

AS7C1026 AS7C31026

Features

- AS7C1026 (5V version)
- AS7C31026 (3.3V version)
- Industrial and commercial versions
- Organization: 65,536 words x 16 bits
- Center power and ground pins for low noise
- High speed
 - 10/12/15/20 ns address access time
 - 5/6/8/10 ns output enable access time
- Low power consumption: ACTIVE
 - 880 mW (AS7C1026) / max @ 12 ns
 - 396 mW (AS7C31026) / max @ 12 ns

- Low power consumption: STANDBY
 28 mW (AS7C1026) / max CMOS I/O
 - 18 mW (AS7C31026) / max CMOS I/O
- 2.0V data retention
- Easy memory expansion with CE, OE inputs
- TTL-compatible, three-state I/O
- JEDEC standard packaging
 - 44-pin 400 mil SOJ
 - 44-pin 400 mil TSOP II
 - 48-ball 6 mm \times 8 mm CSP mBGA
- ESD protection \geq 2000 volts
- Latch-up current $\geq 200 \text{ mA}$

44-Pin SOJ, TS	OP II (400 mil)
44-Pin SOJ, TS A4 1 O A3 2 A2 3 A1 4 A0 5 CE 6 I/00 7 I/01 9 I/02 9 I/03 11 CND 12 I/04 13 I/05 16 WE 17 A14 19	OP II (400 mil) 44 A5 43 A6 42 A7 41 OE 40 UB 39 IB 38 1/015 37 1/014 36 1/013 35 1/014 35 1/012 34 GND 32 1/011 31 1/010 30 1/09 29 1/08 28 NC 27 A8 26 A9
A13 20 A12 21 NC 22	25 A10 24 A11 23 NC

Pin arrangement

		Dun o			" О ~	
	1	2	3	4	5	6
А	LB	OE	A ₀	A ₁	A ₂	NC
В	I/08	UB	A3	A4	CE	I/O0
С	I/09	I/010	A5	A6	I/01	I/O2
D	55	I/011	NC	A7	I/03	V _{DD}
Е	V _{DD}	I/012	NC	NC	I/04	V _{SS}
F	I/014	I/013	A14	A15	I/05	I/06
G	I/015	NC	A12	A13	WE	I/07
Η	NC	A8	A9	A10	A11	NC

Selection guide

		AS7C31026-10	AS7C1026-12 AS7C31026-12	AS7C1026-15 AS7C31026-15	AS7C1026-20 AS7C31026-20	Unit				
Maximum address access time		10	12	15	20	ns				
Maximum output enable access time		5	6	8	10	ns				
Maximum approximg our	AS7C1026	-	160	150	140	mA				
Maximum operating current	AS7C31026	125	110	100	5 AS7C31026-20 20 10	mA				
Maximum CMOS standby surront	AS7C1026	-	3	3	3	mA				
Maximum CMOS standby current	AS7C31026	3	3	3	3	mA				

Shaded areas indicate preliminary information.

ALLIANCE SEMICONDUCTOR

Copyright ©1999 Alliance Semiconductor. All rights reserved.

1

Functional description

The AS7C1026 and AS7C31026 are high-performance CMOS 1,048,576-bit Static Random Access Memory (SRAM) devices organized as 65,536 words x 16 bits. They are designed for memory applications where fast data access, low power, and simple interfacing are desired.

Equal address access and cycle times (t_{AA} , t_{RC} , t_{WC}) of 10/12/15/20 ns with output enable access times (t_{OE}) of 5/6/8/10 ns are ideal for high-performance applications.

When CE is high the devices enter stanby mode. The AS7C1026 is guaranteed not to exceed 28 mW power consumption in CMOS standby mode. The devices also offer 2.0V data retention.

A write cycle is accomplished by asserting write enable (WE) and chip enable (CE). Data on the input pins I/O0–I/O15 is written on the rising edge of WE (write cycle 1) or CE (write cycle 2). To avoid bus contention, external devices should drive I/O pins only after outputs have been disabled with output enable (OE) or write enable (WE).

A read cycle is accomplished by asserting output enable (OE) and chip enable (CE), with write enable (WE) high. the chips drive I/O pins with the data word referenced by the input address. When either chip enable or output enable is inactive, or write enable is active, output drivers stay in high-impedance mode.

The devices provide multiple center power and ground pins, and separate byte enable controls, allowing individual bytes to be written and read. LB controls the lower bits, I/O0–I/O7, and UB controls the higher bits, I/O8–I/O15.

All chip inputs and outputs are TTL-compatible, and operation is from a single 5V supply (AS7C1026) or 3.3V supply (AS7C31026). the device is packaged in common industry standard packages. Chip scale BGA packaging, easy to use in manufacturing, provides the smallest possible footprint. This 48-ball JEDEC-registered package has a ball pitch of 0.75 mm and external dimensions of 8 mm \times 6 mm.

Parameter		Symbol	Min	Max	Unit
Valtage on V relative to CND	AS7C1026	V _{t1}	-0.50	+7.0	V
Voltage on V_{CC} relative to GND	AS7C31026	V _{t1}	-0.50	+5.0	V
Voltage on any pin relative to GND		V _{t2}	-0.50	V _{CC} +0.50	V
Power dissipation		PD	_	1.0	W
Storage temperature (plastic)		T _{stg}	-65	+150	°C
Ambient temperature with VCC applied		T _{bias}	-55	+125	°C
DC current into outputs (low)		I _{OUT}	_	20	mA

Absolute maximum ratings

Note: Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside those indicated in the operational sections of this spec ification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Truth table

CE	WE	OE	LB	UB	I/00-I/07	I/08–I/015	Mode
Н	Х	Х	Х	Х	High Z	High Z	Standby (I _{SB}), I _{SBI})
L	Н	L	L	Н	D _{OUT}	High Z	Read I/O0–I/O7 (I _{CC})
L	Н	L	Н	L	High Z	D _{OUT}	Read I/O8–I/O15 (I _{CC)}
L	Н	L	L	L	D _{OUT}	D _{OUT}	Read I/O0–I/O15 (I _{CC})
L	L	Х	L	L	D _{IN}	D _{IN}	Write I/O0–I/O15 (I _{CC})
L	L	Х	L	Н	D _{IN}	High Z	Write I/O0–I/O7 (I _{CC})

CE	I	WE	OE	LB	UB	I/00–I/07	I/08–I/015	Mode
L		L	Х	Н	L	High Z	D _{IN}	Write I/O8–I/O15 (I _{CC})
L L		H X	H X	X H	X H	High Z	High Z	Output disable (I _{CC})

Key: H = High, L = Low, X = don't care.

Recommended operating conditions

Parameter		Device	Symbol	Min	Тур	Max	Unit
		AS7C1026	V _{CC}	4.5	5.0	5.5	V
Supply voltage		AS7C31026 (-10)		3.15	3.3	3.6	V
		AS7C31026 (12/15/20)	V _{CC}	3.0	3.3	3.6	V
				2.2	-	$V_{CC} + 0.5$	V
Input voltage		AS7C31026	V _{IH}	2.0	I	$V_{CC} + 0.5$	V
			V _{IL}	-0.5^{\dagger}	I	0.8	V
Ambient operating temperature	commercial		T _A	0	-	70	°C
	industrial		T _A	-40	-	85	°C

 † V_{IL} min = -3.0V for pulse width less than t_{RC}/2.

DC operating characteristics (over the operating range)

				-]	10	-	12	-	15	-2	20	
Parameter	Sym	Test conditions	Device	Min	Max	Min	Max	Min	Max	Min	Max	Unit
Input leakage current	I _{LI}	$V_{CC} = Max$ $V_{IN} = GND \text{ to } V_{CC}$		-	1	_	1	-	1	_	1	μΑ
Output leakage current	I _{lo}	$\label{eq:V_CC} \begin{array}{l} V_{CC} = Max \\ \overline{CE} = V_{IH}, \\ V_{OUT} = GND \text{ to } V_{CC} \end{array}$		-	1	_	1	_	1	_	1	μΑ
Operating	т	$V_{CC} = Max, \overline{CE} \le V_{IL}$	AS7C1026	Ι	-	-	160	-	150	-	140	mA
power supply current	I _{CC}	outputs open, $f = f_{Max} = 1/t_{RC}$	AS7C1026 160 - 150 - AS7C31026 - 125 - 110 - 100 -	90	mA							
		$V_{CC} = Max, \ \overline{CE} \le V_{IL},$	AS7C1026	-	-	-	40	-	40	- 40		
Standby power supply	I _{SB}	outputs open, $f = f_{Max} = 1/t_{RC}$	AS7C31026	-	25	-	25	-	25	-	25	mA
current		$V_{CC} = Max, \overline{CE} \ge V_{CC} - 0.2V,$	AS7C1026	-	-	-	10	-	10	-	10	
	I _{SB1}	$\label{eq:VIN} \begin{split} V_{IN} &\leq GND + 0.2V \text{ or} \\ V_{IN} &\geq V_{CC} 0.2V \text{, } f = 0 \end{split}$	AS7C31026	-	10	-	10	-	10	-	- 140 n - 90 n - 40 n - 25 n - 10 n - 10 n	mA
Output	V _{OL}	$I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}$		-	0.4	-	0.4	-	0.4	-	0.4	V
voltage	V _{OH}	$I_{OH} = -4 \text{ mA}, V_{CC} = \text{Min}$		2.4	-	2.4	-	2.4	-	2.4	-	V

Shaded areas indicate preliminary information.

Capacitance (f = 1MHz, $T_a = 25$ °C, $V_{CC} = NOMINAL$)

Parameter	Symbol	Signals	Test conditions	Max	Unit
Input capacitance	C _{IN}	A, CE, WE, OE, LB, UB	$V_{IN} = 0V$	5	pF
I/O capacitance	C _{I/O}	I/O	$V_{IN} = V_{OUT} = 0V$	7	pF

SRAM

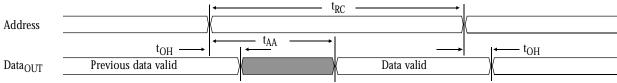
DID 11-20011-A. 5/22/00

ALLIANCE SEMICONDUCTOR

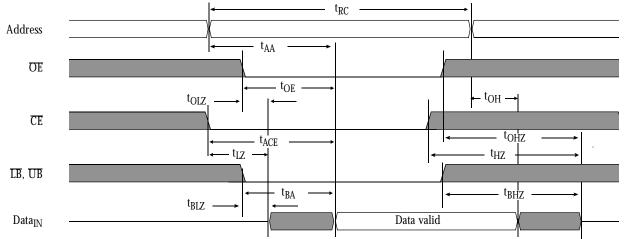
Read cycle (over the operating range)

		-10		-1	-12		-15		-20		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
Read cycle time	t _{RC}	10	-	12	-	15	-	20	-	ns	
Address access time	t _{AA}	-	10	Ι	12	-	15	Ι	20	ns	3
Chip enable (CE) access time	t _{ACE}	-	10	-	12	-	15	-	20	ns	3
Output enable (OE) access time	t _{OE}	-	5	-	5	-	8	-	10	ns	
Output hold from address change	t _{OH}	4	-	4	-	4	-	4	-	ns	5
CE Low to output in low Z	t _{CLZ}	0	_	0	-	0	_	0	_	ns	4, 5
CE High to output in high Z	t _{CHZ}	-	6	-	6	-	6	-	8	ns	4, 5
OE Low to output in low Z	t _{OLZ}	0	-	0	-	0	-	0	-	ns	4, 5
Byte select access time	t _{BA}	_	5	-	6	_	8	_	10	ns	
Byte select Low to low Z	t _{BLZ}	0	_	0	-	0	_	0	_	ns	4,5
Byte select High to high Z	t _{BHZ}	-	5	-	6	-	6	-	8	ns	4,5
OE High to output in high Z	t _{OHZ}	_	5	-	6	_	6	-	8	ns	4, 5
Power up time	t _{PU}	0	_	0	-	0	_	0	_	ns	4, 5
Power down time	t _{PD}	-	10	-	12	-	15	-	20	ns	4, 5

Shaded areas indicate preliminary information.


Key to switching waveforms

- Rising input

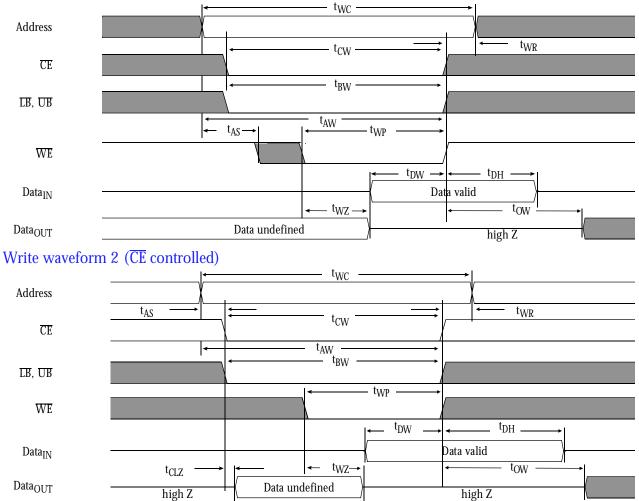

____ Falling input

Undefined output/don't care

Read waveform 1 (address controlled)

Read waveform 2 (OE, CE, UB, LB controlled)

ALLIANCE SEMICONDUCTOR

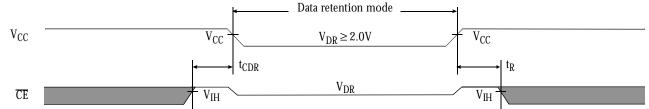


Write cycle (over the operating range)

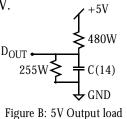
	-1	10	-12		-15		-20			
Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Unit	Notes
t _{WC}	10	-	12	-	15	-	20	-	ns	
t _{CW}	8	-	8	-	12	-	13	-	ns	
t _{AW}	8	-	9	-	10	-	12	-	ns	
t _{AS}	0	-	0	-	0	-	0	-	ns	
t _{WP}	8	-	8	-	10	-	12	-	ns	
t _{AH}	0	-	0	-	0	-	0	-	ns	
t _{DW}	5	-	6	-	8	-	10	-	ns	
t _{DH}	0	-	0	-	0	-	0	-	ns	5
t _{WZ}	-	6	-	6	-	6	-	8	ns	4, 5
t _{OW}	1	-	1	_	1	-	2	-	ns	4, 5
t _{BW}	8	-	8	_	9	-	12	-	ns	
	twc t _{CW} t _{AW} t _{AS} t _{WP} t _{AH} t _{DW} t _{DH} t _{WZ} t _{OW}	$\begin{tabular}{ c c c c } \hline Symbol & Min \\ \hline t_{WC} & 10 \\ \hline t_{CW} & 8 \\ \hline t_{AW} & 8 \\ \hline t_{AW} & 8 \\ \hline t_{AS} & 0 \\ \hline t_{WP} & 8 \\ \hline t_{AH} & 0 \\ \hline t_{DW} & 5 \\ \hline t_{DH} & 0 \\ \hline t_{WZ} & - \\ \hline t_{OW} & 1 \\ \hline t_{W} & 2 \\ \hline t_{W} & 2 \\ \hline t_{W} & 1 \\ \hline t_{W} & 2 \\ \hline t_{W} & 2 \\ \hline t_{W} & 2 \\ \hline t_{W} & 1 \\ \hline t_{W} & 2 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ c c c c c c c } \hline Symbol & \hline Min & Max & Min \\ \hline t_{WC} & 10 & - & 12 \\ \hline t_{CW} & 8 & - & 8 \\ \hline t_{AW} & 8 & - & 9 \\ \hline t_{AS} & 0 & - & 0 \\ \hline t_{WP} & 8 & - & 8 \\ \hline t_{AH} & 0 & - & 0 \\ \hline t_{DW} & 5 & - & 6 \\ \hline t_{DW} & 5 & - & 6 \\ \hline t_{DH} & 0 & - & 0 \\ \hline t_{WZ} & - & 6 & - \\ \hline t_{OW} & 1 & - & 1 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

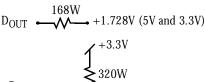
Shaded areas indicate preliminary information.

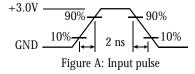
Write waveform 1 (WE controlled)

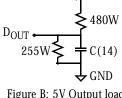

ALLIANCE SEMICONDUCTOR

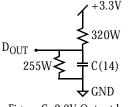
Data retention characteristics (over the operating range)


Parameter	Symbol	Test conditions	Min	Max	Unit
V_{CC} for data retention	V _{DR}		2.0	-	V
Data retention current	I _{CCDR}	$\begin{array}{l} V_{CC} = 2.0V\\ \overline{CE} \geq V_{CC} - 0.2V\\ V_{IN} \geq V_{CC} - 0.2V \text{ or }\\ V_{IN} \leq 0.2V \end{array}$	-	500	μΑ
Chip deselect to data retention time	t _{CDR}		0	-	ns
Operation recovery time	t _R		t _{RC}	-	ns
Input leakage current	I _{LI}		_	1	μΑ

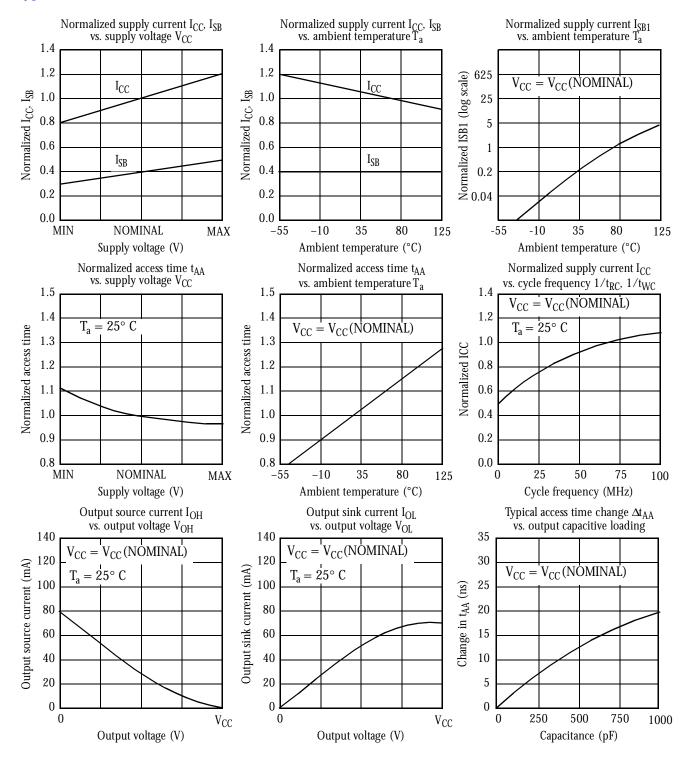

Data retention waveform




AC test conditions


- Output load: see Figure B or Figure C, except as noted.
- Input pulse level: GND to 3.0V. See Figure A.
- Input rise and fall times: 2 ns. See Figure A.
- Input and output timing reference levels: 1.5V.

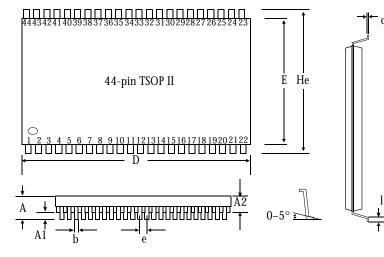
Thevenin Equivalent:


Figure C: 3.3V Output load

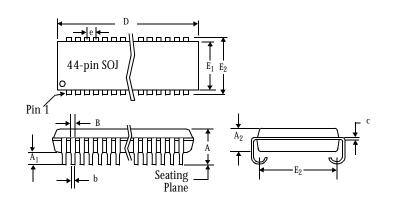
Notes

- During V_{CC} power-up, a pull-up resistor to V_{CC} on \overline{CE} is required to meet I_{SB} specification. 1
- This parameter is sampled, but not 100% tested. 2
- For test conditions, see AC Test Conditions, Figures A, B, and C. 3
- These parameters are specified with $C_L = 5pF$, as in Figures B or C. Transition is measured ± 500 mV from steady-state voltage. 4
- 5 This parameter is guaranteed, but not tested.
- 6 WE is High for read cycle.
- 7 CE and OE are Low for read cycle.
- Address valid prior to or coincident with CE transition Low. 8
- 9 All read cycle timings are referenced from the last valid address to the first transitioning address.
- 10 CE or WE must be High during address transitions. Either CE or WE asserting high terminates a write cycle.
- 11 All write cycle timings are referenced from the last valid address to the first transitioning address.
- 12 Not applicable.
- 13 2V data retention applies to commercial temperature range operation only.
- 14 C=30pF, except all high Z and low Z parameters where C=5pF.

Typical DC and AC characteristics

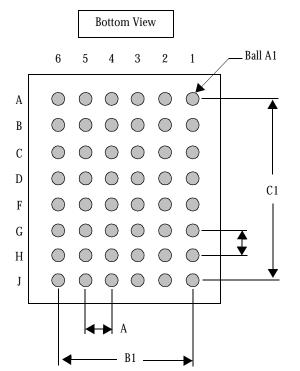


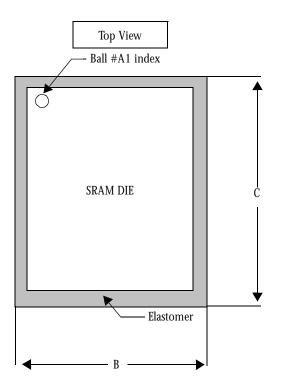
AS7C1026 AS7C31026

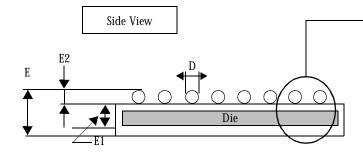

DIKAIVI

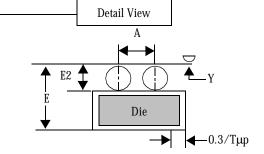
Package dimensions

	44-pin TSOP II		
	Min (mm)	Max (mm)	
А		1.2	
A1	0.05		
A2	0.95	1.05	
b	0.30	0.45	
С	0.127 (typical)		
D	18.28 18.54		
Е	10.03	10.29	
He	11.56	11.96	
e	0.80 (typical)		
1	0.40	0.60	




	44-pin SOJ			
	400 mL			
	Min	Max		
А	0.128	0.148		
A_1	0.025	-		
A ₂	1.105	1.115		
В	0.026	0.032		
b	0.015	0.020		
С	0.007	0.013		
D	1.120	1.130		
Е	0.370 NOM			
E ₁	0.395	0.405		
E ₂	0.435	0.445		
е	0.050 NOM			




48-ball FBGA

	Minimum	Typical	Maximum
А	-	0.75	-
В	5.90	8.00	8.10
B1	-	3.75	-
С	7.90	8.00	8.10
C1	-	5.25	-
D	-	0.35	-
Е	-	-	1.20
E1	-	0.68	-
E2	0.22	0.25	0.27
Y	-	_	0.08

Notes

- 1 Bump counts: 48 (8 row x 6 column).
- 2 Pitch: $(x,y) = 0.75 \text{ mm } x \ 0.75 \text{ mm} (typ)$.
- 3 Units: millimeters.
- 4 All tolerance are +/- 0.050 unless otherwise specified.
- 5 Typ: typical.
- 6 Y is coplanarity: 0.08 (max).

ALLIANCE SEMICONDUCTOR

9

AS7C1026 AS7C31026

Ordering codes

Package \ Access time	Volt/Temp	10 ns	12 ns	15 ns	20 ns
Plastic SOJ, 400 mil	5V commercial	NA	AS7C1026-12JC	AS7C1026-15JC	AS7C1026-20JC
	5V industrial	NA	AS7C1026-12JI	AS7C1026-15JI	AS7C1026-20JI
	3.3V commercial	AS7C31026-10JC	AS7C31026-12JC	AS7C31026-15JC	AS7C31026-20JC
TSOP II, 18.4×10.2 mm	5V commercial	NA	AS7C1026-12TC	AS7C1026-15TC	AS7C1026-20TC
	3.3V commercial	AS7C31026-10TC	AS7C31026-12TC	AS7C31026-15TC	AS7C31026-20TC
	3.3V industrial	NA	AS7C31026-12TI	AS7C31026-15TI	AS7C31026-20TI
CSP BGA, 8×6 mm	5V commercial	NA	AS7C1026-12BC	AS7C1026-15BC	AS7C1026-20BC
	3.3V commercial	AS7C31026-10BC	AS7C31026-12BC	AS7C31026-15BC	AS7C31026-20BC
	3.3V industrial	NA	AS7C31026-12BI	AS7C31026-15BI	AS7C31026-20BI

NA: not available.

Part numbering system

AS7C	Х	1026	-XX	Х	С
SRAM prefix	Blank=5V CMOS 3=3.3V CMOS	Device number	Access time	Package: J=SOJ 400 mil T=TSOP type 2, 18.4 × 10.2 mm B=CSP BGA, 8 × 6 mm	Temperature range, C=Commercial: 0° C to 70° C I=Industrial: -40° C to 85° C