342-713-8225
Email:info@arm.com

