

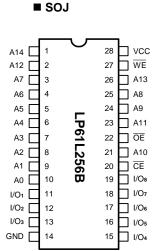
LP61L256B Series

32K X 8 Bit High SPEED LOW VCC CMOS SRAM

Features

structures.

- Single +3.3 volt power supply
- Access times: 12 ns (max.)
- Current: Operating: 100mA (max.) Standby: 10mA (max.)
- Full static operation, no clock or refreshing required

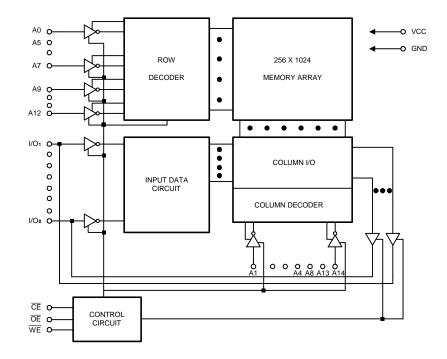

General Description

The LP61L256B is a high-speed, low-power 262,144-bit static random access memory organized as 32,768 words by 8 bits that operates on a single 3.3V power supply. Input and three-state outputs are TTL compatible and allow for direct interfacing with common system bus

- All inputs and outputs directly TTL compatible
- Common I/O using three-state output
- Data retention voltage: 2V (min.)
- Available in 28-pin SOJ and TSOP packages

Minimum standby power is drawn by this device when CE is at a high level, independent of the other input levels. Data retention is guaranteed at a power supply voltage as low as 2V.

Pin Configurations



TSOP

Pin No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Pin Name	ŌE	A11	A9	A8	A13	WE	vcc	A14	A12	A7	A6	A5	A4	A3
Pin No.	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Pin Name	A2	A1	A0	I/O 1	I/O 2	I/O3	GND	I/O 4	I/O 5	I/O6	I/O 7	I/O ₈	CE	A10

Block Diagram

Pin Descriptions -SOJ

Pin No.	Symbol	Description
1 - 10, 21, 23 - 26	A0 - A14	Address Inputs
11 - 13, 15 - 19	I/O1 - I/O8	Data Inputs/Outputs
14	GND	Ground
20	CE	Chip Enable
22	OE	Output Enable
27	WE	Write Enable
28	VCC	Power Supply (+3.3V)

Pin Description - TSOP

Pin No.	Symbol	Description
1	ŌĒ	Output Enable
2 - 5, 8 - 17, 28	A0 - A14	Address Inputs
6	WE	Write Enable
7	VCC	Power Supply
18 - 20, 22 - 26	I/O1 - I/O8	Data Inputs/Outputs
21	GND	Ground
27	CE	Chip Enable

Recommended DC Operating Conditions

 $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCC	Supply Voltage	3.0	3.3	3.6	V
GND	Ground	0	0	0	V
Viн	Input High Voltage	2.2	-	VCC + 0.3	V
Vil	Input Low Voltage	-0.3	0	0.8	V
CL	Output Load	-	-	30	pF
TTL	Output Load	-	-	1	-

Absolute Maximum Ratings*

 VCC to GND
 -0.5V to +4.6V

 IN, IN/OUT Volt to GND
 -0.3V to VCC +0.3V

 Operating Temperature, Topr
 0°C to +70°C

 Storage Temperature, Tstg
 -55°C to +125°C

 Power Dissipation, Pt
 1.0W

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	LP61L256B-12		Unit	Conditions
Symbol	Parameter	Min.	Max.	Unit	Conditions
u	Input Leakage Current	-	2	μA	VIN = GND to VCC
ILO	Output Leakage Current	-	2	μA	$\overline{CE} = V_{IH} \text{ or } \overline{OE} = V_{IH}$ Vivo = GND to VCC
lcc1 (1)	Dynamic Operating Current	-	100	mA	$\overline{CE} = VIL$, Ivo = 0 mA
lsв		-	20	mA	CE = Viн
ISB1	Standby Power Supply Current	-	10	mA	$\label{eq:cell} \begin{split} \overline{CE} &\geq VCC - 0.2V \\ V_{IN} &\geq VCC - 0.2V \text{ or} \\ V_{IN} &\leq 0.2V \end{split}$
Vol	Output Low Voltage	-	0.4	V	loL = 8 mA
Vон	Output High Voltage	2.4	-	V	Іон = -4 mA

Notes: 1. Icc1 is dependent on output loading, cycle rates, and Read/Write patterns.

Truth Table

Mode	CE	OE	WE	I/O Operation	Supply Current
Standby	Н	х	х	High Z	ISB, ISB1
Output Disable	L	н	н	High Z	lcc1
Read	L	L	н	Dout	lcc1
Write	L	х	L	Din	lcc1

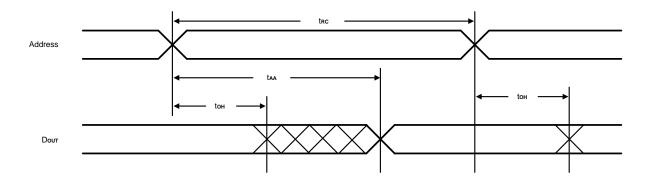
Capacitance (T_A = 25° C, f = 1.0 MHz)

Symbol	Parameter	Min.	Max.	Unit	Conditions
Cin*	Input Capacitance	-	10	pF	Vin = 0 V
Cı/o*	Input/Output Capacitance	-	10	pF	Vivo = 0 V

* These parameters are sampled and not 100% tested.

AC Characteristics (T_A = 0°C to + 70°C, VCC = $3.3V \pm 10\%$)

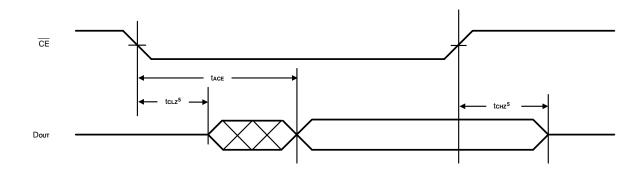
Symbol	Parameter	LP61L2	Unit	
-,		Min.	onic	
Read Cycle				
trc	Read Cycle Time	12	-	ns
taa	Address Access Time	-	12	ns
tace	Chip Enable Access Time	-	12	ns
toe	Output Enable to Output Valid	-	7	ns
tc∟z	Chip Enable to Output in Low Z	2	-	ns
to∟z	Output Enable to Output in Low Z	2	-	ns
tснz	Chip Disable to Output in High Z	0	7	ns
tонz	Output Disable to Output in High Z	2	6	ns
tон	Output Hold from Address Change	2	-	ns

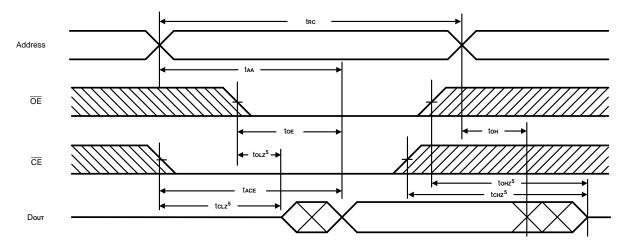

AC Characteristics (continued)

Symbol	Parameter	LP61L2	256B-12	Unit				
oymbol	i arameter	Min.	Unit					
Write Cycle	Write Cycle							
twc	Write Cycle Time	12	-	ns				
tcw	tcw Chip Enable to End of Write		-	ns				
tas	Address Setup Time of Write	0	-	ns				
taw	Address Valid to End of Write	10	-	ns				
twp	Write Pulse Width	8	-	ns				
twr	Write Recovery Time	0	-	ns				
twнz	Write to Output in High Z	0	7	ns				
tow	Data to Write Time Overlap	8	-	ns				
toн	Data Hold from Write Time	0	-	ns				
tow	Output Active from End of Write	5	-	ns				

Notes: tchz, tohz and twhz are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

Timing Waveforms


Read Cycle 1^(1, 2, 4)

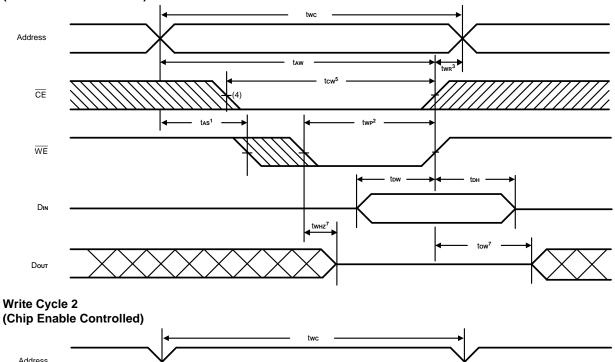


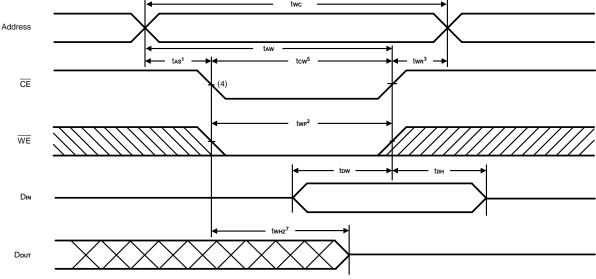
Timing Waveforms (continued)

Read Cycle 2^(1, 3, 4)

Read Cycle 3⁽¹⁾

Note: 1. $\overline{\text{WE}}$ is high for Read cycle.


- 2. Device is continuously enabled, $\overline{CE} = V_{IL}$.
- 3. Address valid prior to or coincident with \overline{CE} transition low.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state. This parameter is sampled and not 100% tested.



Timing Waveforms (continued)

AMIC

Write Cycle⁽⁶⁾ (Write Enable Controlled)

Notes: 1. tas is measured from address valid to the beginning of Write.

- 2. A Write occurs during the overlap (twp) of a low \overline{CE} and a low \overline{WE} .
- 3. twe is measured from \overline{CE} or \overline{WE} going high to the end of the Write cycle.
- 4. If the \overline{CE} low transition occurs simultaneously with the \overline{WE} low transition or after the \overline{WE} transition, outputs remain in a high impedance state.
- 5. tow is measured from \overline{CE} going low to the end of Write.
- 6. \overline{OE} is continuously low ($\overline{OE} = VIL$).
- 7. Transition is measured ±200mV from steady state. This parameter is sampled and not 100% tested.

LP61L256B Series

AC Test Conditions

Input Pulse Levels	0V - 3V
Input Rise and Fall Times	3 ns
Input and Current Timing Reference Levels	1.5V
Output Load	See Figures 1, 2 and 3

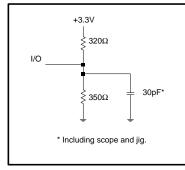
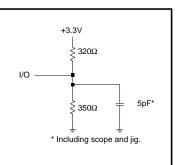



Figure 1. Output Load

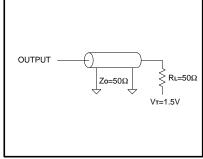
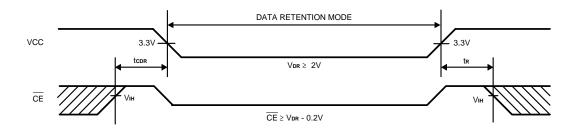


Figure 2. Output Load for tcLz, toLz, tcHz, toHz, twHz, and tow


Figure 3. Output Load

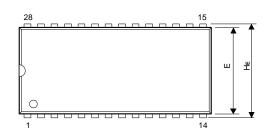
Data Retention Characteristics (T_A = 0° C to 70° C)

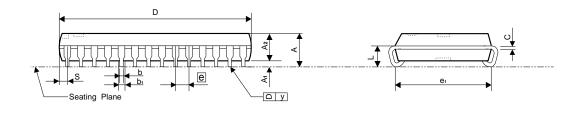
Symbol	Parameter	Min.	Max.	Unit	Conditions
Vdr	VCC for Data Retention	2.0	3.6	V	$\overline{CE} \ge VCC - 0.2V$
ICCDR	Data Retention Current	-	0.5	mA	$\begin{array}{l} \mbox{VCC} = 2 \mbox{V}, \ \overline{\mbox{CE}} \ \geq \mbox{VCC} \ - \ 0.2 \mbox{V} \\ \mbox{Vin} \geq \mbox{VCC} \ - \ 0.2 \mbox{V} \ or \\ \mbox{Vin} \leq \ 0.2 \mbox{V} \end{array}$
tcdr	Chip Disable to Data Retention Time		-	ns	See Retention Waveform
tr	Operation Recovery Time	5	-	ms	

Low VCC Data Retention Waveform

Ordering Information

Part No.	Access Time (ns)	Operating Current Max. (mA)	Standby Current Max. (mA)	Package
LP61L256BS-12	12	100	10	28L SOJ
LP61L256BV-12	12	100	10	28L TSOP




LP61L256B Series

Package Information

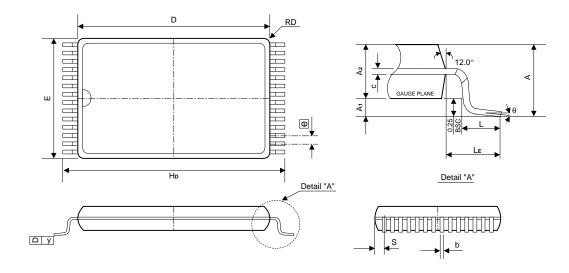
SOJ 28L Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm	
А	0.140 Max.	3.56 Max.	
A1	0.027 Min.	0.69 Min.	
A2	0.100 ± 0.005	2.54±0.13	
b1	0.028 Typ.	0.71 Тур.	
b	0.018 Typ.	0.46 Тур.	
С	0.010 Typ.	0.25 Тур.	
D	0.710 Typ. (0.730 Max.)	18.03 Typ. (18.54 Max.)	
E	0.300 ± 0.005	$7.62{\scriptstyle\pm}0.13$	
e	0.050 Typ.	1.27 Тур.	
€1	0.265 ± 0.010	6.73 ± 0.25	
He	0.337 ± 0.008	$8.56{\scriptstyle\pm}0.20$	
L	0.087 ± 0.10	2.21±0.25	
S	0.045 Max.	1.14 Max.	
у	0.004 Max.	0.10 Max.	

Notes:

1. The maximum value of dimension D includes end flash.


- 2. Dimension E does not include resin fins.
- 3. Dimension e1 is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

unit: inches/mm

Package Information

TSOP 28L TYPE I (8 X 13.4mm) Outline Dimensions

Symbol	Dimensions in inches	Dimensions in mm
А	0.049 Max.	1.25 Max.
A1	0.002 Min.	0.05 Min.
A2	0.039 ± 0.002	1.00 ± 0.05
b	0.0079 ± 0.0012	0.20 ± 0.03
с	0.006 ± 0.0003	0.15 ± 0.008
D	0.465 ± 0.004	$11.80{\scriptstyle\pm}0.10$
E	0.315 ± 0.004	8.00±0.10
е	0.0217 TYP.	0.55 TYP.
Ho	0.528 ± 0.008	13.40 ± 0.20
L	0.02 ± 0.008	0.50 ± 0.20
Le	0.0266 TYP.	0.675 TYP.
S	0.0167 TYP.	0.425 TYP.
у	0.004 Max.	0.10 Max.
θ	0° ~ 6°	0° ~ 6°

Notes:

1. The maximum value of dimension D includes end flash.

- 2. Dimension E does not include resin fins.
- 3. Dimension e1 is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.