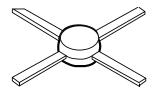


Cascadable Silicon Bipolar MMIC Amplifier

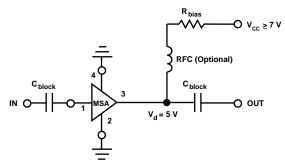
Technical Data

MSA-0285

Features


- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 2.6 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Plastic Package

Description


The MSA-0285 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is designed for use as a general purpose 50 Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

85 Plastic Package

Typical Biasing Configuration

MSA-0285 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]		
Device Current	60 mA		
Power Dissipation ^[2,3]	325 mW		
RF Input Power	+13dBm		
Junction Temperature	150°C		
Storage Temperature	−65 to 150°C		

Thermal Resistance^[2,4]:

 $\theta_{\rm jc} = 95^{\circ} \text{C/W}$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 10.5 mW/°C for $T_C > 119$ °C.

4. See MEASUREMENTS section "Thermal Resistance" for more information.

Symbol	Parameters and Test Conditions: I_d = 25 mA, Z_0 = 50 Ω		Units	Min.	Тур.	Max.
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB		12.5	
		f = 1.0 GHz		10.0	12.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.6 GHz	dB		± 0.6	
f _{3 dB}	3 dB Bandwidth		GHz		2.6	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.3:1	
	Output VSWR	f = 0.1 to 3.0 GHz			1.4:1	
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		4.5	
IP_3	Third Order Intercept Point	f = 1.0 GHz	dBm		17.0	
t _D	Group Delay	f = 1.0 GHz	psec		125	
Vd	Device Voltage		V	4.0	5.0	6.0
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Note:

1. The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

 S_{22} S_{11} S_{21} S_{12} Freq. Ang GHz Mag dB Mag dB Mag Ang Mag Ang Ang 4.25 -7175 -18.6 $\mathbf{2}$ 0.1 .10 17412.6.118 .14 0.2 .10 168 12.54.22 171 -18.5.119 3 .13 -120.4 .10 157 12.4 4.17 161 -18.3.122 6 -26 .14 0.6 .09 143 12.34.10 153 -18.3 .121 7 -38 .14 0.8 .08 13212.1 4.03 144 -18.0.126 11 .14 -48

135

115

95

82

65

49

35

9

-16

-17.5

-17.0

-16.0

-15.0

-14.7

-14.0

-13.7

-13.0

-12.9

.133

.142

.158

.177

.185

.199

.207

.224

.226

12

16

17

20

19

14

11

-5

4

.14

.13

.12

.12

.11

.10

.10

.12

.09

-60

-85

-110

-128

-148

-145

-134

-118

-154

3.95

3.70

3.40

3.11

2.78

2.49

2.22

1.77

1.42

MSA-0285 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 25 mA$)

A model for this device is available in the DEVICE MODELS section.

122

95

117

-173

-175

179

169

139

100

11.9

11.4

10.6

9.9

8.9

7.9

6.9

5.0

3.0

Typical Performance, $T_A = 25^{\circ}C$

.08

.04

.02

.05

.12

.16

.21

.28

.41

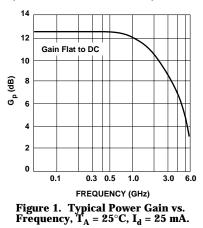
(unless otherwise noted)

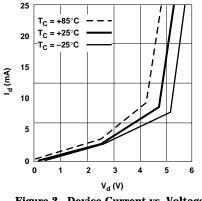
1.0

1.5

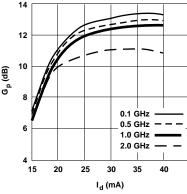
2.0

2.5


3.0


3.5

4.0


5.0

6.0

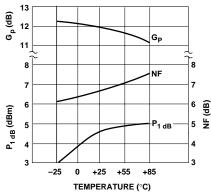
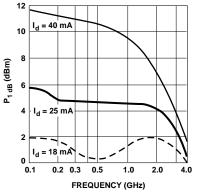



Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, $I_d=25mA$.

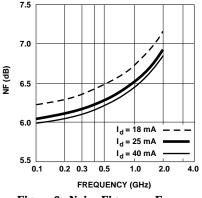
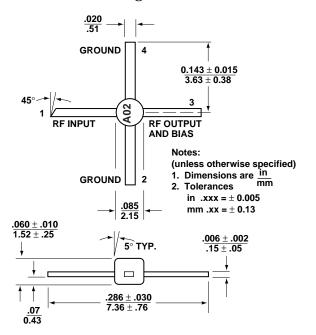



Figure 6. Noise Figure vs. Frequency.

85 Plastic Package Dimensions