

Dual diodes Power Module

$$egin{array}{l} V_{RRM} = 1000V \\ I_{C} = 400A @ Tc = 70^{\circ}C \end{array}$$

A1/K2

A2

Application

- Anti-Parallel diode
- Uninterruptible Power Supply (UPS)
- Induction heating
- Welding equipment
- High speed rectifiers

Features

- Ultra fast recovery times
- Soft recovery characteristics
- Very low stray inductance
- High blocking voltage
- High current
- Low leakage current
- Very low stray inductance
 - Symmetrical design
 - M5 power connectors
- High level of integration

- Outstanding performance at high frequency operation
- Low losses
- Low noise switching
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance

Absolute maximum ratings

Symbol	Parameter				Max ratings	Unit
V_R	Maximum DC reverse Voltage				1000	V
V_{RRM}	Maximum Peak Repetitive Revers	erse Voltage			1000	v
$I_{F(AV)}$	Maximum Average Forward	D. 4	a – 500/	$T_{C} = 25^{\circ}C$ $T_{C} = 70^{\circ}C$	500	
	Current	Duty cycl	e – 30%	$T_C = 70^{\circ}C$	400	A
I _{F(RMS)}	RMS Forward Current	Duty cycle = 50%		$T_C = 45^{\circ}C$	500	Α
I_{FSM}	Non-Repetitive Forward Surge Cu	rrent	8.3 ms	$T_C = 45^{\circ}C$	3000	

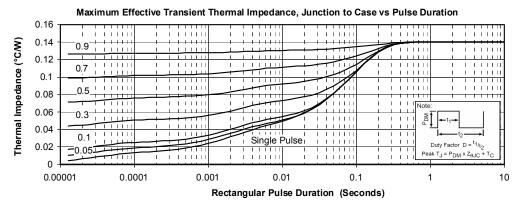
CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

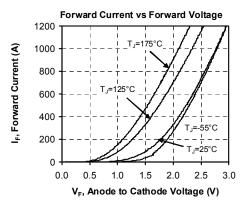
All ratings @ $T_i = 25^{\circ}C$ unless otherwise specified

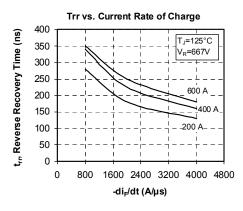
Electrical Characteristics

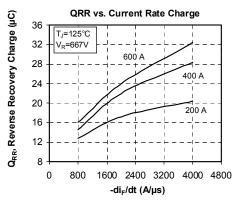
Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit	
V_{F}		$I_F = 400 A$			2.1	2.7	
	Diode Forward Voltage	$I_F = 600 A$			2.3		V
		$I_F = 400A$	$T_{j} = 125^{\circ}C$		1.7		
I_{RM}	Maximum Reverse Leakage Current	$V_R = 1000V$ $T_j = 25^{\circ}C$ $T_j = 125^{\circ}C$			250	^	
			$T_{j} = 125^{\circ}C$			1000	μΑ
C_{T}	Junction Capacitance	$V_R = 1000 V$			480		pF

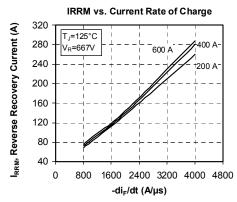
Dynamic Characteristics

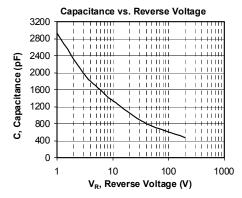

Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit	
t _{rr}	Reverse Recovery Time	$I_F=1 A, V_R=30 V$ $di/dt = 400 A/\mu s$	$T_j = 25^{\circ}C$		45		ns
t _{rr}	Reverse Recovery Time		$T_j = 25^{\circ}C$		290		- ns
чт	Reverse Recovery Time		$T_j = 125^{\circ}C$		340		
Q_{rr}	Reverse Recovery Charge	$I_F = 400 A$ $V_R = 667 V$ $di/dt = 800 A/\mu s$	$T_j = 25^{\circ}C$		2.7		μС
₹m	Reverse recovery charge		$T_j = 125^{\circ}C$		14.6		
I_{RRM}	Reverse Recovery Current	•	$T_j = 25^{\circ}C$		24		Α
1KKM	Reverse Recovery Current		$T_{j} = 125^{\circ}C$		72		
t_{rr}	Reverse Recovery Time	$I_F = 400 A$ $V_R = 667 V$ $di/dt = 4000 A/\mu s$			160		ns
Q _{rr}	Reverse Recovery Charge		$T_j = 125$ °C		28.4		μС
I_{RRM}	Reverse Recovery Current				280		A

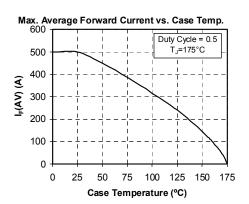

Thermal and package characteristics

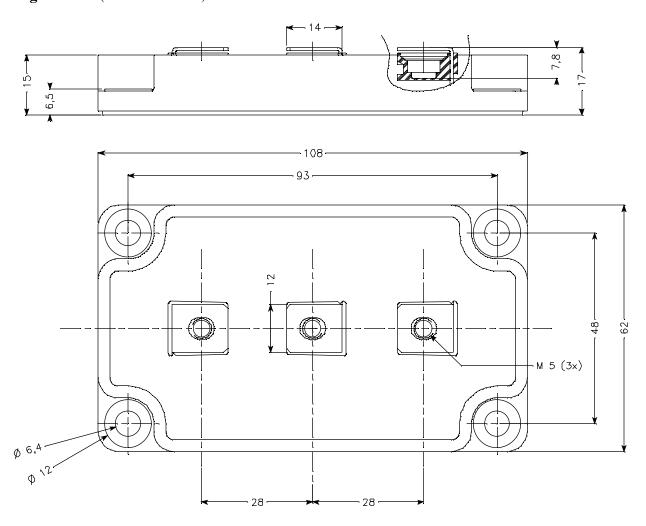

Symbol	Characteristic			Min	Тур	Max	Unit
R_{thJC}	Junction to Case					0.14	°C/W
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz			2500			V
T_{J}	Operating junction temperature range			-40		175	°C
T_{STG}	Storage Temperature Range			-40		125	
T_{C}	Operating Case Temperature			-40		100	
Torque	Mounting torque	To heatsink	M6	3		5	N.m
	woulding torque	For terminals	M5	2		3.5	14.111
Wt	Package Weight					280	g




Typical Performance Curve







Package outline (dimensions in mm)

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.