
Dual Boost chopper Trench IGBT® Power Module

Q 29 16 15 П 31 П 32 10 11 12 口 国

All multiple inputs and outputs must be shorted together Example: 13/14; 29/30; 22/23 ...

Application

- AC and DC motor control
- Switched Mode Power Supplies
- Power Factor Correction

Features

- Trench + Field Stop IGBT® Technology
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 20 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - Avalanche energy rated
 - RBSOA and SCSOA rated
- Kelvin emitter for easy drive
- Low stray inductance
- High level of integration
- Internal thermistor for temperature monitoring

Benefits

- Outstanding performance at high frequency operation
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Solderable terminals both for power and signal for easy PCB mounting
- Low profile
- Easy paralleling due to positive TC of VCEsat
- Each leg can be easily paralleled to achieve a single boost of twice the current capability.

Absolute maximum ratings

Symbol	Parameter		Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage		1200	V
L	Continuous Collector Current	$T_C = 25^{\circ}C$	75	
I_{C}	T _C =	$T_C = 80$ °C	50	Α
I_{CM}	Pulsed Collector Current	$T_C = 25^{\circ}C$	100	
V_{GE}	Gate – Emitter Voltage		±20	V
P_{D}	Maximum Power Dissipation	$T_C = 25^{\circ}C$	270	W
RBSOA	Reverse Bias Save Operating Area	$T_{J} = 125^{\circ}C$	100A @ 1150V	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

All ratings @ $T_j = 25$ °C unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
$\mathrm{BV}_{\mathrm{CES}}$	Collector - Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_C = 2mA$		1200			V
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V, V_{CE} = 1200V$				5	mA
V	Collector Emitter on Voltage	$V_{GE} = 15V$	$T_j = 25^{\circ}C$	1.4	1.7	2.1	V
V _{CE(on)}	Concetor Emitter on Voltage	$I_{\rm C} = 50 {\rm A}$ $T_{\rm j} = 125 {\rm °C}$			2.0		·
V _{GE(th)}	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_C =$	2mA	5.0	5.8	6.5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = 20 V, V_{CE} = 0 V$				400	nA

Dynamic Characteristics

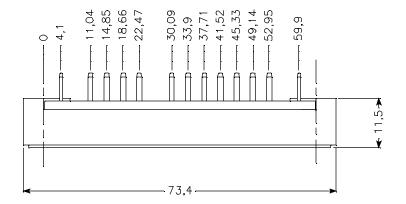
•	Characteristic	Test Conditions	Min	Typ	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0 V, V_{CE} = 25 V$		3600		pF
C_{rss}	Reverse Transfer Capacitance	f = 1 MHz		160		PΓ
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (25°C)		90		
T _r	Rise Time	$V_{GE} = \pm 15V$		30		ns
T _{d(off)}	Turn-off Delay Time	$V_{\text{Bus}} = 600V$ $I_{\text{C}} = 50A$		420		115
$T_{\rm f}$	Fall Time	$R_G = 18\Omega$		70		
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (125°C)		90		ns
T _r	Rise Time	$V_{GE} = \pm 15V$		50		
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 600V$ $I_{\text{C}} = 50A$		520		115
$T_{\rm f}$	Fall Time	$R_G = 18\Omega$		90		
Eon	Turn-on Switching Energy •	$R_{\rm G} = 1822$		5		mJ
E_{off}	Turn-off Switching Energy 2			5.5		111)

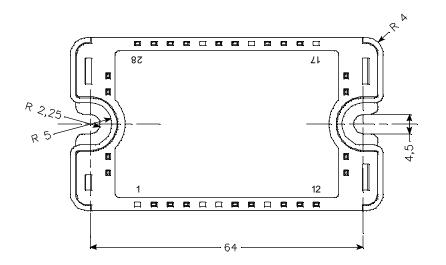
- E_{on} includes diode reverse recovery
 In accordance with JEDEC standard JESD24-1

Diode ratings and characteristics

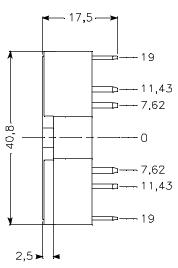
Symbol	Characteristic	Test Conditions	Test Conditions		Typ	Max	Unit
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			1200			V
I_{RM}	Maximum Reverse Leakage Current	$V_{\rm p} = 1200 {\rm V}$	$T_j = 25^{\circ}C$			250	Δ
1RM	Waximum Reverse Leakage Current		$T_{j} = 125^{\circ}C$			500	μΑ
$I_{F(A V)}$	Maximum Average Forward Current	50% duty cycle	$Tc = 70^{\circ}C$		60		A
	Diode Forward Voltage	$I_F = 60 A$			2	2.5	
$V_{\rm F}$		$I_F = 120A$			2.3		V
		$I_F = 60 \mathrm{A}$	$T_j = 125$ °C		1.8		
t_{rr}	Reverse Recovery Time	$I_{\rm F} = 60 \text{A}$	$T_j = 25$ °C		400		ns
ur ur	$I_F = 60A$ $V_R = 800V$		$T_{\rm j} = 125^{\circ}{\rm C}$		470		
Qrr	Reverse Recovery Charge	$di/dt = 200 A/\mu s$	$T_j = 25$ °C		1200		nC
Qп	Reverse Recovery Charge		$T_j = 125^{\circ}C$		4000		

Temperature sensor NTC


Symbol	Characteristic	Min	Typ	Max	Unit
R ₂₅	Resistance @ 25°C		68		kΩ
B _{25/85}	$T_{25} = 298.16 \text{ K}$		4080		K

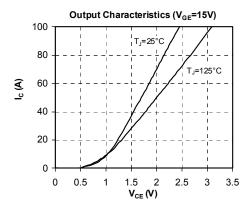

$$R_T = \frac{R_{25}}{\exp \left[B_{25/85} \left(\frac{1}{T_{25}} - \frac{1}{T} \right) \right]} \quad \text{T: Thermistor temperature}$$

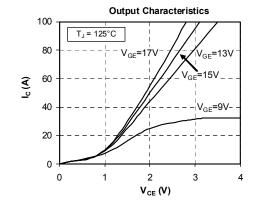
$$R_T: \text{Thermistor value at T}$$

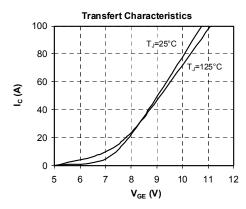

Thermal and package characteristics

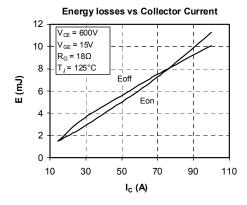
Symbol	Characteristic			Min	Typ	Max	Unit	
R_{thJC}	Junction to Case		IGBT		1	0.45	°C/W	
KthJC			Diode			0.9	C/ VV	
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			2500			V	
T_{J}	Operating junction temperature range Storage Temperature Range		-40		150			
T_{STG}			-40	·	125	°C		
$T_{\rm C}$	Operating Case Temperature			-40		100		
Torque	Mounting torque	To heatsink	M4			4.7	N.m	
Wt	Package Weight	·				110	g	

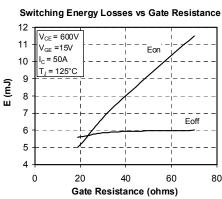
Package outline

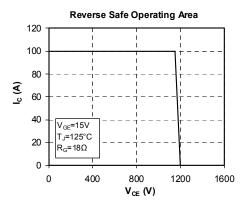


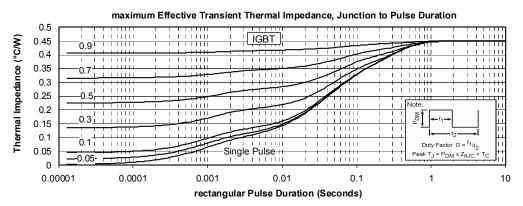


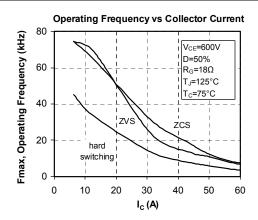


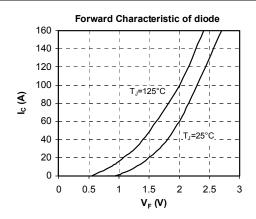


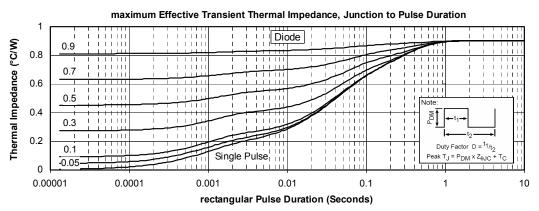

Typical Performance Curve











APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.