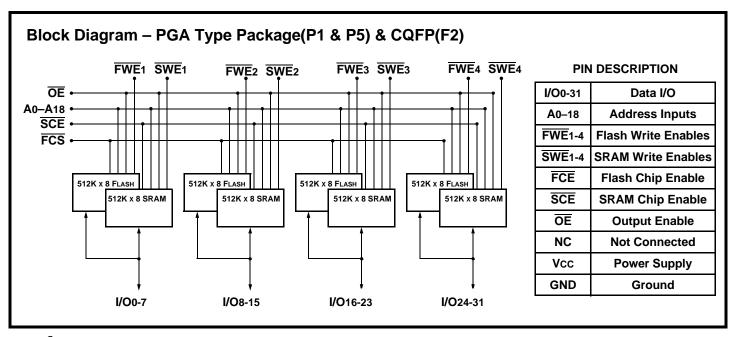
ACT-SF512K32 High Speed 512Kx32 SRAM / 512Kx32 Flash Multichip Module


FEATURES

- 4 512K x 8 SRAMs & 4 512K x 8 Flash Die in One MCM
- Access Times of 25ns, 35ns (SRAM) and 60ns, 70ns, 90ns (Flash)
- Organized as 512K x 32 of SRAM and 512K x 32 of Flash Memory with Common Data Bus
- **Low Power CMOS**
- Input and Output TTL Compatible Design
- MIL-PRF-38534 Compliant MCMs Available
- Decoupling Capacitors and Multiple Grounds for Low Noise
- Commercial, Industrial and Military Temperature Ranges
- **Industry Standard Pinouts**
- **TTL Compatible Inputs and Outputs**
- Packaging Hermetic Ceramic
 - 66-Lead, PGA-Type, 1.385"SQ x 0.245"max, Aeroflex code# "P1,P5 with/without shoulders)"
 - 68-Lead, Dual-Cavity CQFP(F2), 0.88"SQ x
 .20"max (.18 max thickness available, contact factory for details) (Drops into the 68 Lead JEDEC .99"SQ CQFJ footprint)

FLASH MEMORY FEATURES

- Sector Architecture (Each Die)
 - 8 Equal Sectors of 64K bytes each
 - Any combination of sectors can be erased with one command sequence
- +5V Programing, +5V Supply
- Embedded Erase and Program Algorithms
- Hardware and Software Write Protection
- Page Program Operation and Internal Program Control Time.
- 10,000 Erase/Program Cycles

Absolute Maximum Ratings

Symbol	Rating	Range	Units
T _C	Operating Temperature	-55 to +125	°C
T _{STG}	Storage Temperature	-65 to +150	°C
V_{G}	Maximum Signal Voltage to Ground	-0.5 to +7	V
T _L	Maximum Lead Temperature (10 seconds)	300	°C

Parameter	
Flash Data Retention	10 Years
Flash Endurance (Write/Erase Cycles)	10,000

Normal Operating Conditions

Symbol	Parameter	Minimum	Maximum	Units
V _{CC}	Power Supply Voltage	+4.5	+5.5	V
V _{IH}	Input High Voltage	+2.2	V _{CC} + 0.3	V
V _{IL}	Input Low Voltage	-0.5	+0.8	V

Capacitance

 $(V_{IN} = 0V, f = 1MHz, T_C = 25^{\circ}C)$

Symbol	Parameter	Maximum	Units
CAD	A ₀ – A ₁₈ Capacitance	80	pF
COE	OE Capacitance	80	pF
CWE1-4	F/S Write Enable Capacitance	30	pF
CCE	F/S Chip Enable Capacitance	50	pF
Cı/o	I/O ₀ – I/O ₃₁ Capacitance	30	pF

This parameter is guaranteed by design but not tested

DC Characteristics

 $(VCC = 5.0V, VSS = 0V, TC = -55^{\circ}C \text{ to } +125^{\circ}C)$

Parameter	Sym	Conditions	Min	Max	Units
Input Leakage Current	I _{LI}	$V_{CC} = Max$, $V_{IN} = 0$ to V_{CC}		10	μΑ
Output Leakage Current	I _{LO}	$\overline{FCE} = \overline{SCE} = V_{IH}, \overline{OE} = V_{IH},$ $V_{OUT} = 0 \text{ to } V_{CC}$		10	μΑ
SRAM Operating Supply Current x 32 Mode	I _{CC} x32	$\overline{SCE} = V_{IL}, \overline{OE} = V_{IH}, f = 5MHz, V_{CC} = Max, \overline{FCE} = V_{IH}$		550	mA
Standby Current	I _{SB}	$\overline{FCE} = \overline{SCE} = V_{IH}, \ \overline{OE} = V_{IH}, f = 5MHz,$ $V_{CC} = Max$		80	mA
SRAM Output Low Voltage	V _{OL}	$I_{OL} = 8 \text{ mA}, V_{CC} = \text{Min}, \overline{\text{FCE}} = V_{IH}$		0.4	V
SRAM Output High Voltage	V _{OH}	$I_{OH} = -4.0 \text{ mA}, V_{CC} = \text{Min}, \overline{\text{FCE}} = V_{IH}$	2.4		V
Flash Vcc Active Current for Read (1)	I _{CC1}	$\overline{FCE} = V_{IL}, \overline{OE} = V_{IH}, \overline{SCE} = V_{IH}$		260	mA
Flash Vcc Active Current for Program or Erase (2)	I _{CC2}	$\overline{FCE} = V_IL, \ \overline{OE} = V_IH, \ \overline{SCE} = V_IH$		300	mA
Flash Output Low Voltage	V_{OL}	$I_{OL} = 12 \text{ mA}, V_{CC} = \text{Min}, \overline{\text{SCE}} = V_{IH}$		0.45	V
Flash Output High Voltage	V _{OH1}	$I_{OH} = -2.5 \text{ mA}, V_{CC} = \text{Min}, \overline{SCE} = V_{IH}$	0.85 x Vcc		V
Flash Low Vcc Lock Out Voltage	V_{LKO}		3.2	4.2	V

Notes: 1) The Icc current listed includes both the DC operating current and the frequency dependent component (at 5MHz). The frequency component typically is less than 2mA/MHz, with \overline{OE} at VIH 2) Icc active while Embedded Algorithim (program or erase) is in progress 3) DC test conditions: VIL = 0.3V, VIH = VCC - 0.3V

SRAM AC Characteristics

 $(VCC = 5.0V, VSS = 0V, Tc = -55^{\circ}C \text{ to } +125^{\circ}C)$

Read Cycle

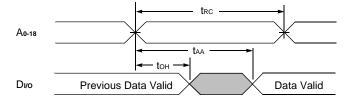
Parameter	Symbol	<u>-0</u>	<u> 25</u>	<u>-0</u>	<u> 35</u>	Units
raiailietei	Syllibol	Min	Max	Min	Max	Ullits
Read Cycle Time	t _{RC}	25		35		ns
Address Access Time	t _{AA}		25		35	ns
Chip Select Access Time	t _{ACE}		25		35	ns
Output Hold from Address Change	t _{OH}	0		0		ns
Output Enable to Output Valid	t _{OE}		12		25	ns
Chip Select to Output in Low Z *	t _{CLZ}	2		4		ns
Output Enable to Output in Low Z *	t _{OLZ}	0		0		ns
Chip Deselect to Output in High Z *	t _{CHZ}		12		15	ns
Output Disable to Output in High Z *	t _{OHZ}		12		15	ns

^{*} Parameters guaranteed by design but not tested

Write Cycle

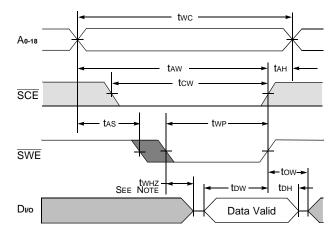
Parameter	Cumbal	_0	<u> 25</u>	<u>-c</u>	<u> 35</u>	Units
Parameter	Symbol	Min	Max	Min	Max	Units
Write Cycle Time	t _{WC}	25		35		ns
Chip Select to End of Write	t _{CW}	17		25		ns
Address Valid to End of Write	t _{AW}	17		25		ns
Data Valid to End of Write	t _{DW}	13		20		ns
Write Pulse Width	t _{WP}	17		25		ns
Address Setup Time	t _{AS}	2		2		ns
Output Active from End of Write *	t _{OW}	4		4		ns
Write to Output in High Z *	t _{WHZ}		13		15	ns
Data Hold from Write Time	t _{DH}	0		0		ns
Address Hold Time	t _{AH}	0		0		ns

^{*} Parameters guaranteed by design but not tested

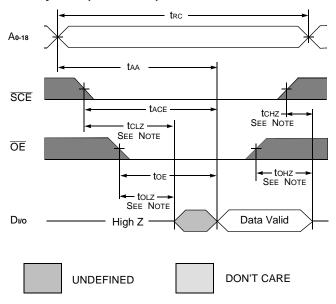

Truth Table

Mode	SCE	ŌĒ	SWE	Data I/O	Power
Standby	Н	X	X	High Z	Standby
Read	L	L	Н	Data Out	Active
Output Disable	L	Н	Н	High Z	Active
Write	L	Х	L	Data In	Active

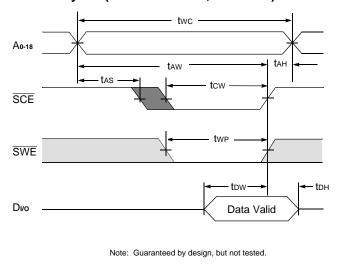
Timing Diagrams — SRAM

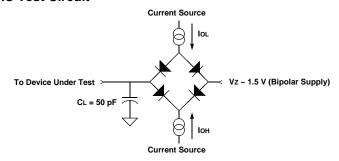

Read Cycle Timing Diagrams

Read Cycle 1 ($\overline{SCE} = \overline{OE} = VIL$, $\overline{SWE} = VIH$)



Write Cycle Timing Diagrams


Write Cycle (\overline{SWE} Controlled, $\overline{OE} = VIH$)


Read Cycle 2 (SWE = VIH)

Write Cycle (\overline{SCE} Controlled, \overline{OE} = VIH)

AC Test Circuit

AC Test Conditions

Parameter	Typical	Units
Input Pulse Level	0 – 3.0	V
Input Rise and Fall	5	ns
Input and Output Timing Reference Level	1.5	V

Notes:

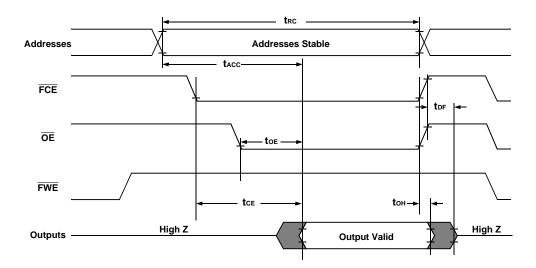
1) Vz is programmable from -2V to +7V. 2) IoL and IoH programmable from 0 to 16 mA. 3) Tester Impedance $ZO = 75\Omega$. 4) Vz is typically the midpoint of VoH and VoL. 5) IoL and IoH are adjusted to simulate a typical resistance load circuit. 6) ATE Tester includes jig capacitance.

Flash AC Characteristics – Read Only Operations (Vcc = 5.0V, Vss = 0V, Tc = -55°C to +125°C)

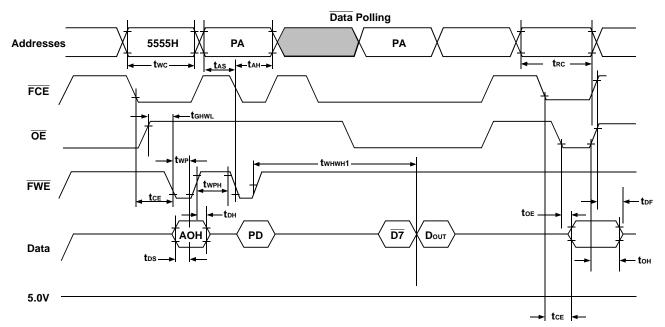
Parameter		Symbol		-60		-70		90	Units
Farameter	JEDEC	Stand'd	Min	Max	Min	Max	Min	Max	Ullits
Read Cycle Time	tavav	trc	60		70		90		ns
Address Access Time	tavqv	tacc		60		70		90	ns
Chip Enable Access Time	telqv	tce		60		70		90	ns
Output Enable to Output Valid	tgLqv	toe		30		35		35	ns
Chip Enable to Output High Z (1)	tehqz	tdf		20		20		20	ns
Output Enable High to Output High Z(1)	tgнqz	tor		20		20		20	ns
Output Hold from Address, $\overline{\text{CE}}$ or $\overline{\text{OE}}$ Change, Whichever is First	taxqx	tон	0		0		0		ns

Note 1. Guaranteed by design, but not tested

Flash AC Characteristics – Write / Erase / Program Operations, \overline{FWE} Controlled (Vcc = 5.0V, Vss = 0V, Tc = -55°C to +125°C)

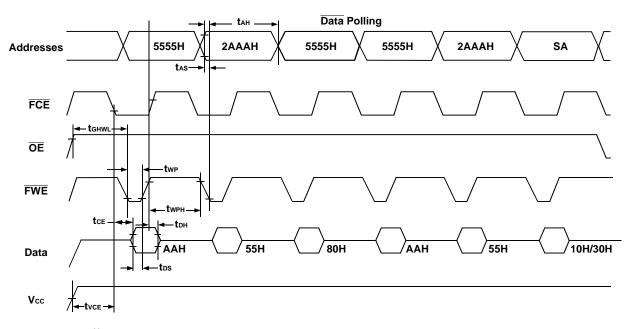

Developmentary	Syn	nbol	_	60	-70		-90		l luite
Parameter	JEDEC	Stand'd	Min	Max	Min	Max	Min	Max	Units
Write Cycle Time	tavac	twc	60		70		90		ns
Chip Enable Setup Time	telwl	tce	0		0		0		ns
Write Enable Pulse Width	twLwH	twp	40		45		45		ns
Address Setup Time	tavwl	tas	0		0		0		ns
Data Setup Time	tоvwн	tos	40		45		45		ns
Data Hold Time	twndx	tрн	0		0		0		ns
Address Hold Time	twlax	tан	45		45		45		ns
Write Enable Pulse Width High	twnwL	twph	20		20		20		ns
Duration of Byte Programming Operation	twnwh1		14	TYP	14	TYP	14	TYP	μs
Sector Erase Time	twnwh2			30		30		30	Sec
Read Recovery Time before Write	tgнwL		0		0		0		μs
Vcc Setup Time		tvce		50		50		50	μs
Chip Programming Time			50		50		50		Sec
Chip Enable Hold Time		toeh 1	10		10		10		ns
Chip Erase Time	twnwh3			120		120		120	Sec

^{1.} Toggle and Data Polling only.


Flash AC Characteristics – Write / Erase / Program Operations, $\overline{\text{FCE}}$ Controlled (Vcc = 5.0V, Vss = 0V, Tc = -55°C to +125°C)

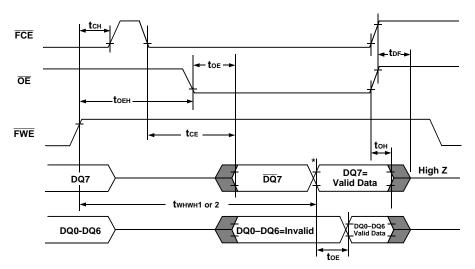
Domeston.	Syr	nbol	-60		-70		-90		11
Parameter	JEDEC	Stand'd	Min	Max	Min	Max	Min	Max	Units
Write Cycle Time	tavac	twc	60		70		90		ns
Write Enable Setup Time	twLEL	tws	0		0		0		ns
Chip Enable Pulse Width	teleh	tcp	40		45		45		ns
Address Setup Time	tavel	tas	0		0		0		ns
Data Setup Time	toveh	tos	40		45		45		ns
Data Hold Time	tehdx	tон	0		0		0		ns
Address Hold Time	tELAX	tан	45		45		45		ns
Chip Enable Pulse Width High	tehel	tсрн	20		20		20		ns
Duration of Byte Programming	twnwh1		14	TYP	14	TYP	14	TYP	μs
Sector Erase Time	twnwh2			30		30		30	Sec
Read Recovery Time	tghel		0		0		0		ns
Chip Programming Time				50		50		50	Sec
Chip Erase Time	twnw43			120		120		120	Sec

AC Waveforms for Flash Memory Read Operations



Write/Erase/Program Operation for Flash Memory, $\overline{\text{FWE}}$ Controlled

- 1. PA is the address of the memory location to be programmed.
 2. PD is the data to be programmed at byte address.
 3. D7 is the 0utput of the complement of the data written to the deviced.
 4. Dout is the output of the data written to the device.
- 5. Figure indicates last two bus cycles of four bus cycle sequence.


AC Waveforms Chip/Sector Erase Operations for Flash Memory

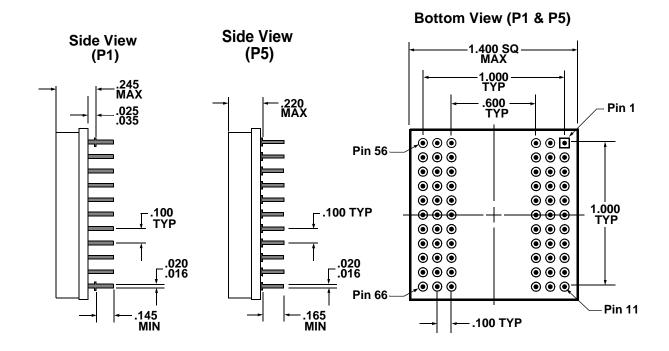
Notes:

1. SA is the sector address for sector erase.

AC Waveforms for Data Polling During Embedded Algorithm Operations for Flash Memory

* DQ7=Valid Data (The device has completed the Embedded operation).

Write/Erase/Program Operation for Flash Memory, FCE Controlled

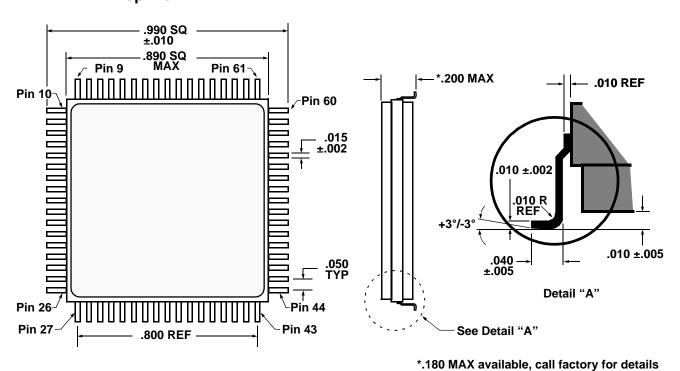

- 1. PA is the address of the memory location to be programmed.
- 2. PD is the data to be programmed at byte address.
- 3. $\overline{D7}$ is the Output of the complement of the data written to the device.
- DOUT is the output of the data written to the device.
 Figure indicates last two bus cycles of four bus cycle sequence.

Pin Numbers & Functions

66 Pins — PGA-Type							
Pin#	Function	Pin #	Function	Pin#	Function	Pin #	Function
1	I/O8	18	A15	35	I/O25	52	FWE ₃
2	I/O9	19	Vcc	36	I/O26	53	SWE ₃
3	I/O10	20	FCE	37	A7	54	GND
4	A14	21	SCE	38	A12	55	I/O19
5	A16	22	I/O3	39	SWE ₁	56	I/O31
6	A11	23	I/O15	40	A13	57	I/O30
7	Ao	24	I/O14	41	A8	58	I/O29
8	A18	25	I/O13	42	I/O16	59	I/O28
9	I/Oo	26	I/O12	43	I/O17	60	A1
10	I/O1	27	ŌĒ	44	I/O18	61	A2
11	I/O2	28	A17	45	Vcc	62	Аз
12	FWE ₂	29	FWE ₁	46	SWE ₄	63	I/O23
13	SWE ₂	30	I/O7	47	FWE ₄	64	I/O22
14	GND	31	I/O6	48	I/O27	65	I/O21
15	I/O11	32	I/O ₅	49	A4	66	I/O20
16	A10	33	I/O4	50	A 5		
17	A 9	34	I/O24	51	A6		

"P1" — 1.385" SQ PGA Type Package Standard (with shoulders on Pins 1, 11, 56 & 66)

"P5" — 1.385" SQ PGA Type Special Order Package (without shoulders)


All dimensions in inches

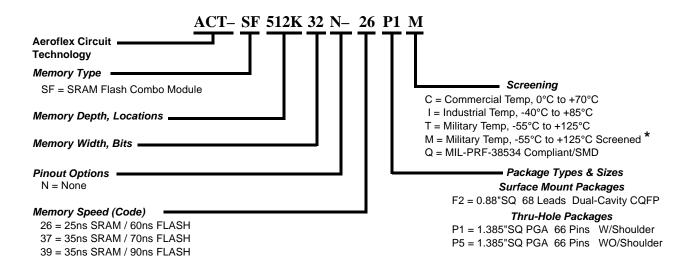
Pin Numbers & Functions

68 Pins — Dual-Cavity CQFP							
Pin#	Function	Pin #	Function	Pin#	Function	Pin #	Function
1	GND	18	GND	35	ŌĒ	52	GND
2	SWE ₃	19	I/O8	36	SWE ₂	53	FI/O23
3	A 5	20	I/O9	37	A17	54	FI/O22
4	A4	21	I/O10	38	FWE ₂	55	FI/O21
5	Аз	22	I/O11	39	FWE ₃	56	FI/O ₂₀
6	A2	23	I/O12	40	FWE ₄	57	FI/O19
7	A1	24	I/O13	41	A18	58	FI/O18
8	Ao	25	I/O14	42	SCE	59	FI/O17
9	NC	26	I/O15	43	SWE ₁	60	FI/O16
10	I/Oo	27	Vcc	44	FI/O ₃₁	61	Vcc
11	I/O1	28	A11	45	FI/O ₃₀	62	A10
12	I/O2	29	A12	46	FI/O29	63	A 9
13	I/O3	30	A13	47	FI/O ₂₈	64	A8
14	I/O4	31	A14	48	FI/O27	65	A7
15	I/O ₅	32	A15	49	FI/O ₂₆	66	A6
16	I/O6	33	A16	50	FI/O ₂₅	67	FWE1
17	I/O7	34	FCE	51	FI/O24	68	SWE ₄

Package Outline — Dual-Cavity CQFP "F2"

Top View

All dimensions in inches



Ordering Information

Model Number	DESC Part Number	Speed	Package
ACT-SF512K32N-26P1X	TBD	25(S) / 60(F) ns	1.385"sq PGA-Type
ACT-SF512K32N-37P1X	TBD	35(S) / 70(F) ns	1.385"sq PGA-Type
ACT-SF512K32N-39P1X	TBD	35(S) / 90(F) ns	1.385"sq PGA-Type
ACT-SF512K32N-26F2X	TBD	25S) / 60(F) ns	.88"sq CQFP
ACT-SF512K32N-37F2X	TBD	35(S) / 70(F) ns	.88"sq CQFP
ACT-SF512K32N-39F2X	TBD	35(S) / 90(F) ns	.88"sq CQFP

Note: (S) = Speed for SRAM, (F) = Speed for FLASH

Part Number Breakdown

* Screened to the individual test methods of MIL-STD-883

Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830 Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: 1-(800) 843-1553