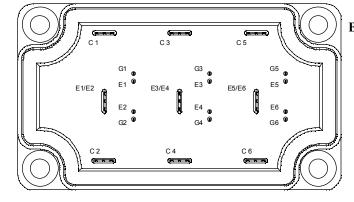


Triple Dual Common Source PT IGBT Power Module

$I_{\rm C} = 40 {\rm A}$ @ Tc = 80°C

 $V_{CES} = 1200V$

Application


- AC Switches
- Switched Mode Power Supplies
- Uninterruptible Power Supplies

Features

- Power MOS 7[®] Punch Through (PT) IGBT
 - Low conduction loss
 - Ultra fast tail current shutoff
 - Low gate charge
 - Switching frequency capability in the 200kHz range
 - Soft recovery parallel diodes
 - Low diode VF
- Kelvin emitter for easy drive
- Very low stray inductance
 - Symmetrical design
 - Lead frames for power connections
- High level of integration

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals both for power and signal for easy PCB mounting
- Very low (12mm) profile
- Each leg can be easily paralleled to achieve a dual common source of three times the current capability

Absolute maximum ratings

_	Symbol	Parameter		Max ratings	Unit
	V _{CES}	Collector - Emitter Breakdown Voltage		1200	V
I _C	I.	Continuous Collector Current	$T_c = 25^{\circ}C$	64	
	IC	Continuous Conector Current	$T_c = 80^{\circ}C$	40	А
	I _{CM}	Pulsed Collector Current	$T_c = 25^{\circ}C$	160	
	V _{GE}	Gate – Emitter Voltage		±20	V
	P _D	Maximum Power Dissipation	$T_c = 25^{\circ}C$	277	W
	SSOA	Switching Safe Operating Area	$T_{j} = 150^{\circ}C$	170A @ 960V	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

All ratings (a) $T_j = 25^{\circ}C$ unless otherwise specified

Electrical Characteristics

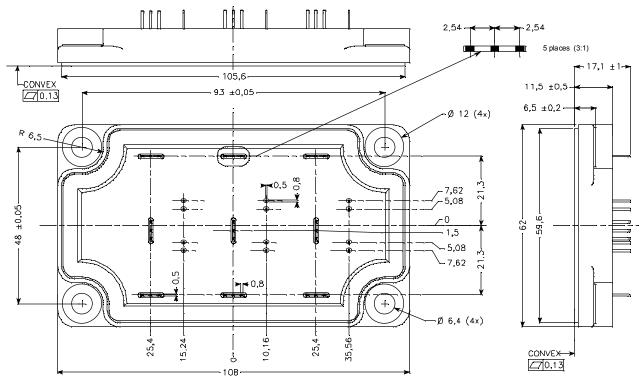
Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
BV _{CES}	Collector - Emitter Breakdown Voltage	$V_{GE} = 0V, I_C = 500 \mu A$		1200			V
Т	Zero Gate Voltage Collector Current	$V_{GE} = 0V$	$T_j = 25^{\circ}C$			500	۸
I _{CES}		$V_{CE} = 1200 V$	$T_j = 125^{\circ}C$			2500	μA
V _{CE(on)}	Collector Emitter on Voltage	$V_{GE} = 15 V$	$T_j = 25^{\circ}C$		3.3	3.9	V
V CE(on)		$I_C = 40A$ $T_j = 125^{\circ}C$		3.0		v	
V _{GE(th)}	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_C = 1 \text{ mA}$		3		6	V
I _{GES}	Gate – Emitter Leakage Current	$V_{GE} = \pm 20 V, V_{CE} = 0 V$				±100	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$		3935		
Coes	Output Capacitance	$V_{CE} = 25 V$		300		pF
C _{res}	Reverse Transfer Capacitance	f = 1 MHz		55		
Qg	Total gate Charge	$V_{GE} = 15V$		185		
Q _{ge}	Gate – Emitter Charge	$V_{Bus} = 300V$		25		nC
Q _{gc}	Gate – Collector Charge	$I_C = 40A$		80		
T _{d(on)}	Turn-on Delay Time	Inductive Switching (25°C)		18		ns
Tr	Rise Time	$V_{GE} = 15V$		29		
T _{d(off)}	Turn-off Delay Time	$V_{Bus} = 600V$ $I_{C} = 40A$		102		
T _f	Fall Time	$\frac{1_{\rm C} - 40 \rm{A}}{\rm{R}_{\rm G}} = 5 \Omega$		38		
E _{on1}	Turn-on Switching Energy			900		μJ
E _{on2}	Turn-on Switching Energy D			1869		
E _{off}	Turn-off Switching Energy 2			904		
T _{d(on)}	Turn-on Delay Time	Inductive Switching (125°C)		18		
Tr	Rise Time	$V_{GE} = 15V$		29		ns
T _{d(off)}	Turn-off Delay Time	$V_{Bus} = 600V$ $I_{C} = 40A$ $R_{G} = 5\Omega$		151		
T _f	Fall Time			79		
E _{on1}	Turn-on Switching Energy			900		
E _{on2}	Turn-on Switching Energy D			3078		μJ
E _{off}	Turn-off Switching Energy 2]		2254		

E_{on2} includes diode reverse recovery
In accordance with JEDEC standard JESD24-1

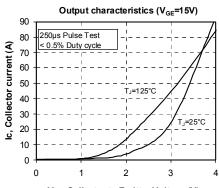
APTGU40TDU120P - Rev 0 September, 2004

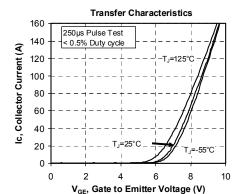

Reverse diode ratings and characteristics

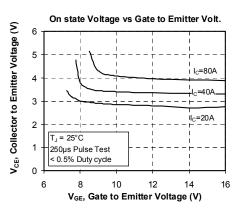
Symbol	Characteristic	Test Conditions		Min	Тур	Max	Unit
V _{RRM}	Maximum Peak Repetitive Reverse Voltage			1200			V
I _{RM}	Maximum Reverse Leakage Current	V _R =1200V	$T_j = 25^{\circ}C$			250	
IRM	Maximum Reverse Leakage Current	v _R -1200 v	$T_{j} = 125^{\circ}C$			500	μA A
I _{F(AV)}	Maximum Average Forward Current	50% duty cycle	$Tc = 80^{\circ}C$		25		Α
V _F	Diode Forward Voltage	$I_F = 25 A$	$T_j = 25^{\circ}C$		2.3	2.8	V
• F	blode i olivara volage	$V_{GE} = 0V$ 7	$T_{j} = 125^{\circ}C$		1.8		•
t _{rr}	Reverse Recovery Time	$I_F = 25A$	$T_{j} = 125^{\circ}C$		0.13		μs
Q _{rr}	Reverse Recovery Charge	$V_{\rm R} = 600 V$	$T_j = 25^{\circ}C$		2.3		μC
Чп	Reverse receivery charge	$di/dt = 800 A/\mu s$	$T_{j} = 125^{\circ}C$		6		μΟ

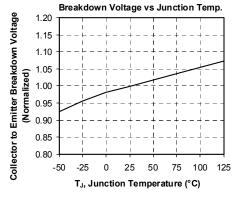
Thermal and package characteristics

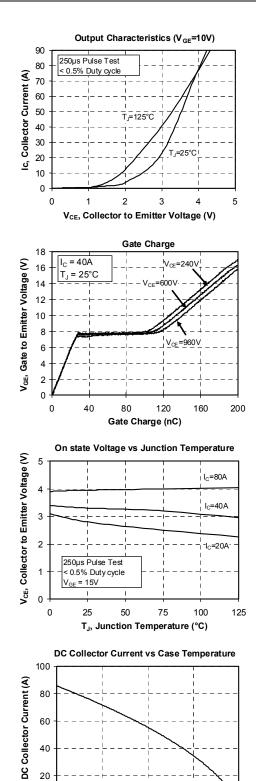
Symbol	Characteristic		Min	Тур	Max	Unit	
R _{thJC}	Junction to Case		IGBT			0.45	°C/W
R _{th} JC			Diode			1	C/ W
V _{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			2500			V
T _J	Operating junction temperature range			-40		150	
T _{STG}	Storage Temperature Range		-40		125	°C	
T _C	Operating Case Temperature		-40		100		
Torque	Mounting torque	To heatsink	M6	3		5	N.m
Wt	Package Weight					250	g


Package outline


APTGU40TDU120P - Rev 0 September, 2004




Typical Performance Curve



APTGU40TDU120P - Rev 0 September, 2004

40

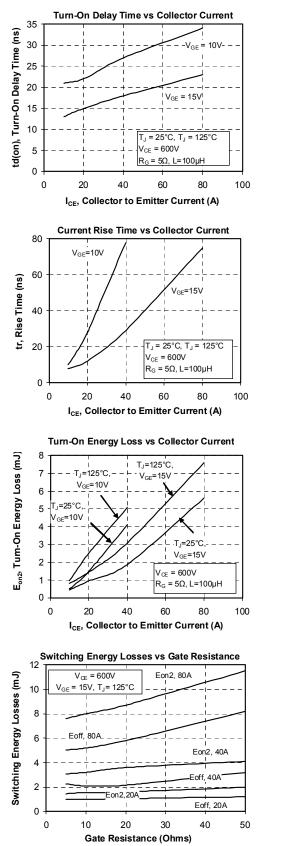
20

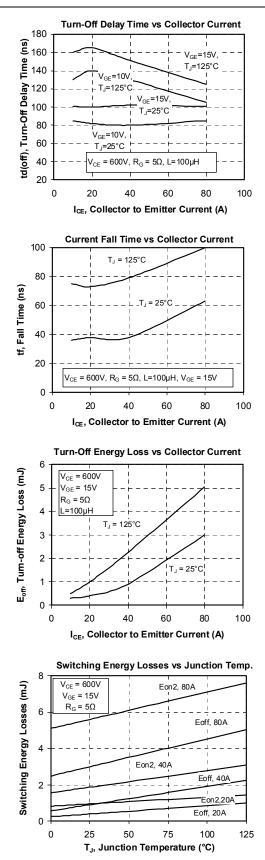
0

-50

0

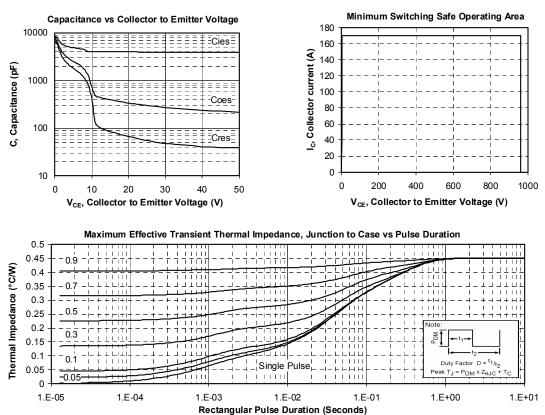
50

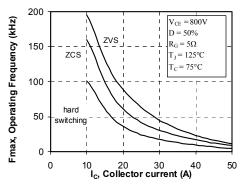

T_c, Case Temperature (°C)


100

150

<u>ن</u>





APTGU40TDU120P - Rev 0 September, 2004

Operating Frequency vs Collector Current

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.