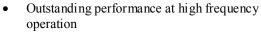


Fast Diode Rectifier Bridge Power Module

$$V_{RRM} = 200V$$

 $I_C = 100A$ @ $T_C = 80^{\circ}C$


Application

- Uninterruptible Power Supply (UPS)
- Induction heating
- Welding equipment
- High speed rectifiers

Features

- Ultra fast recovery times
- Soft recovery characteristics
- Very low stray inductance
- High blocking voltage
- High current
- Low leakage current
- Very low stray inductance
 - Symmetrical design
 - Lead frames for power connections
- High level of integration

- Low losses
- Low noise switching
- Solderable terminals for easy PCB mounting
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance

Symbol	Parameter				Max ratings	Unit
V_R	Maximum DC reverse Voltage			200	V	
V_{RRM}	Maximum Peak Repetitive Revers	e Voltage			200	v
т	Maximum Average Forward	um Average Forward Duty cycle = 50%		$T_C = 25^{\circ}C$	145	
$I_{F(A V)}$	Current	Duty cycle	2 = 30%	$T_C = 80^{\circ}C$	100	Α
I _{F(RMS)}	RMS Forward Current	Duty cycle = 50%		$T_C = 45^{\circ}C$	145	71
I_{FSM}	Non-Repetitive Forward Surge Cu	rrent	8.3 ms	$T_C = 45^{\circ}C$	500	

AC2

AC1

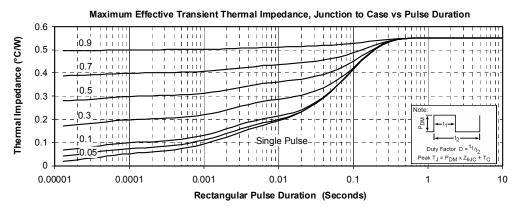
CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

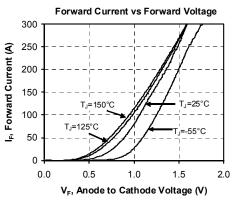
All ratings @ $T_i = 25^{\circ}C$ unless otherwise specified

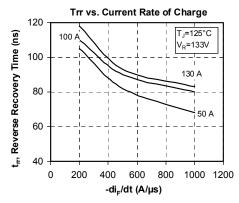
Electrical Characteristics

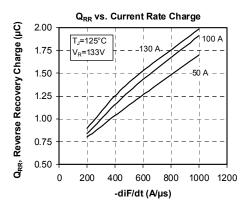
Symbol	Characteristic	Test Conditions	Min	Typ	Max	Unit	
V_{F}		$I_F = 100A$			1.0	1.1	
	Diode Forward Voltage	$I_F = 200 A$			1.4		V
		$I_F = 100A$	$T_{j} = 125^{\circ}C$		0.9		
I_{RM}	Maximum Reverse Leakage Current	$V_R = 200V$ $T_j = T_j$	$T_j = 25$ °C			250	^
	Maximum Reverse Leakage Current	v _R – 200 v	$T_{j} = 125^{\circ}C$			500	μΑ
C_{T}	Junction Capacitance	$V_R = 200 V$			400		pF

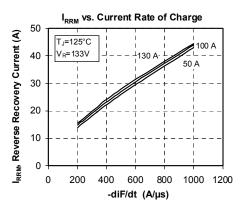
Dynamic Characteristics


•	Characteristic	Test Conditions		Min	Typ	Max	Unit
t _{rr}	Reverse Recovery Time	$I_F=1 A, V_R=30 V$ $di/dt = 100 A/\mu s$	$T_j = 25^{\circ}C$		39		ns
t _{rr}	Reverse Recovery Time		$T_j = 25^{\circ}C$		60		- ns
YIT .			$T_j = 125^{\circ}C$		110		
Qn	Reverse Recovery Charge $I_F = 100 A$ $V_R = 133 V$ $di/dt = 200 A/\mu s$	-	$T_j = 25^{\circ}C$		200		пC
Vп		$T_j = 125^{\circ}C$		840		IIC.	
I_{RRM}	Reverse Recovery Current	,	$T_j = 25^{\circ}C$		6		A
1RRM	Reverse Recovery Current		$T_{j} = 125^{\circ}C$		15		
t_{rr}	Reverse Recovery Time	$I_F = 100 A \\ V_R = 133 V \\ di/dt = 1000 A/\mu s$			80		ns
Q _{rr}	Reverse Recovery Charge		$T_j = 125$ °C		1.91		μС
I_{RRM}	Reverse Recovery Current				44		A

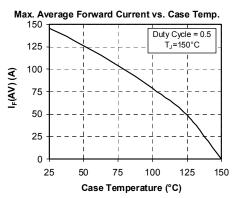

Thermal and package characteristics

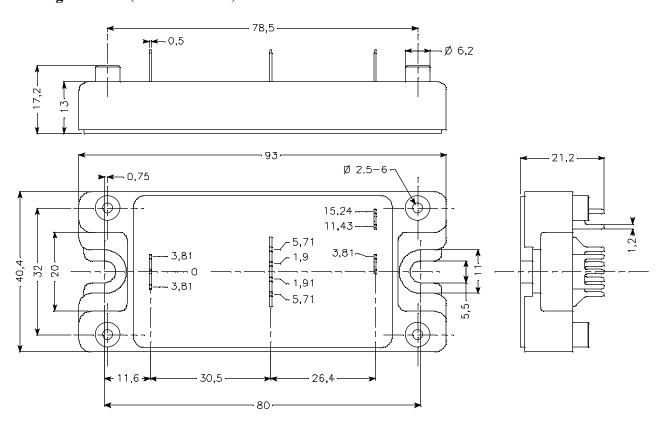

Symbol	Characteristic		Min	Typ	Max	Unit	
R_{thJC}	Junction to Case					0.55	°C/W
V_{ISOL}	RMS Isolation Voltage, any terminal to case t = 1 min, I isol<1mA, 50/60Hz			2500			V
T_{J}	Operating junction temperature range			-40		150	°C
T_{STG}	Storage Temperature Range			-40		125	
$T_{\rm C}$	Operating Case Temperature			-40		100	
Torque	Mounting torque	To Heatsink	M5	1.5		4.7	N.m
Wt	Package Weight				•	160	g




Typical Performance Curve







Package outline (dimensions in mm)

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.