# austriamicrosystems Preliminary Data Sheet

Single Motor H-Controller with LIN I/F

## **Key Features**

- QUAD N-CHANNEL MOSFET DRIVE FOR SINGLE H-BRIDGE DC-MOTOR CONTROL
- □ CHARGE PUMP TO CONTROL HIGH SIDE DRIVERS
- □ INTEGRATED 5 V POWER SUPPLY FOR EXTERNAL COMPONENTS (µCONTROLLER, etc.)
- BATTERY VOLTAGE MONITOR
- □ SINGLE WIRE BUS INTERFACE
- □ STANDBY AND WAKEUP CAPABILITY
- □ VARIOUS PROTECTION CIRCUITRIES:
- □ WATCHDOG, LOW SIDE VOLTAGE LIMITTER

## **General Description**

Advanced automotive distributed DC-motor H-Bridge Controller subsystem for Door and Seat modules with integrated Bus Interface and Battery Management System

## **Applications**

- Door modules
- Seat modules

# **Functional Description**

The AS8420 integrates an advanced DC - Motor H - Bridge driver control, a Voltage regulator and a single wire Bus Interface to realize a very compact remote motor control system.

The H - Bridge control integrates the necessary functions for propper motor driving and protection as:

High Side driver and Low Side driver for external Power MOSFETs, a Charge Pump for propper High Side driving, a Low Side switch Supply Limiter and a Current Amplifier for current monitoring and overcurrent protection.

The Charge Pump voltage (VCP) is generated to typical +10V higher than the battery voltage VBB.

Builtin security functions disable the AS8420 when abnormal conditions like overvoltage, undervoltage, overtemperature or loss of control (watchdog) occur. Controlled current slew rate of the external Gate and crossswitch delay during PWM recirculation operation are provided. The ramp of the gate current and the dead time for secure synchronous rectification are controlled by an internal current reference. A current measurement subcircuit (voltage drop at an external shunt resistor) provides the analog voltage signal SENSE and sets or resets an over current flag OC. IF OC is set, all High side and Low side drivers are switched off. An voltage drop of more than typ. 500 mV performs a set OC.

The analog output signal CURR is the SENSE input, amplified by a voltage gain of 10.

The Voltage regulator integrates a Regulated Power Supply from battery, Reset control, Supply Monitor, Watchdog an Standby management.

A trimmed bandgap is used as reference for a Low Drop Voltage Regulator with a nominal output voltage of 5 V. This regulator is capable to deliver a supply current of up to 20 mA. In cases a higher supply current is needed, an external bipolar transistor can be connected as shown in Figure 4 full configuered µController driven system please refere to application section.

Battery supply Over- and -Undervoltage checks are performed independently. An appropriate hysteresis guarantees the correct switching behaviour. If battery voltage goes out of operating range the fault signal FB is activated.

The VDD Monitor controls the regulated power supply voltage. The Watchdog is driven from an onchip low current RC - oscillator. In case of lossed control it generates a fail signal. This signal and the VDD Monitor output are combined to the Reset output signal RES.

A standby circuitry can be used to bring the AS8420 in a power save mode. Bus activity (LIN) will awake the circuit. The Bus Interface circuitry fulfils the LIN standard. A TTP/A Interface will be available soon.

To guarantee a high flexibility and cost effective solution the protocol handler intenionally is not integrated on the chip.

To simplify a system solution we also offer a double chip solution in one package.





#### Figure 1 Pinout of AS8420



Figure 2 Block Diagram of AS8420

Revision No. 0., Date 2001-10-12

#### Package Information

SOIC24

#### Pin Description, Pin Types

| AIO   | analog I/O                   | DO    | digital output            |
|-------|------------------------------|-------|---------------------------|
| DI    | digital input                | DO OD | digital output open drain |
| DIO_T | digital I/O / tristate       | S     | supply pad                |
| DI_PD | digital input with pull-down | n     |                           |
|       |                              |       |                           |

DO\_T digital output / tristate

| Pin | Name  | Туре  | Note                                  |
|-----|-------|-------|---------------------------------------|
| 1   | INTn  | DO_T  | Low active Interrupt signal           |
| 2   | RESn  | DO_OD | Reset - open drain                    |
| 3   | SCK   | DI_PD | Serial Clock from µC                  |
| 4   | SCSn  | DI_PU | Low active Chip Select signal (1)     |
| 5   | DDEE  | AIO   | Reference Resistor for RC             |
| 5   | KKLI  | AIO   | Oscillator                            |
| 6   | VSS   | S     | Power Ground                          |
| 7   | VDD   | S     | 5 V power supply                      |
| 8   | RX    | DO    | Bus transmission output               |
| 9   | ТΧ    | DI_PU | Bus transmission input (1)            |
| 10  | BUS   | AIO   | Bus line                              |
| 11  | VBAT  | S     | Battery Voltage (diode protected)     |
| 12  | VPEC  | AIO   | regulated supply - if ext. transistor |
| 12  | VILO  | AIO   | is not used, shorted to VDD           |
| 13  | LG2   | AIO   | Output Gate LS driver 2               |
| 14  | LG1   | AIO   | Output Gate LS driver 1               |
| 15  | VCP   | AIO   | Output Charge Pump                    |
| 16  | VH    | AIO   | Charge Pump voltage (capacitor)       |
| 17  | HG1   | AIO   | Output Gate HS driver 1               |
| 18  | S1    | AIO   | Output Source HS driver 1             |
| 19  | HG2   | AIO   | Output Gate HS driver 2               |
| 20  | S2    | AIO   | Output Source HS driver 2             |
| 21  | SENSE | AIO   | Analog input current measurement      |
| 22  | CURR  | AIO   | current measurement output            |
| 23  | SDI   | DI    | Serial Data In                        |
| 24  | SDO   | DO_T  | Serial Data Out                       |

#### Table 1 Pinlist of AS8420

- Note 1: In case external VDD is below Vfuvdd threshold SPI I/F and LIN Failure detection unit are inactive
- Note 2: During sleep mode this pin is clamped to VSS by switching on a pull down resistor, that is normally OFF
- Note 3: During sleep mode RX output is switched Low to prevent circuitry from reverse supply of µController

## **Electrical Parameters**

## Absolute Maximum Ratings (NON OPERATING)

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under "Operating Conditions" is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

| Parameter                        | Symbol | Min  | Мах       | Unit | Note                        |
|----------------------------------|--------|------|-----------|------|-----------------------------|
| Battery voltage                  | VBAT   | -0.3 | 20        | V    | (1) 42V for 400ms           |
| Low Power Supply Voltage         | VDD    | -0.3 | 7         | V    | (1)                         |
| Input Pin Voltage                | Vin    | -0.3 | VDD/V+0.3 | V    |                             |
| Input Current (latchup immunity) | Iscr   | -100 | 100       | mA   | Norm: Jedec 17              |
| ESD                              |        | ±1   |           | kV   | Norm: MIL 883 E method 3015 |
| Total Power dissipation          | Pt     |      | 300       | mW   |                             |
| Storagetemperature               | Tstrg  | -55  | 125       | °C   |                             |
| Soldering conditions             | Tlead  |      | 235       | °C   | Norm: IEC 61760-1           |
| Humidity non-condensing          |        | 5    | 85        | %    |                             |

#### Table 2 Absolute Maximum Ratings

Note 1: Value of these process dependent parameters to be taken from according Process Parameter document, current version

### **Operating Conditions**

| Parameter                        | Symbol  | Min  | Max  | Unit | Note |
|----------------------------------|---------|------|------|------|------|
| Battery voltage                  | VBAT    | 7    | 18   | V    | (1)  |
| Low Power Supply Voltage         | VDD     | 4.75 | 5.25 | V    | (2)  |
| Voltage drop on ground potential | VSS-GND | -0.1 | 0.1  | V    |      |
| Ambient temperature              | Tamb    | -40  | 85   | °C   |      |

#### Table 3 Operating Conditions

Note 1: Load dump 42V

Note 2: Recommended external capacitors ≥ 100nF 20 mA max. load, higher current with external transistor

## Characteristics for Analog and Digital Inputs and Outputs

### **Operational Parameters**

| Parameter                                  | Symbol        | Min      | Мах       | Unit | Note                  |
|--------------------------------------------|---------------|----------|-----------|------|-----------------------|
| Charge Pump Voltage                        | VCP           | VBAT/V+5 | VBAT/V+12 | V    | (1) typ. VBB/V + 10 V |
| HS gate driver source current              | IHS_so        | -100     | 25        | mA   | (2) + (3)             |
| HS gate driver sink current                | IHS_si 25 100 |          | 100       | mA   | (2) + (3)             |
| LS gate driver source current              | ILS_so        | -100     | 25        | mA   | (2) + (3)             |
| LS gate driver sink current                | ILS_si        | 25       | 100       | mA   | (2) + (3)             |
| Oscillator frequency                       | fOSC          | 480      | 800       | kHz  | OnChip                |
| PWM frequency                              | fPWM1         | 15       | 25        | kHz  | (4) typ 20 kHz        |
|                                            | fPWM2         | 8        | 12        |      | (5) typ 10 kHz        |
| PWM resolution                             | resPWM        |          |           | bit  | typ. 5                |
| PWM duty cycle                             | Dr            | 10       | 100       | %    | (6)                   |
| Dead Time for secure synchronous           | tdelay        | 2        | 5         | μs   | (7) typ. 3            |
| rectification                              |               |          |           |      |                       |
| Motor current measurement error            | Evcurr        | -10      | 10        | %    |                       |
| Threshold for motor over current detection | Voc           |          |           | mV   | (8) typ. 500mV        |
| Under Voltage VBAT                         | Vfuv          | 7        | 7.9       | V    | (9) + (10)            |
| Over Voltage VBAT                          | Vfov          | 18       | 20        | V    | (9) + (10)            |
| Under Voltage VDD                          | Vfuvdd        | 0,8*VDD  | 0,9*VDD   | V    | (9) + (10)            |
| Over Voltage VDD                           | Vfovdd        | 1,1*VDD  | 1,2*VDD   | V    | (9) + (10)            |
| Watchdog signal pulse width                | twdres        | 10       | 40        | us   | (11) active low       |
| Watchdog time out period                   | twdtrig       | 1.0      | 2.3       | S    | (12) typ. 1.5 sec     |
| switch off delay                           | tsw_off       | 1        | 2         | ms   | (7)                   |
| dead time after VBAT Fault                 | td_FBAT       | 2        |           | ms   | (7)                   |
| Temperature threshold warning              | TW            |          |           | °C   | (13) typ. 140         |
| Temperature threshold Vreg                 | TOff          | 160      |           | °C   | (13)                  |
| Standby Current                            | IDD           |          | 100       | μA   | (14)                  |
| Gain of Current Amplifier                  | gCAmp1        |          |           |      | (15) typ. 10          |
|                                            | gCAmp2        |          |           |      | (15) typ. 15          |
| Value of external Reference resistor       | Rref          |          |           | kΩ   | ±1 % typ 22           |
| reset active time after Power On or        | tRES1         | 200      |           | ms   | (7)                   |
| WakeUp                                     |               |          |           |      |                       |
| reset active time before Power Off         | tRES2         | 1        |           | ms   | (7)                   |
| Debounce Time of internal signals          | tdeb2         |          |           | μs   | (7) typ. 30           |
| MOSFET driver current control              | Irramp        | 25       | 100       | μs   | Internal current ref. |
|                                            |               |          |           |      |                       |

#### Table 4analog signal parameters

Note 1: External capacitors C > 200 nF recommended, Lower threshold > 8 V according to VBB Monitor.

Note 2: Typical rise/ fall time at the Power MOSFET gate: 1 µs.

- Note 3: Recommended Power MOSFET STB80NE06L-10, Gate approx. 7,6nF/ model, RDSon = 0,01  $\Omega$ .
- Note 4: epending on value of reference resistor.
- Note 5: Depending on settings of Global Control Register, bit PWMF.
- Note 6: Programmable via SPI I/F.
- Note 7: nternal time base.
- Note 8: Rsens value depends on motor current.
- Note 9: Interrupt becomes active.
- Note 10: 250 mV hysteresis.

Note 11: Active low digital output triggered by Watch Dog overflow.

Note 12: Digital input from microprocessor within a time between 200 and 1000 ms.

Note 13: Hysteresis > 10 grd.

Note 14: Voltage regulator, internal oscillator NOT running, 25 °C, VBAT = 14 V.

Note 15: Depending on setting of Global Control Register, bit GAIN.

### **CMOS Input**

| Parameter                | Symbol | Min       | Max       | Unit | Note |
|--------------------------|--------|-----------|-----------|------|------|
| High Level Input Voltage | VIH    | 0.7 * VDD |           | V    |      |
| Low Level Input Voltage  | VIL    |           | 0.3 * VDD | V    |      |
| Input Leakage Current    | ILEAK  |           | 1         | μA   |      |

Table 5 CMOS Inputt parameters

#### **CMOS** output

| Parameter                 | Symbol | Min       | Мах       | Unit | Note |
|---------------------------|--------|-----------|-----------|------|------|
| High Level Output Voltage | VOH    | VDD/V-0.5 |           | V    |      |
| Low Level Output Voltage  | VOL    |           | VSS/V+0.4 | V    |      |
| Capacitive Load           | CL     |           | 50        | pF   |      |

Table 6CMOS outtput parameters

### Tristate CMOS output

| Parameter                 | Symbol | Min       | Мах       | Unit | Note           |
|---------------------------|--------|-----------|-----------|------|----------------|
| High Level Output Voltage | VOH    | VDD/V-0.5 |           | V    |                |
| Low Level Output Voltage  | VOL    |           | VSS/V+0.4 | V    |                |
| Trisate Leakage Current   | IOZ    |           | 1         | μA   | to VDD and VSS |

 Table 7
 Tristate CMOS outtput parameters

#### CMOS open-drain output

| Parameter                  | Symbol | Min | Мах | Unit | Note      |
|----------------------------|--------|-----|-----|------|-----------|
| Low Level Output Voltage   | VOL    |     | 0.4 | V    | IOL = 4mA |
| Open drain leakage current | ILEAK  | -10 | 10  | μA   |           |
| Capacitive Load            | CL     |     | 50  | pF   |           |

Table 8 CMOS open-drain parameters

## MicroController Interface

## Registerfile

| ADDRESS - hexadecimal | Name | ACCESS | Description               |
|-----------------------|------|--------|---------------------------|
| 00                    | GCR1 | R/W    | Global Control Register 1 |
| 01                    | GCR2 | R/W    | Global Control Register 2 |
| 02                    | PSR  | R/W    | PWM SetUp Register        |
| 03                    | FDR  | R/W    | FailureDetection Register |
| 04                    | TST  | R/W    | Test Mode Register        |
| 05                    | MSK  | R/W    | Interrupt Mask Register   |
| 07                    | MRR  | R      | Mask Release Register     |

 Table 9
 Registerfile description

## **SPI Interface**

Data transfer from the microprocessor to the ASIC and vica versa is accomplished by means of a SPI interface. For a detailed description of the SPI-interface features please refer to [SPI].

### Physical Interface

Supported modes, and bit order are shown in Figure 3. Only modes that conform to CPHA=1 (see [SPI]) are supported. With this mode the output shift operation always takes place before the input sample operation. The clock polarity is fix CPOL = 0. The MSB is always transmitted / received first.



#### Figure 3 SPI - Physical interface

#### **Communication Protocol**

The SPI-interface acts as communication interface between the  $\mu$  Controller and the registers within the Single Motor H-Bridge Controller. For efficient register access, a protocol has been defined with the following features:

- Purely master-slave protocol with µController as master
- Only one register accessible within one telegram
- Two different frames: One read and one write frame
- Frame is delimited by the status of SCSn (SCSn = frame delimiter)

# austria**micro**systems

# Application Note



Figure 4 full configuered µController driven system

## **MARKING / PACKAGE - PRODUCTION PARTS**

Package type: SOIC24



Figure 5 SOIC24 Package

|     | D     | E    | Н     | Α    | A1   | е    | b    | L    | Copl. | α   |
|-----|-------|------|-------|------|------|------|------|------|-------|-----|
| min | 15.20 | 7.40 | 10.00 | 2.35 | 0.1  |      | 0.33 | 0.40 |       | 0 ° |
|     |       |      |       |      |      | 1.27 |      |      | 0.10  |     |
| max | 15.60 | 7.60 | 10.65 | 2.65 | 0.30 |      | 0.51 | 1.27 |       | 8°  |

Table 10 Package Dimensions

Marking: YYWWIZZ YY year

WW week

I plant identifier

ZZ letters of free choice



Figure 6 Package Marking

# Contact

austriamicrosystems AG Desiree Herz A 8141 Schloss Premstätten, Austria T. +43 (0) 3136 500 5818 F. +43 (0) 3136 500 5811 drive@austriamicrosystems.com

# Copyright

Devices sold by austriamicrosystems are covered by the warranty and patent indemnification provisions appearing in its Term of Sale. austriamicrosystems makes no warranty, express, statutory, implied, or by description regarding the information set forth herein or regarding the freedom of the described devices from patent infringement.

austriamicrosystems reserves the right to change specifications and prices at any time and without notice. Therefore, prior to designing this product into a system, it is necessary to check with austriamicrosystems for current information.

This product is intended for use in normal commercial applications. Applications requiring extended temperature range, unusual environmental requirements, or high reliability applications, such as military, medical lifesupport or life-sustaining equipment are specifically not recommended without additional processing by austriamicrosystems for each application.

Copyright © 2001 austriamicrosystems. Trademarks registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct.