

Plastic Path[™] Features

- Low Power Monolithic CMOS 512K x 8 SRAM
- Operating Temperature Range
 - Full Military (-55°C to +125°C)
 - Industrial (-40°C to +85°C)
- Burn-in and Temperature Cycle Available
- 10, 12, 15, 17, 20 & 25ns Access Times
- +5V Power Supply
- Industry Standard Pinouts
 - Center Power / Ground Pins
- TTL Compatible I/O
- 3.3V Device I/O Interfacing
- JEDEC Standard 36 pin Plastic SOJ Package
 - 36 Lead, .93" x .405" x 0.148 Small Outline J lead (SOJ), Aeroflex code# "L2"
- Fully Static Operation
 - No Clocks or Refresh Required

General Description

The ACT-PS512K8 is a Plastic High Speed, 4 Megabit (4,194,304 bits) CMOS Monolithic SRAM organized as 524,288 words by 8 bits. Designed for high-speed, high density, high reliablility, mass memory and fast cache system applications.

The plastic monolithic is input and output TTL compatible. Writing is executed when the write enable (WE) and chip enable (CE) inputs are low. Reading is accomplished when WE is high and CE and output enable (OE) are both low. Access time grades of 10ns 12ns, 15ns, 17ns, 20ns and 25ns are standard.

	Absolute Maximum Ratings									
Symbol	Parameter	MINIMUM	MAXIMUM	Units						
т _с	Case Operating Temperature	-55	+125	°C						
T _{STG}	Storage Temperature	-65	+150	°C						
PD	Maximum Package Power Dissipation		1.0	W						
V _G	Maximum Signal Voltage to Ground	-0.5	V _{CC} + 0.5	V						
V _{CC}	Power Supply Voltage	-0.5	+7.0	V						

Recommended Operating Conditions

Symbol	Parameter	Minimum	Maximum	Units
V _{CC}	Power Supply Voltage	+4.5	+5.5	V
V _{SS}	Ground	0	0	V
V _{IH}	Input High Voltage	+2.2	V _{CC} + 0.5	V
V _{IL}	Input Low Voltage	-0.5	+0.8	V
Т _С	Operating Temperature (Military)	-55	+125	°C
Т _С	Operating Temperature (Industrial)	-40	+85	°C

Truth Table

Mode	CE	WE	ŌĒ	Data I/O	Supply Current
Standby	Н	Х	Х	High Z	I _{SB}
Output Disable	L	Н	Н	High Z	I _{CC}
Read	L	Н	L	Data OUT	I _{CC}
Write	L	L	Х	Data IN	I _{CC}

Capacitance

(V_{IN} & V_{OUT} = 0V, f = 1MHz, $T_C = 25^{\circ}C$, unless otherwise noted, Guaranteed but not tested)

Symbol	Parameter	Maximum	Units
C _{IN}	Input Capacitance (A ₀₋₁₈ , WE & OE)	6	pF
C _{OUT}	Output Capacitance (I/O ₀₋₇ & CE)	8	pF

DC Characteristics

(VCC = 5.0V,	VSS = 0V,	$TC = -55^{\circ}C$ to	o +125°C o	r -40°C to +	85°C)

. .

Parameter	Sym	Conditions	Min	Max	Units
Input Leakage Current	Ι _{LI}	V_{CC} = Max, V_{IN} = V_{SS} to V_{CC}	-10	+10	μΑ
Output Leakage Current	I _{LO}	$\overline{CE} = V_{IH}, \overline{OE} = V_{IH}, V_{OUT} = V_{SS}$ to V_{CC}	-10	+10	μΑ
Operating Supply Current	I _{CC}	$\overline{CE} = V_{IL}, \overline{OE} = V_{IH}, f = 5MHz, Vcc=5.5V$		130	mA
Standby Current	I _{SB}	$\overline{CE} = V_{IH}, \overline{OE} = V_{IH}, f = 5MHz, Vcc = 5.5V$		20	mA
Output Low Voltage	V _{OL}	I _{OL} = 8 mA, Vcc = 4.5V		0.4	V
Output High Voltage	V _{OH}	I _{OH} = -4 mA, Vcc = 4.5V	2.4		V
Note: DC Test conditions: $V_{II} = ($)3\/\/⊪	$= \sqrt{cc} - 0.3 \sqrt{cc}$			

conditions: VIL = 0.3V, VIH = Vcc - 0.3V.

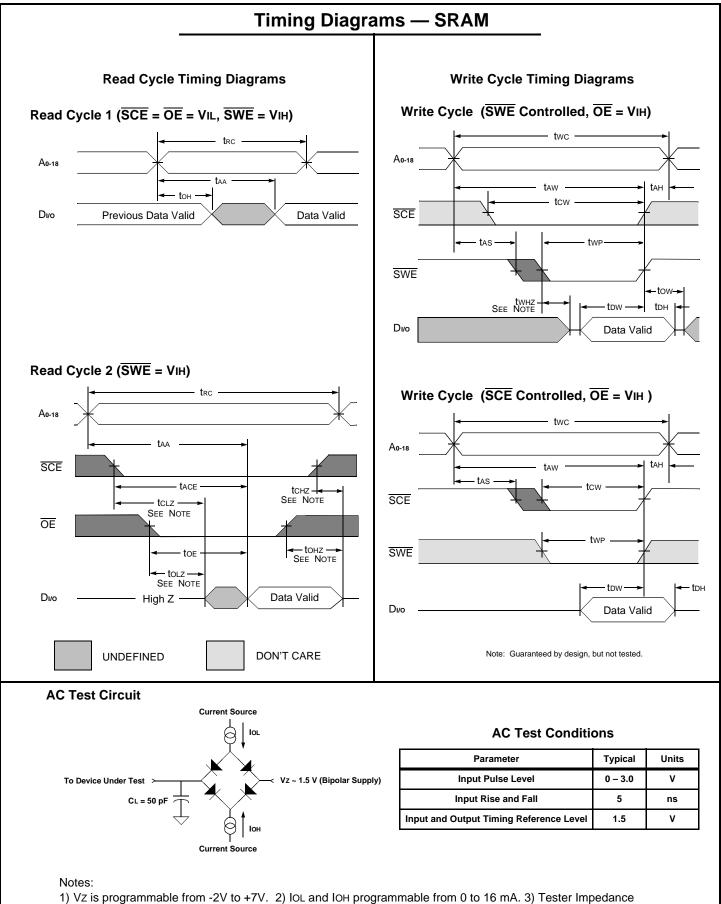
AC Characteristics

(Vcc = 5.0V, Vss= 0V, Tc = -55°C to +125°C or -40°C to +85°C)

Read Cycle

Deveryoter		-0	10	-0	12	-0	15	-0	17	-0	20	-0	25	Units
Parameter	Sym	Min	Мах	Min	Мах	Min	Max	Min	Max	Min	Мах	Min	Max	Units
Read Cycle Time	t _{RC}	10		12		15		17		20		25		ns
Address Access Time	t _{AA}		10		12		15		17		20		25	ns
Chip Enable Access Time	t _{ACE}		10		12		15		17		20		25	ns
Output Hold from Address Change	t _{OH}	3		3		3		3		4		5		ns
Output Enable to Output Valid	t _{OE}		5		6		7		8		10		12	ns
Chip Enable to Output in Low Z (1)	t _{CLZ}	3		3		3		3		3		3		ns
Output Enable to Output in Low Z (1)	t _{OLZ}	0		0		0		0		0		0		ns
Chip Deselect to Output in High Z (1)	t _{CHZ}		5		6		7		7		8		10	ns
Output Disable to Output in High Z (1)	t _{OHZ}		5		6		7		7		8		10	ns

Note 1. Guaranteed by design, but not tested

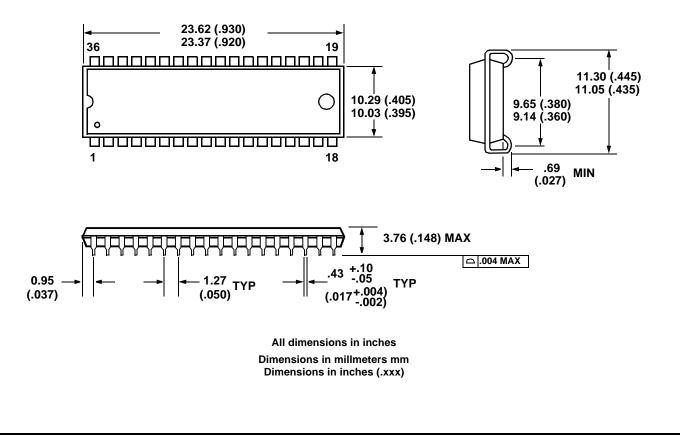

Write Cycle

Parameter	Sum	-0	010	-0	12	-0	15	-0	17	-0	20	-0	25	Units
Farameter	Sym	Min	Max	Units										
Write Cycle Time	t _{WC}	10		12		15		17		20		25		ns
Chip Enable to End of Write	t _{CW}	7		8		10		12		13		15		ns
Address Valid to End of Write	t _{AW}	7		8		10		12		13		15		ns
Data Valid to End of Write	t _{DW}	5		6		8		8		9		10		ns
Write Pulse Width	t _{WP}	7		8		10		12		13		15		ns
Address Setup Time	t _{AS}	0		0		0		0		0		0		ns
Address Hold Time	t _{AH}	0		0		0		0		0		0		ns
Output Active from End of Write (1)	t _{OW}	3		3		3		3		4		5		ns
Write to Output in High Z (1)	t _{WHZ}		5		6		7		8		8		10	ns
Data Hold from Write Time	t _{DH}	0		0		0		0		0		0		ns

Note 1. Guaranteed by design, but not tested

Data Retention Electrical Characteristics (Special Order Only) Vcc = 5.0V, Vss= 0V, Tc = -55°C to +125°C or -40°C to +85°C)

Beremeter	C. m	Toot Conditions		All Speeds	<u>S</u>	Unito
Parameter	Sym	Test Conditions	Min	Тур	Max	Units
V _{CC} for Data Retention	V _{DR}	$\overline{CE} \ge V_{CC} - 0.2V$	2		5.5	V
Data Retention Current	I _{CCDR1}	$V_{CC} = 3V$		0.5	2.0	mA

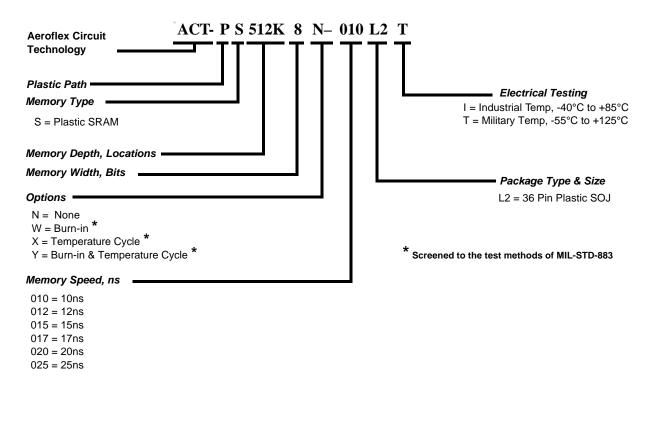


 $ZO = 75\Omega$. 4) Vz is typically the midpoint of VOH and VoL. 5) IOL and IOH are adjusted to simulate a typical resistance load circuit. 6) ATE Tester includes jig capacitance.

	36 Pins — SOJ									
Pin #	Function	Pin #	Function							
1	Ao	19	NC							
2	A1	20	A10							
3	A2	21	A11							
4	Аз	22	A12							
5	A4	23	A13							
6	CE	24	A14							
7	I/Oo	25	I/O4							
8	I/O1	26	I/O5							
9	Vcc	27	Vcc							
10	Vss	28	Vss							
11	I/O2	29	I/O6							
12	І/Оз	30	I/O7							
13	WE	31	OE							
14	A5	32	A15							
15	A6	33	A16							
16	A7	34	A17							
17	A8	35	A18							
18	A9	36	NC							

Pin Numbers & Functions

Package Outline "L2" — SOJ Package, 36 Leads



Ordering Information (Typical)

Model Number	Options	Speed	Package
ACT-PS512K8N-010L2I	None	10ns	36 Lead SOJ
ACT-PS512K8W-012L2I	Burn-in	12ns	36 Lead SOJ
ACT-PS512K8X-015L2T	Temp Cycle	15ns	36 Lead SOJ
ACT-PS512K8Y-017L2T	Temp Cycle & Burn-in	17ns	36 Lead SOJ
ACT-PS512K8Y-020L2T	Temp Cycle & Burn-in	20ns	36 Lead SOJ
ACT-PS512K8Y-025L2T	Temp Cycle & Burn-in	25ns	36 Lead SOJ

Part Number Breakdown

Aeroflex Circuit Technology 35 South Service Road Plainview New York 11830

Telephone: (516) 694-6700 FAX: (516) 694-6715 Toll Free Inquiries: 1-(800) 843-1553