

LP62E16512-T Series

Preliminary

512K X 16 BIT LOW VOLTAGE CMOS SRAM

Document Title

512K X 16 BIT LOW VOLTAGE CMOS SRAM

Revision History

Rev. No.	<u>History</u>
----------	----------------

0.0 Initial issue

Issue Date April 26, 2002 Remark Preliminary

LP62E16512-T Series

Preliminary

512K X 16 BIT LOW VOLTAGE CMOS SRAM

Features

- Operating voltage: 1.65V to 2.2V
- Access times: 70 ns (max.)
- Current: Very low power version: Operating: 40mA (max.)
- Standby: 10μA (max.)
- Full static operation, no clock or refreshing required
- All inputs and outputs are directly TTL-compatible
- Common I/O using three-state output
- Data retention voltage: 1.2V (min.)
- Available in 48-ball CSP (8×10mm) packages

General Description

The LP62E16512-T is a low operating current 8,388,608bit static random access memory organized as 524,288 words by 16 bits and operates on low power voltage from 1.65V to 2.2V. It is built using AMIC's high performance CMOS process.

Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Two chip enable input is provided for POWER-DOWN, device enable. Two byte enable inputs and an output enable input are included for easy interfacing.

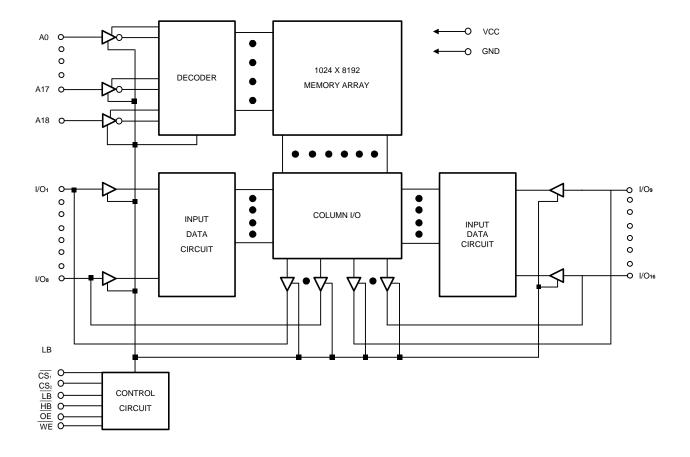
Data retention is guaranteed at a power supply voltage as low as 1.2V.

Product Family

Product	Operating	VCC Range		Powe	er Dissipatio	n	Package
Family	Temperature	voo nango	Speed	Data Retention (Iccdr, Typ.)	Standby (Isв1, Typ.)	Operating (Icc2, Typ.)	Туре
LP62E16512	-25°C ~ +85°C	1.65V~2.2V	70ns	0.1µA	0.5μΑ	3mA	48 CSP

1. Typical values are measured at VCC = 1.8V, TA = 25°C and not 100% tested.

2. Data retention current VCC = 1.2V.


Pin Configurations

CSP (Chip Size Package) 48-pin Top View

	1	2	3	4	5	6
А	LB	OE	A0	A1	A2	CS_2
в	I/O₅	HB	A3	A4		I/O1
С	I/O ₁₀	I/O11	A5	A6	I/O2	I/O ₃
D	GND	I/O ₁₂	A17	A7	I/O₄	VCC
Е	VCC	I/O ₁₃	NC	A16	I/O₅	GND
F	I/O15	I/O14	A14	A15	I/O6	I/O7
G	I/O ₁₆	NC	A12	A13	WE	I/O ₈
н	A18	A8	A9	A10	A11	NC

Block Diagram

Pin Description - CSP

Symbol	Description	Symbol	Description
A0 - A18	Address Inputs	HB	Higher Byte Enable Input (I/O9 - I/O16)
$\overline{\text{CS}_1}$, CS_2	Chip Enable	ŌĒ	Output Enable
I/O1 - I/O16	Data Input/Output	VCC	Power Supply
WE	Write Enable Input	GND	Ground
LB	Byte Enable Input (I/O1 - I/O8)	NC	No Connection

Recommended DC Operating Conditions

 $(T_A = -25^{\circ}C \text{ to } + 85^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCC	Supply Voltage	1.65	1.8	2.2	V
GND	Ground	0	0	0	V
Viн	Input High Voltage	1.4	-	VCC + 0.3	V
Vi∟	Input Low Voltage	-0.3	-	+0.4	V
CL	Output Load	-	-	30	pF
TTL	Output Load	-	-	1	-

Absolute Maximum Ratings*

VCC to GND	0.5V to +3.0V
IN, IN/OUT Volt to GND	0.5V to VCC + 0.5V
Operating Temperature, Topr	25°C to +85°C
Storage Temperature, Tstg	55°C to +125°C
Power Dissipation, Pt	0.7W

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	LP62E165	512-70LLT	Unit	Conditions
		Min.	Max.		
Iu	Input Leakage Current	-	1	μA	VIN = GND to VCC
ILO	Output Leakage Current	-	1	μΑ	$\overline{CS1} = V_{IH} \text{ or } CS2 = V_{IL} \text{ or}$ $\overline{LB} = \overline{HB} = V_{IH}$ $V_{IVO} = GND \text{ to } VCC$
lcc	Active Power Supply Current	-	5	mA	$\overline{CS1} = VIL, CS2 = VIH,$ $\overline{LB} = VIL \text{ or } \overline{HB} = VIL, Ivo = 0mA$
lcc1	Dynamic Operating	-	40	mA	$\label{eq:min.cycle, Duty = 100\%, \overline{CS1} = VIL, \\ CS2 = VIH, \overline{LB} = VIL \mbox{ or } \overline{HB} = VIL \\ Ivo = 0mA \\ \end{tabular}$
lcc2	Current	-	5	mA	$\label{eq:cs1} \begin{split} \overline{CS_1} &\leq \ 0.2V, \ CS_2 \geq VCC\text{-}0.2V \ , \\ \overline{LB} &\leq \ 0.2V \ \text{ or } \ \overline{HB} \leq \ 0.2V \\ f &= \ 1MHz \ , \ \text{Ivo} = \ 0mA \end{split}$
lsв		-	1	mA	$\overline{CS_1} = V_{IH} \text{ or } CS_2 = V_{IL} \text{ or}$ $\overline{LB} = \overline{HB} = V_{IH}$
ISB1	Standby Current	-	10	μΑ	$\label{eq:constraint} \begin{split} \overline{CS_1} &\geq VCC - 0.2V \text{ or } CS_2 \leq 0.2V \text{ or} \\ \overline{LB} &= \overline{HB} \geq VCC - 0.2V \\ V_{\text{IN}} \geq VCC - 0.2V \text{ or } V_{\text{IN}} \leq 0.2V \end{split}$
Vol	Output Low Voltage	-	0.2	V	loL = 0.1 mA
Vон	Output High Voltage	1.4	-	V	lон = -1.0 mA

Truth Table

CS1	CS₂	ŌĒ	WE	LB	ΗB	I/O1 to I/O8 Mode	I/O9 to I/O16 Mode	VCC Current
н	х	х	х	х	х	High - Z	High - Z	ISB1, ISB
х	L	х	х	х	х	High - Z	High - Z	Isb1, Isb
х	х	х	х	н	н	High - Z	High - Z	ISB1, ISB
				L	L	Read	Read	lcc1, lcc2, lcc
L	Н	L	Н	L	Н	Read	High - Z	lcc1, lcc2, lcc
				н	L	High - Z	Read	lcc1, lcc2, lcc
				L	L	Write	Write	lcc1, lcc2, lcc
L	н	х	L	L	н	Write	High - Z	lcc1, lcc2, lcc
				н	L	High - Z	Write	Icc1, Icc2, Icc
L	н	н	н	L	х	High - Z	High - Z	Icc1, Icc2, Icc
L	Н	Н	Н	Х	L	High - Z	High - Z	lcc1, lcc2, lcc

Note: X = H or L

Capacitance ($T_A = 25^{\circ}C$, f = 1.0MHz)

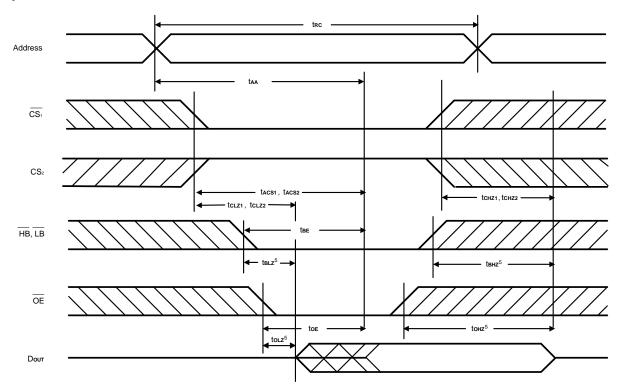
Symbol	Parameter	Min.	Max.	Unit	Conditions
Cin*	Input Capacitance		6	pF	$V_{IN} = 0V$
Cı/o*	Input/Output Capacitance		8	pF	Vvo = 0V

* These parameters are sampled and not 100% tested.

AC Characteristics (TA = -25° C to $+85^{\circ}$ C, VCC = 1.65V to 2.2V)

Symbol	Parameter	LP62E16	LP62E16512-70LLT		
-		Min.	Max.		
Read Cycle					
trc	Read Cycle Time	70	-	ns	
taa	Address Access Time	-	70	ns	
tAcs1 , tAcs2	Chip Enable Access Time	-	70	ns	
tве	Byte Enable Access Time	-	70	ns	
toe	Output Enable to Output Valid	-	35	ns	
tclz1 , tclz2	Chip Enable to Output in Low Z	10	-	ns	
tвLz	Byte Enable to Output in Low Z	10	-	ns	
to∟z	Output Enable to Output in Low Z	5	-	ns	
tchz1 , tchz2	Chip Disable to Output in High Z	-	25	ns	
tвнz	Byte Disable to Output in High Z	-	25	ns	
tонz	Output Disable to Output in High Z	-	25	ns	
toн	Output Hold from Address Change	5	-	ns	
Write Cycle	·	-			
twc	Write Cycle Time	70	-	ns	
tcw1 , tcw2	Chip Enable to End of Write	60	-	ns	
tвw	Byte Enable to End of Write	60	-	ns	
tas	Address Setup Time	0	-	ns	
taw	Address Valid to End of Write	60	-	ns	
twp	Write Pulse Width	50	-	ns	
twr	Write Recovery Time	0	-	ns	
twнz	Write to Output in High Z	-	25	ns	
tow	Data to Write Time Overlap	30	-	ns	
tdн	Data Hold from Write Time	0	-	ns	
tow	Output Active from End of Write	5	-	ns	

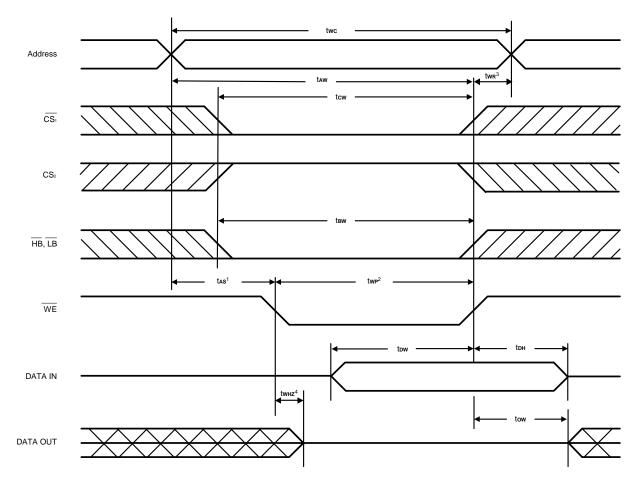
Note: tcLz1, tcLz2, tBLz, toLz, tcHz1, tcHz2, tBHz and toHz and twHz are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.



Timing Waveforms

Read Cycle 1^(1, 2, 4)

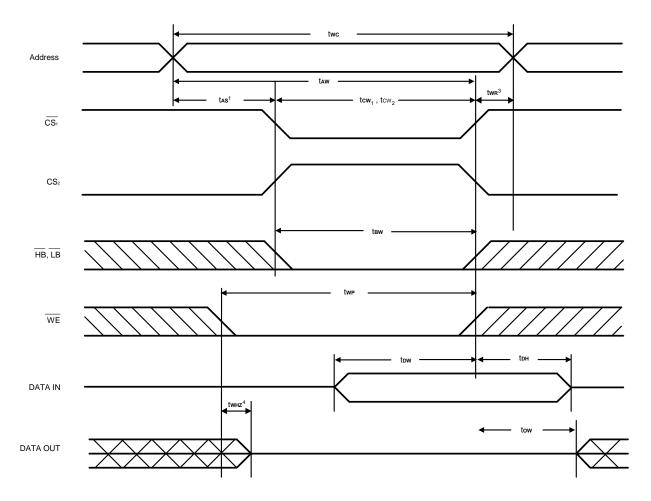
Read Cycle 2^(1, 2, 3)


Notes: 1. \overline{WE} is high for Read Cycle.

- 2. Device is continuously enabled $\overline{CS_1} = V_{IL}$, or $CS_2 = V_{IH}$, $\overline{HB} = V_{IL}$ and, or $\overline{LB} = V_{IL}$.
- 3. Address valid prior to or coincident with $\overline{CS_1}$ and (\overline{HB} and, or \overline{LB}) transition low or CS_2 transition High.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state. This parameter is sampled and not 100% tested.

Timing Waveforms (continued)

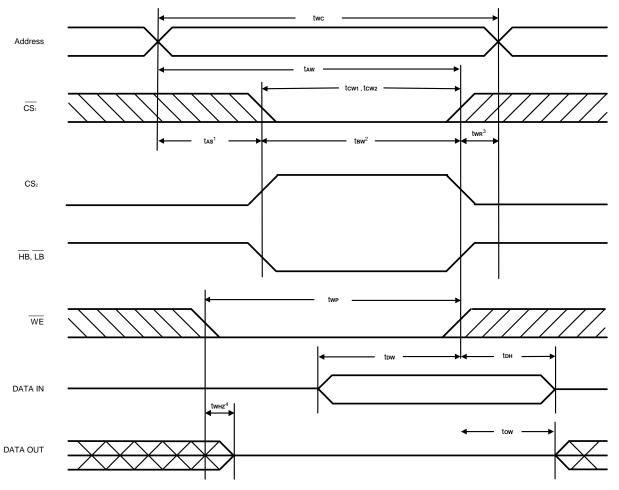
Write Cycle 1 (Write Enable Controlled)



Timing Waveforms (continued)

Write Cycle 2

(Chip Enable Controlled)



Timing Waveforms (continued)

Write Cycle 3

(Byte Enable Controlled)

- Notes: 1. tas is measured from the address valid to the beginning of Write.
 - 2. A Write occurs during the overlap (twp, tsw) of a low $\overline{CS1}$, \overline{WE} and (\overline{HB} and , or \overline{LB}) or a high CS2.
 - 3. two is measured from the earliest of $\overline{CS_1}$ or \overline{WE} or (\overline{HB} and , or \overline{LB}) going high or CS_2 going Low to the end of the Write cycle.
 - 4. \overline{OE} level is high or low.
 - 5. Transition is measured ±200mV from steady state. This parameter is sampled and not 100% tested.

AC Test Conditions

Input Pulse Levels	0.2V to VCC-0.2V
Input Rise And Fall Time	5 ns
Input and Output Timing Reference Levels	0.8V
Output Load	See Figures 1 and 2

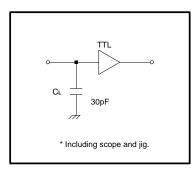
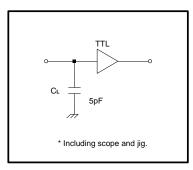
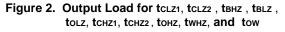
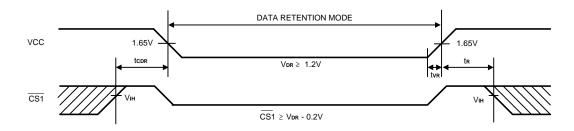




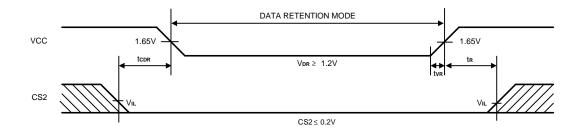
Figure 1. Output Load

Data Retention Characteristics (T_A = -25°C to 85°C)

Symbol	Parameter	Min.	Max.	Unit	Conditions	
Vdr	VCC for Data Retention	1.2	2.2	V	$\overline{CS_1} \ge VCC - 0.2V \text{ or}$ $CS_2 \le 0.2V \text{ or}$ $\overline{LB} = \overline{HB} \ge VCC - 0.2V$	
ICCDR	Data Retention Current	-	0.2*	μΑ	$\begin{array}{l} \mbox{VCC} = 1.2 \mbox{V}, \\ \hline \hline CS_1 \geq \mbox{VCC} - 0.2 \mbox{V} \mbox{ or } \\ \hline CS_2 \leq 0.2 \mbox{V} \mbox{ or } \\ \hline \hline \hline \mbox{LB} = \hline \hline \mbox{HB} \geq \mbox{VCC} - 0.2 \mbox{V} \\ \hline \mbox{Vin} \geq \mbox{VCC} - 0.2 \mbox{V} \mbox{ or } \\ \hline \mbox{Vin} \leq 0.2 \mbox{V} \end{array}$	
tcdr	Chip Disable to Data Retention Time	0	-	ns		
tr	Operation Recovery Time	trc	-	ns	See Retention Waveform	
tvr	VCC Rising Time from Data Retention Voltage to Operating Voltage	5	-	ms		


* LP62E16512 - 70LLT

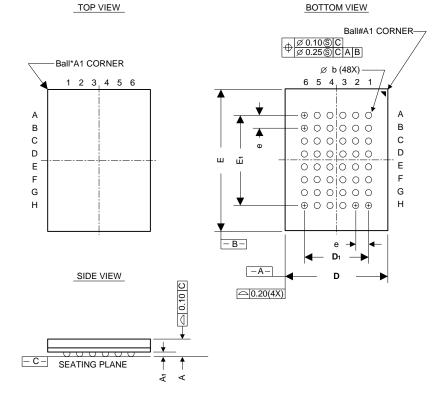
ICCDR: max. 0.1μ A at TA = 25°C


$$(0.2\mu A \text{ at } T_A = 0^{\circ}C \text{ to } + 40^{\circ}C)$$

Low VCC Data Retention Waveform (1) (CS1 Controlled)

Low VCC Data Retention Waveform (2) (CS2 Controlled)

Ordering Information


Part No.	Access Time(ns)	Operating Current Max.(mA)	Standby Current Max.(uA)	Package
LP62E16512U-70LLT	70	40	10	48L CSP

Package Information

48LD CSP (8 x 10 mm) Outline Dimensions (48TFBGA)

unit: mm

Cumhal	Dimensions in mm				
Symbol	MIN.	NOM.	MAX.		
А			1.20		
A1	0.20	0.25	0.30		
A2	0.48	0.53	0.58		
D	7.90	8.00	8.10		
E	9.90	10.00	10.10		
D1		3.75			
E1		5.25			
е	е				
b	0.30	0.35	0.40		

Notes:

- 1. THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC MO192 (LOW PROFILE BGA FAMILY).
- 2. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3. DIMENSION b IS MEASURED AT THE MAXIMUM.
- 4. THERE SHALL BE A MINIMUM CLEARANCE OF 0.25mm BETWEEN THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.
- 5. BALL PAD OPENING OF SUBSTRATE IS Φ 0.3mm (SMD) SUGGEST TO DESIGN THE PCB LAND SIZE AS Φ 0.3mm (NSMD)