

Preliminary

1M X 16 Bit Low Voltage Super RAM™

Document Title

1M X 16 Bit Low Voltage Super RAM^{TM}

Revision History

Rev. No.	<u>History</u>	Issue Date	Remark
0.0	Initial issue	November 30, 2001	Preliminary
0.1	Add tasc, tahc, tceh, tweh	July 31, 2002	
0.2	Change VCCmax from 3.1V to 3.3V	October 21, 2002	
	Change tcw from 60ns to 70ns for -70 and from 70ns to 85ns		
	for -85		
	Change twe from 50ns to 55ns for -70 and from 55ns to 60ns		
	for -85		
	Change twnz from 20ns to 25ns for -70 and from 20ns to 25ns		
	for -85		
0.3	Change power on CE1=50ns	November 7, 2002	
	Change avoid timing		
0.4	Change toнz from 25ns to 14ns	March 4, 2003	

Preliminary

1M X 16 Bit Low Voltage Super RAM™

Features

Operating voltage: 2.7V to 3.3VAccess times: 70 ns (max.)

Current:

A64S0616 series: Operating: 35mA (max.)

Power Down Standby: 10µA (max.)

■ Fully SRAM compatible operation

■ Full static operation, no clock or refreshing required

General Description

The A64S0616 is a low operating current 16,777,216-bit Super RAM organized as 1,048,576 words by 16 bits and operates on low power supply voltage from 2.7V to 3.3V. It is built using AMIC's high performance CMOS DRAM process.

Using hidden refresh technique, the A64S0616 provides a 100% compatible asynchronous interface.

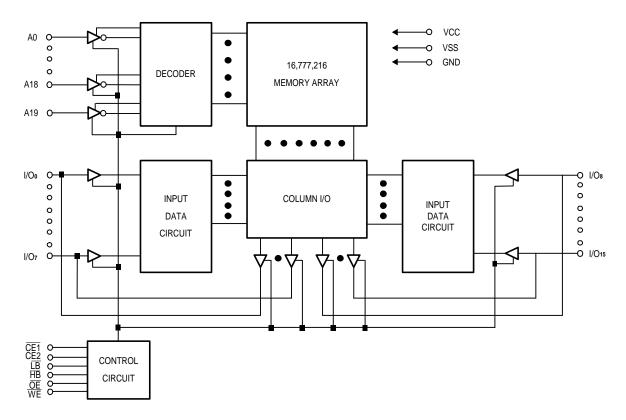
- All inputs and outputs are directly TTL-compatible
- Common I/O using three-state output
- Industrial operating temperature range: -25°C to +85°C for -I
- Available in 48-ball Mini BGA (6X8) package.

Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

The chip enable input is provided for POWER-DOWN, device enable. Two byte enable inputs and an output enable input are included for easy interfacing.

This A64S0616 is suited for low power application such as mobile phone and PDA or other battery-operated handheld device.

Pin Configuration


■ Mini BGA (6X8) Top View

	1	2	3	4	5	6
Α	LB	ŌE	A0	A1	A2	CE2
В	I/O ₈	HB	А3	A4	CE1	I/O ₀
С	I/O ₉	I/O ₁₀	A5	A6	I/O ₁	I/O ₂
D	VSS	I/O ₁₁	A17	A7	I/O ₃	VCC
Е	VCC	I/O ₁₂	GND	A16	I/O ₄	VSS
F	I/O ₁₄	I/O ₁₃	A14	A15	I/O ₅	I/O ₆
G	I/O ₁₅	A19	A12	A13	WE	I/O ₇
Н	A18	A8	A9	A10	A11	NC

A64S0616G

Block Diagram

Pin Description

Symbol	Description
A0 - A19	Address Inputs
CE1	Chip Enable 1 Input
CE2	Chip Enable 2 Input
I/O0 - I/O15	Data Input/Outputs
WE	Write Enable Input
LB	Byte Enable Input (I/O ₀ to I/O ₇)
HB	Byte Enable Input (I/O ₈ to I/O ₁₅)
ŌĒ	Output Enable Input
VCC	Power
VSS	Ground
GND	Ground
NC	No Connection

Recommended DC Operating Conditions

 $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ or } -25^{\circ}C \text{ to } 85^{\circ}C)$

Symbol	Parameter	Min.	Max.	Unit
VCC	Supply Voltage	2.7	3.3	V
VSS	Ground	0	0	V
GND	Ground	0	0	V
Vih	Input High Voltage	2.4	VCC + 0.3	V
VIL	Input Low Voltage	-0.3	+0.6	V
CL	Output Load	-	30	pF
TTL	Output Load	-	1	-

Absolute Maximum Ratings*

VCC to GND	0.5V to +4.6V
IN, IN/OUT Volt to GND	0.5V to VCC + 0.5V
Storage Temperature, Tstg	55°C to +125°C
Power Dissipation, Рт	
Soldering Temp. & Time	

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics $(TA = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ or } -25^{\circ}C \text{ to } 85^{\circ}C, VCC = 2.7V \text{ to } 3.3V, GND = 0V)$

Symbol	Parameter	-70		-85		Unit	Conditions
		Min.	Max.	Min.	Max.		
lu	Input Leakage Current	•	1	-	1	μΑ	Vin = GND to VCC
	Output Leakage Current	-	1	-	1	μА	$\overline{\text{CE1}}$ = Vih or $\overline{\text{CE2}}$ = Vil or $\overline{\text{OE}}$ = Vih or $\overline{\text{WE}}$ = Vil Vivo = GND to VCC
lcc1	Dynamic Operating	ı	35	-	30	mA	Min. Cycle, Duty = 100% CE1 = VIL, CE2 = VIH Ivo = 0mA
lcc2	Current	-	5	-	5	mA	CE1 = VIL, CE2 = VIH VIH = VCC, VIL = 0V, f = 1MHz, Ivo = 0mA

DC Electrical Characteristics (continued)

Symbol	Parameter	-70		-85		Unit	Conditions
		Min.	Max.	Min.	Max.		
ls _B 1	Standby Power Supply Current	-	100	-	100	μΑ	CE1 ≥ VCC - 0.2V CE2 ≥ VCC - 0.2V Vin ≥ 0V
ISB2	Power Down Mode Standby Current	-	10	-	10	μΑ	CE2 ≤ 0.2V
Vol	Output Low Voltage	-	0.4	-	0.4	V	loL = 2.1mA
Vон	Output High Voltage	2.4	-	2.4	-	V	loн = -1.0mA

Truth Table

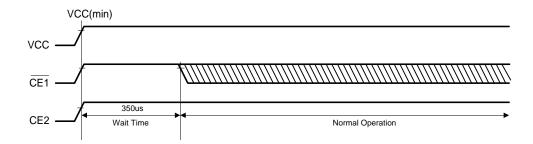
CE1	CE2	ŌĒ	WE	LB	НВ	I/O ₀ to I/O ₇ Mode	I/O ₈ to I/O ₁₅ Mode	VCC Current
Н	Н	Х	Х	Х	Х	Not selected	Not selected	Isb1
Х	Н	Х	Х	Н	Н	Not selected	Not selected	Isb1
Х	L	Х	Х	Х	Х	Not selected	Not selected	ISB2
				L	L	Read	Read	lcc1, lcc2
L	Н	L	Н	L	Н	Read	High - Z	lcc1, lcc2
				Н	L	High - Z	Read	lcc1, lcc2
				L	L Write		Write	lcc1, lcc2
L	Н	Х	L	L	Н	Write	Not Write/Hi - Z	lcc1, lcc2
				Н	L	Not Write/Hi - Z	Write	lcc1, lcc2
L	Н	Н	Н	Х	Х	High - Z	High - Z	lcc1, lcc2
		, ,	, ,	,	χ	High - Z	High - Z	lcc1, lcc2

Note: X = H or L

Capacitance (T_A = 25° C, f = 1.0MHz)

Symbol	Parameter	Min.	Max.	Unit	Conditions
Cin*	Input Capacitance	-	10	pF	Vin = 0V
Cı/o*	Input/Output Capacitance	-	10	pF	Vvo = 0V

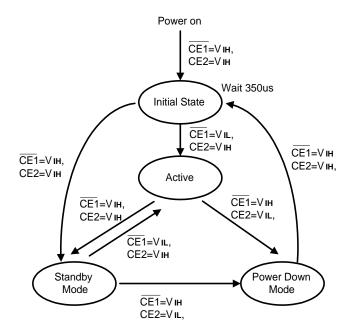
^{*} These parameters are sampled and not 100% tested.



Initialization

The A64S0616 is initialized in the power-on sequence according to the following.

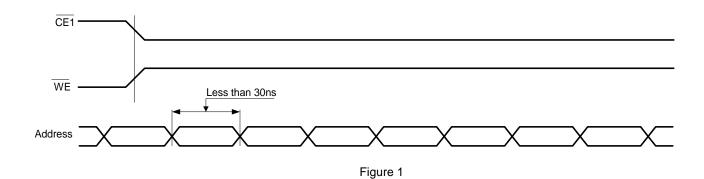
- 1. To stabilize internal circuits, after turning on the power, a 350µs or longer wait time must precede any signal toggling.
- 2. After the wait time, it can be normal operation.


Power on Chart

Notes: 1. Following power application, make CE2 and $\overline{\text{CE1}}$ high level during the wait time interval.

2. After power on sequence, the normal operating CE2 must keep at high.

Power on / Depower down State Machine

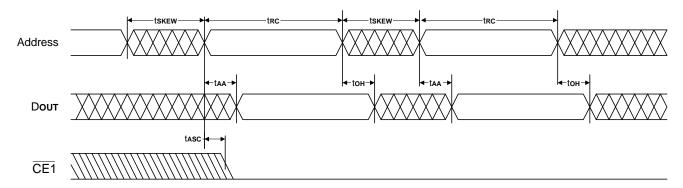

Standby Mode Characteristics

Standby Mode	Memory Cell Data Hold	Standby Supply Current (μA)
Standby	Valid	100 (Is _{B1})
Power down	Invalid	10 (Is _{B2})

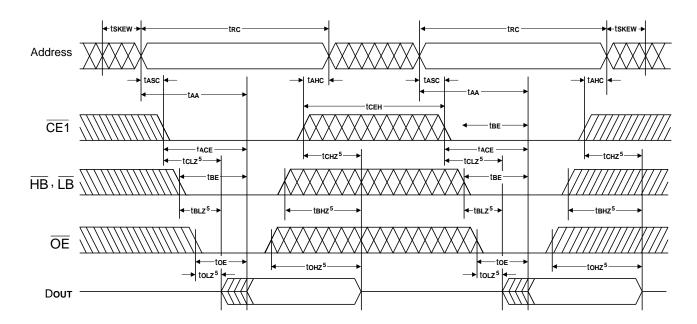
Avoid Timing

Following figure 1 is show you an abnormal timing which is not supported on Super RAM.

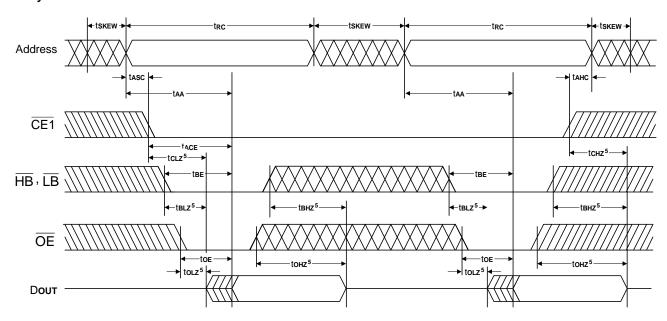
AC Characteristics (Ta = 0° C to +70°C or -25°C to 85°C, VCC = 2.7V to 3.3V)


Symbol	Parameter	-	70	-8	Unit	
		Min.	Max.	Min.	Max.	
Read Cycle		-	•		J	
trc	Read Cycle Time	70	-	85	-	ns
tskew	Address Skew	-	10	-	10	ns
taa	Address Access Time	-	70	-	85	ns
tace	Chip Enable Access Time	-	70	-	85	ns
tве	Byte Enable Access Time	-	70	-	85	ns
toe	Output Enable to Output Valid	-	35	-	45	ns
tcLz	Chip Enable to Output in Low Z	10	-	10	-	ns
tвLz	Byte Enable to Output in Low Z	5	-	5	-	ns
toLz	Output Enable to Output in Low Z	5	-	5	-	ns
tcнz	Chip Disable to Output in High Z	0	25	0	35	ns
tвнz	Byte Disable to Output in High Z	0	25	0	35	ns
tонz	Output Disable to Output in High Z	0	14	0	14	ns
tон	Output Hold from Address Change	10	-	10	-	ns
tasc	Address Setup to CE1 Low	0	-	0	-	ns
tanc	Address Hold Time from CE1 High	0	-	0	-	ns
tсен	CE1 High Pulse With	10	-	10	-	ns
Write Cycle						
twc	Write Cycle Time	70	-	85	-	ns
tskew	Address Skew	-	10	-	10	ns
tcw	Chip Enable to End of Write	70	-	85	-	ns
tвw	Byte Enable to End of Write	60	-	70	-	ns
tas	Address Setup Time	0	-	0	-	ns
taw	Address Valid to End of Write	60	-	70	-	ns
twp	Write Pulse Width	55	-	60	-	ns
twr	Write Recovery Time	0	-	0	-	ns
twnz	Write to Output in High Z	-	25	-	25	ns
tow	Data to Write Time Overlap	30	-	35	-	ns
tон	Data Hold from Write Time	0	-	0	-	ns
tow	Output Active from End of Write	5	-	5	-	ns
tasc	Address Setup to CE1 Low	0	-	0	-	ns
tанс	Address Hold Time from CE1 High	0	-	0	-	ns
tсен	CE1 High Pulse With	10	-	10	-	ns
twen	WE High Pulse With	10	-	10	-	ns

Note: tchz, tbhz and tohz and twhz are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.


Timing Waveforms

Read Cycle 1^(1, 2, 4, 6)

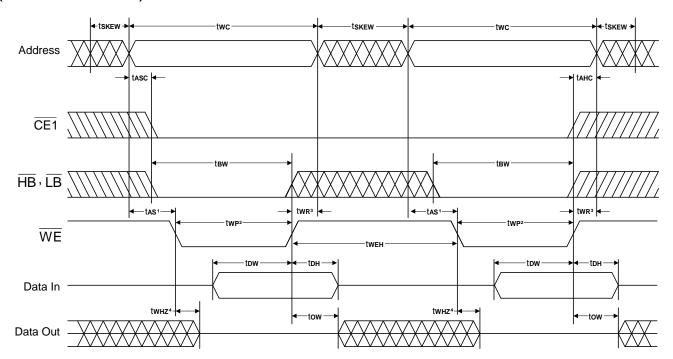


Read Cycle 2-1^(1, 3, 6)

Read Cycle 2-2^(1, 3, 6)

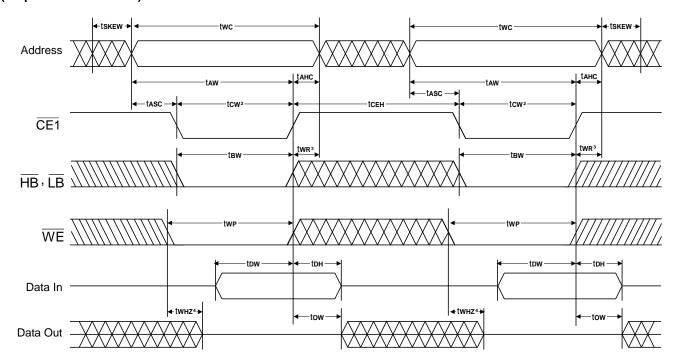
Notes: 1. WE is high for Read Cycle.

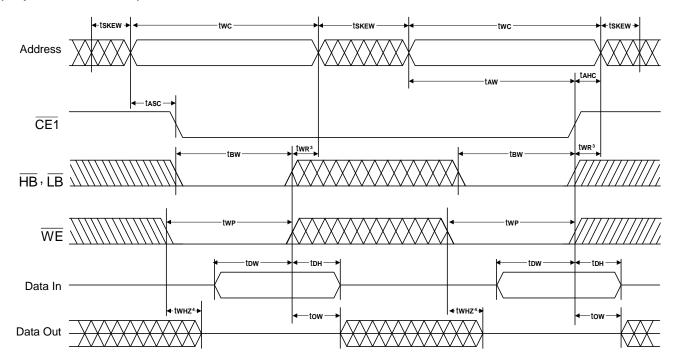
- 2. Device is continuously enabled $\overline{CE}1 = V_{IL}$, $\overline{HB} = V_{IL}$ and, or $\overline{LB} = V_{IL}$.
- 3. Address valid prior to or coincident with $\overline{CE1}$ and $(\overline{HB}$ and, or \overline{LB}) transition low.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured $\pm 500 \text{mV}$ from steady state. This parameter is sampled and not 100% tested.
- 6. CE2 is high for Read Cycle.



Timing Waveforms (continued)

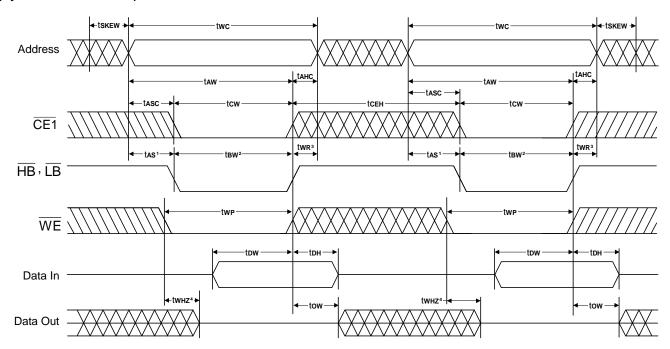
Write Cycle 1-1⁽⁶⁾ (Write Enable Controlled)

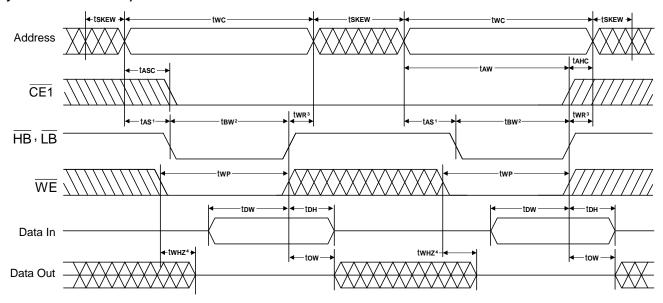

Write Cycle 1-2⁽⁶⁾ (Write Enable Controlled)



Timing Waveforms (continued)

Write Cycle 2-1⁽⁶⁾ (Chip Enable Controlled)


Write Cycle 2-2⁽⁶⁾ (Chip Enable Controlled)



Timing Waveforms (continued)

Write Cycle 3-1⁽⁶⁾ (Byte Enable Controlled)

Write Cycle 3-2⁽⁶⁾ (Byte Enable Controlled)

Notes: 1. tas is measured from the address valid to the beginning of Write.

- 2. A Write occurs during the overlap (twp, tbw) of a low $\overline{CE1}$, \overline{WE} and (\overline{HB} and, or \overline{LB}).
- 3. two is measured from the earliest of $\overline{CE}1$ or \overline{WE} or (\overline{HB}) and, or \overline{LB} going high to the end of the Write cycle.
- 4. OE level is high or low.
- 5. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.
- 6. CE2 is high for Write Cycle.

AC Test Conditions

Input Pulse Levels	0.4V to 2.4V
Input Rise And Fall Time	5 ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Figures 3 and 4



Figure 3. Output Load

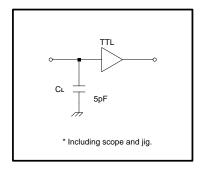
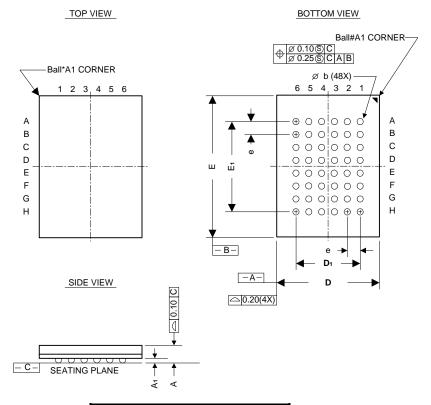


Figure 4. Output Load for tclz, tolz, tchz, tohz, twhz, and tow

Ordering Information

Part No.	Access Time (ns)	Operating Current Max. (mA)	Power Down Mode Standby Current Max. (mA)	Package
A64S0616G-70	70	35	10	48B Mini BGA
A64S0616G-85	85	30	10	48B Mini BGA
A64S0616G-70I	70	35	10	48B Mini BGA
A64S0616G-85I	85	30	10	48B Mini BGA


Note: -I is for industrial operating temperature range

Package Information

48LD CSP (6 x 8 mm) Outline Dimensions (48TFBGA)

unit: mm

Compleal	Dimensions in mm			
Symbol	MIN.	NOM.	MAX.	
Α			1.20	
A ₁	0.20	0.25	0.30	
D	5.90	6.00	6.10	
Е	7.90	8.00	8.10	
D1		3.75		
E ₁		5.25		
е		0.75		
b	0.30	0.35	0.40	

Note:

- 1. THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC MO192 (LOW PROFILE BGA FAMILY).
- 2. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3. DIMENSION b IS MEASURED AT THE MAXIMUM.

 THERE SHALL BE A MINIMUM CLEARANCE OF 0.25mm BETWEEN THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.
- 4. BALL PAD OPENING OF SUBSTRATE IS Φ 0.3mm (SMD) SUGGEST TO DESIGN THE PCB LAND SIZE AS Φ 0.3mm (NSMD)