

ISOTOP® Boost chopper NPT IGBT

$$V_{CES} = 600V$$

 $I_{C} = 60A @ Tc = 95°C$

Application

- AC and DC motor control
- Switched Mode Power Supplies
- Power Factor Correction
- Brake switch

Features

- Non Punch Through (NPT) THUNDERBOLT IGBT®
 - Low voltage drop
 - Low tail current
 - Switching frequency up to 100 kHz
 - Soft recovery parallel diodes
 - Low diode VF
 - Low leakage current
 - Avalanche energy rated
 - RBSOA and SCSOA rated
- ISOTOP® Package (SOT-227)
- Very low stray inductance
- High level of integration

- Outstanding performance at high frequency operation
- Stable temperature behavior
- Very rugged
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- Easy paralleling due to positive TC of VCEsat

Absolute maximum ratings

Symbol	Parameter			Max ratings	Unit
V_{CES}	Collector - Emitter Breakdown Voltage	600	V		
I_{C1}	Continuous Collector Comment			93	
I_{C2}	Continuous Collector Current		$T_C = 95$ °C	60	Α
I_{CM}	Pulsed Collector Current		$T_C = 25$ °C	360	
V_{GE}	Gate – Emitter Voltage	±20	V		
P_{D}	Maximum Power Dissipation $T_C =$			378	W
I_{LM}	RBSOA clamped Inductive load Current	$T_C = 25^{\circ}C$	360	A	
IF_{AV}	Maximum Average Forward Current	Duty cycle=0.5	$T_C = 80$ °C	30	A
IF_{RMS}	RMS Forward Current (Square wave, 50% duty)			39	Λ

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed.

All ratings @ $T_j = 25^{\circ}C$ unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
BV_{CES}	Collector - Emitter Breakdown Voltage	$V_{GE} = 0V, I_{C} = 0$).5mA	600			V
I_{CES}	Zero Gate Voltage Collector Current	$V_{GE} = 0V$	$T_j = 25$ °C			80	۸
		$V_{CE} = 600V$ $T_j = 125$	$T_j = 125$ °C			2000	μΑ
V _{CE(on)}	Collector Emitter on Voltage	$V_{GE} = 15V$	$T_j = 25$ °C		2.0	2.5	V
	Collector Emitter on Voltage	$I_C = 60A$	$T_j = 125$ °C			2.8	v
$V_{GE(th)}$	Gate Threshold Voltage	$V_{GE} = V_{CE}, I_{C} = 500 \mu A$		3	4	5	V
I_{GES}	Gate – Emitter Leakage Current	$V_{GE} = \pm 20V$, $V_{CE} = 0V$				±100	nA

Dynamic Characteristics

Symbol	Characteristic	Test Conditions	Min	Тур	Max	Unit
Cies	Input Capacitance	$V_{GE} = 0V$		3125	3590	pF
C_{oes}	Output Capacitance	$V_{CE} = 25V$		310	450	
C_{res}	Reverse Transfer Capacitance	f = 1MHz		180	310	
Q_{g}	Total gate Charge	$V_{GS} = 15V$		257	410	nC
Q_{ge}	Gate – Emitter Charge	$V_{Bus} = 300V$		19	30	
Q_{gc}	Gate – Collector Charge	$I_C = 60A$		120	180	
$T_{d(on)}$	Turn-on Delay Time	Resistive Switching (25°C)		20	40	ns
$T_{\rm r}$	Rise Time	$V_{GE} = 15V$ $V_{GE} = 200V$		95	190	
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 300V$ $I_{\text{C}} = 60A$		315	470	
$T_{\mathbf{f}}$	Fall Time	$R_G = 5\Omega$		245	490	
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (25°C)		26	50	ns
T_{r}	Rise Time	$V_{GE} = 15V$		63	125	
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 400V$ $I_{\text{C}} = 60A$		395	590	
T_{f}	Fall Time	$R_{G} = 5\Omega$		68	140	
E_{ts}	Total switching Losses			3.4	7	mJ
$T_{d(on)}$	Turn-on Delay Time	Inductive Switching (150°C)		25	50	
T_{r}	Rise Time	$V_{GE} = 15V$		59	120	ns
$T_{d(off)}$	Turn-off Delay Time	$V_{\text{Bus}} = 400V$ $I_{\text{C}} = 60A$		430	650	
$T_{\mathbf{f}}$	Fall Time	$R_G = 5\Omega$		65	130	
Eon	Turn-on Switching Energy			1.6	3.2	mJ
E_{off}	Turn-off Switching Energy			2.4	4.8	
E_{ts}	Total switching Losses			4.0	8.0	

Diode ratings and characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{F}	Diode Forward Voltage	$I_F = 30A$			1.6	1.8	
		$I_F = 60A$			1.9		V
		$I_F = 30A$	$T_{j} = 125^{\circ}C$		1.4		
I_{RM}	Maximum Reverse Leakage Current	$V_R = 600V$	$T_j = 25$ °C			250	μΑ
		$V_{R} = 600V$	$T_{j} = 125^{\circ}C$			500	
C_{T}	Junction Capacitance	$V_R = 200V$			44		pF
	Reverse Recovery Time	$I_F=1A, V_R=30V$	$T_i = 25$ °C		23		
t_{rr}		$di/dt = 100A/\mu s$,				ns
rr	Reverse Recovery Time	$I_F = 30A$ $T_i = 25$ °C	,		85		115
			$T_{j} = 125^{\circ}C$		160		
I_{RRM}	Maximum Reverse Recovery Current			4		Α	
1RRM	Widamindin Reverse Recovery Current	$V_R = 400V$ $di/dt = 200A/\mu s$	$T_{i} = 125^{\circ}C$		8		A
0	Davorga Dagayary Chargo	αι/αι –200A/μs	$T_j = 25$ °C		130		nC
Q _{rr}	Reverse Recovery Charge		$T_{j} = 125^{\circ}C$		700		пС
t _{rr}	Reverse Recovery Time	$\begin{split} I_F &= 30A \\ V_R &= 400V \\ di/dt &= 1000A/\mu s \end{split}$			70		ns
Q _{rr}	Reverse Recovery Charge		$T_j = 125$ °C		1300	·	nC
I_{RRM}	Maximum Reverse Recovery Current				30		A

Thermal and package characteristics

Symbol	Characteristic		Min	Typ	Max	Unit
R_{thJC}	Junction to Case	IGBT			0.33	
KthJC		Diode			1.21	°C/W
R_{thJA}	Junction to Ambient (IGBT & Diode)				20	
V_{ISOL}	RMS Isolation Voltage, any terminal to case t =1 min, I isol<1mA, 50/60Hz		2500			V
T_{J}, T_{STG}	Storage Temperature Range		-55		150	°C
$T_{\rm L}$	Max Lead Temp for Soldering:0.063" from case for 10 sec				300	
Torque	Mounting torque (Mounting = 8-32 or 4mm Machine and terminals = 4mm Machine)				1.5	N.m
Wt	Package Weight			29.2		g

Typical IGBT Performance Curve

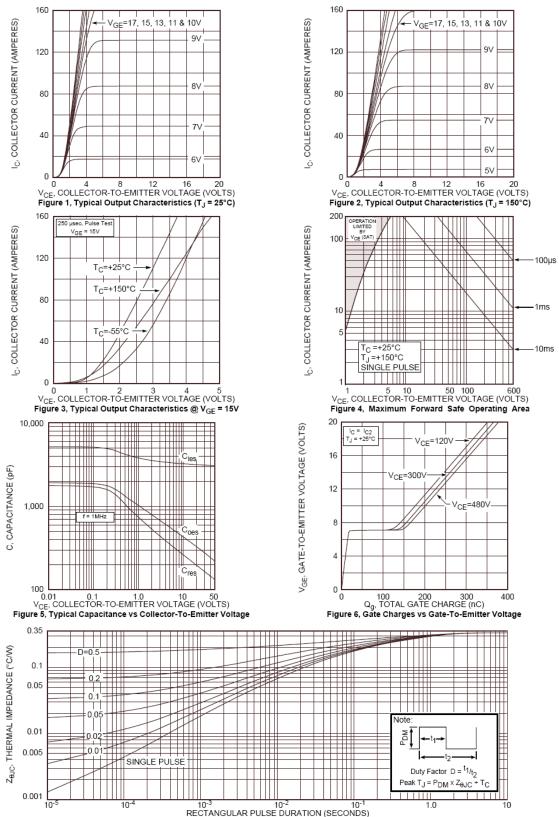
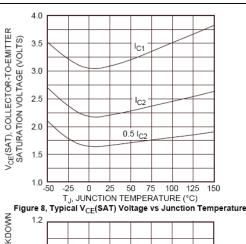
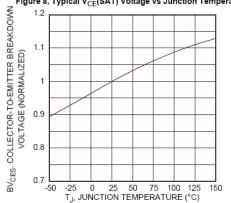
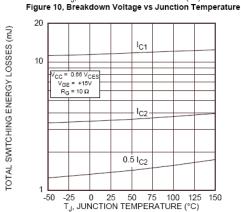





Figure 7, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

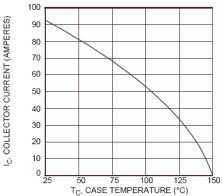
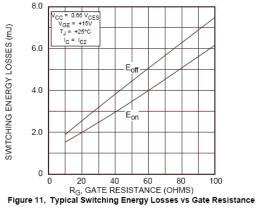



Figure 9, Maximum Collector Current vs Case Temperature

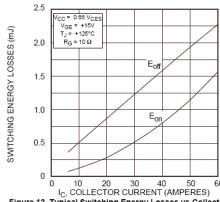


Figure 13, Typical Switching Energy Losses vs Collector Current

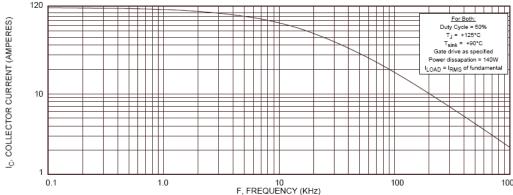


Figure 14, Typical Load Current vs Frequency

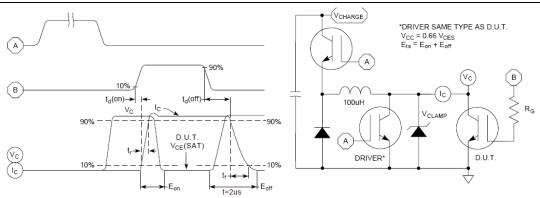


Figure 15, Switching Loss Test Circuit and Waveforms

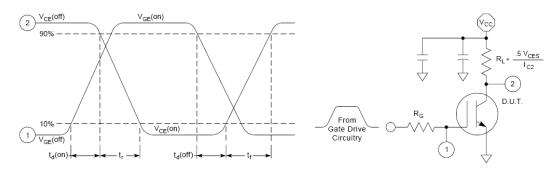
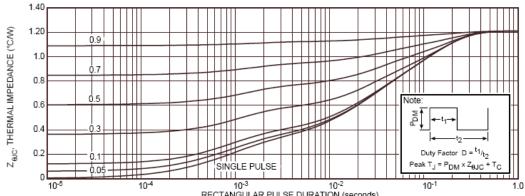



Figure 16, Resistive Switching Time Test Circuit and Waveforms

Typical Diode Performance Curve

RECTANGULAR PULSE DURATION (seconds)
FIGURE 1a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION

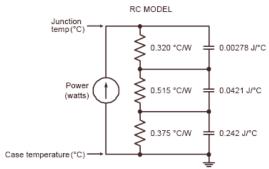


FIGURE 1b, TRANSIENT THERMAL IMPEDANCE MODEL

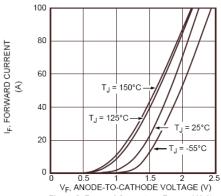


Figure 2. Forward Current vs. Forward Voltage

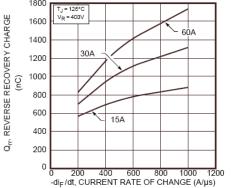


Figure 4. Reverse Recovery Charge vs. Current Rate of Change

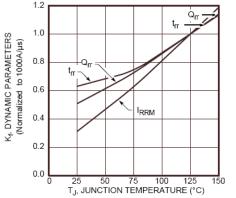


Figure 6. Dynamic Parameters vs. Junction Temperature

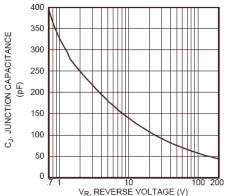


Figure 8. Junction Capacitance vs. Reverse Voltage

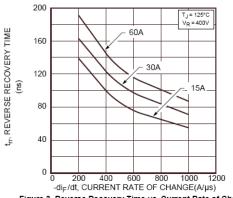


Figure 3. Reverse Recovery Time vs. Current Rate of Change

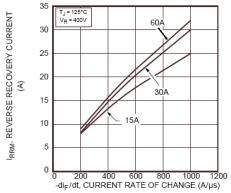


Figure 5. Reverse Recovery Current vs. Current Rate of Change

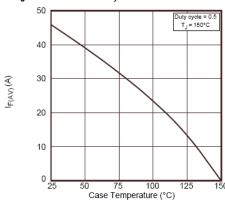


Figure 7. Maximum Average Forward Current vs. CaseTemperature

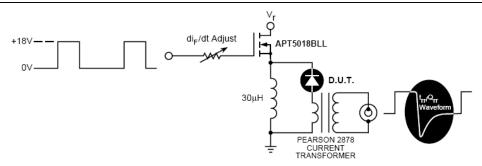
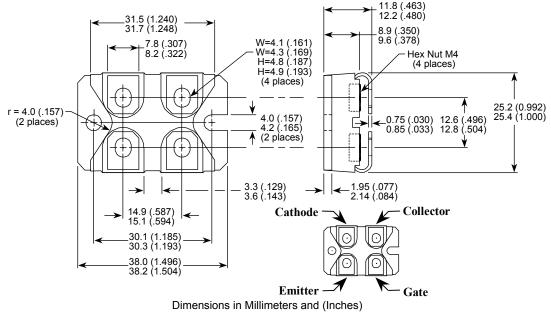



Figure 9. Diode Test Circuit

I_F - Forward Conduction Current
 di_F/dt - Rate of Diode Current Change Through Zero Crossing.
 I_{RRM} - Maximum Reverse Recovery Current.
 t_{TT} - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through I_{RRM} and 0.25*I_{RRM} passes through zero.
 Q_{TT} - Area Under the Curve Defined by I_{RRM} and t_{TT}.

Figure 10, Diode Reverse Recovery Waveform and Definitions

SOT-227 (ISOTOP®) Package Outline

ISOTOP® is a Registered Trademark of SGS Thomson

APT reserves the right to change, without notice, the specifications and information contained herein

APT's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.