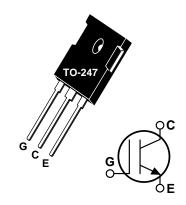
APT50GF60BR

600V 75A


Fast IGBT

The Fast IGBT is a new generation of high voltage power IGBTs. Using Non-Punch Through Technology the Fast IGBT offers superior ruggedness, fast switching speed and low Collector-Emitter On voltage.

- Low Forward Voltage Drop
- High Freq. Switching to 20KHz

Low Tail Current

- Ultra Low Leakage Current
- Avalanche Rated
- RBSOA and SCSOA Rated

MAXIMUM RATINGS

All Ratings: $T_C = 25$ °C unless otherwise specified.

Symbol	Parameter	APT50GF60BR	UNIT
V _{CES}	Collector-Emitter Voltage	600	
V _{CGR}	Collector-Gate Voltage $(R_{GE} = 20K\Omega)$	600	Volts
$V_{\sf GE}$	Gate-Emitter Voltage	±20	
I _{C1}	Continuous Collector Current @ T _C = 25°C	75	
I _{C2}	Continuous Collector Current @ T _C = 90°C	50	Amno
I _{CM}	Pulsed Collector Current ① @ T _C = 25°C	160	Amps
I _{LM}	RBSOA Clamped Inductive Load Current @ $R_g = 11\Omega T_C = 125$ °C	100	
E _{AS}	Single Pulse Avalanche Energy ②	75	mJ
P _D	Total Power Dissipation	300	Watts
T_J , T_{STG}	Operating and Storage Junction Temperature Range	-55 to 150	- °C
TL	Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.	300	

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
BV _{CES}	Collector-Emitter Breakdown Voltage $(V_{GE} = 0V, I_C = 1.0mA)$	600			- Volts
V _{GE} (TH)	Gate Threshold Voltage $(V_{CE} = V_{GE}, I_C = 700\mu\text{A}, T_j = 25^{\circ}\text{C})$	4.5	5.5	6.5	
V _{CE} (ON)	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 50A, T _j = 25°C)		2.1	2.7	
	Collector-Emitter On Voltage (V _{GE} = 15V, I _C = 50A, T _j = 125°C)		2.2	2.8	
I _{CES}	Collector Cut-off Current (V _{CE} = V _{CES} , V _{GE} = 0V, T _j = 25°C)			0.5	mA
	Collector Cut-off Current (V _{CE} = V _{CES} , V _{GE} = 0V, T _j = 125°C)			5.0	
I _{GES}	Gate-Emitter Leakage Current (V _{GE} = ±20V, V _{CE} = 0V)			±100	nA

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.

APT Website - http://www.advancedpower.com

USA 405 S.W. Columbia Street Bend, Oregon 97702-1035 Phone: (541) 382-8028 EUROPE Chemin de Magret F-33700 Merignac - France Phone: (33) 5 57 92 15 15

FAX: (541) 388-0364

FAX: (33) 5 56 47 97 61

DYNAMIC CHARACTERISTICS

APT50GF60BR

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
C _{ies}	Input Capacitance	Capacitance $V_{GE} = 0V$ $V_{CE} = 25V$ $f = 1 \text{ MHz}$		2250		pF
C _{oes}	Output Capacitance			255		
C _{res}	Reverse Transfer Capacitance			155		
Q_g	Total Gate Charge ^③	Gate Charge		175		nC
Q _{ge}	Gate-Emitter Charge	$V_{GE} = 15V$		18		
Q_{gc}	Gate-Collector ("Miller") Charge	$V_{CC} = 0.66V_{CES}$ $I_C = I_{C2}$		100		
t _d (on)	Turn-on Delay Time	Resistive Switching (25°C)		29		- ns
t _r	Rise Time	V _{GE} = 15V		118		
t _d (off)	Turn-off Delay Time	$V_{CC} = 0.66V_{CES}$ $I_{C} = I_{C2}$ $R_{G} = 10\Omega$		150		
t _f	Fall Time			190		
t _d (on)	Turn-on Delay Time			28		- ns
t _r	Rise Time	Inductive Switching (150°C)		75		
t _d (off)	Turn-off Delay Time	$V_{CLAMP}(Peak) = 0.66V_{CES}$		265		
t _f	Fall Time	$V_{GE} = 15V$ $I_{C} = I_{C2}$		185		
E _{on}	Turn-on Switching Energy	$R_G = 10\Omega$		1.8		mJ
E _{off}	Turn-off Switching Energy	T _J = +150°C		2.4		
E _{ts}	Total Switching Losses			4.2		
t _d (on)	Turn-on Delay Time	Inductive Switching (25°C) $V_{CLAMP}(Peak) = 0.66V_{CES}$ $V_{GE} = 15V$ $I_{C} = I_{C2}$ $R_{G} = 10\Omega$ $T_{J} = +25^{\circ}C$		30		. ns
t _r	Rise Time			80		
t _d (off)	Turn-off Delay Time			240		
t _f	Fall Time			43		
E _{ts}	Total Switching Losses			3.6		mJ
gfe	Forward Transconductance	$V_{CE} = 20V, I_{C} = I_{C2}$	6			S

THERMAL AND MECHANICAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\Theta JC}$	Junction to Case			0.42	°C/W
$R_{\Theta JA}$	Junction to Ambient			40	
W _T	Package Weight		0.22		oz
			6.1		gm
Torque	Mounting Torque (using a 6-32 or 3mm Binding Head Machine Screw)			10	lb•in
				1.1	N•m

① Repetitive Rating: Pulse width limited by maximum junction temperature.

② $I_C = I_{C2}$, $R_{GE} = 25\Omega$, $L = 100\mu H$, $T_j = 25^{\circ}C$

③ See MIL-STD-750 Method 3471

APT Reserves the right to change, without notice, the specifications and information contained herein.

APT50GF60BR

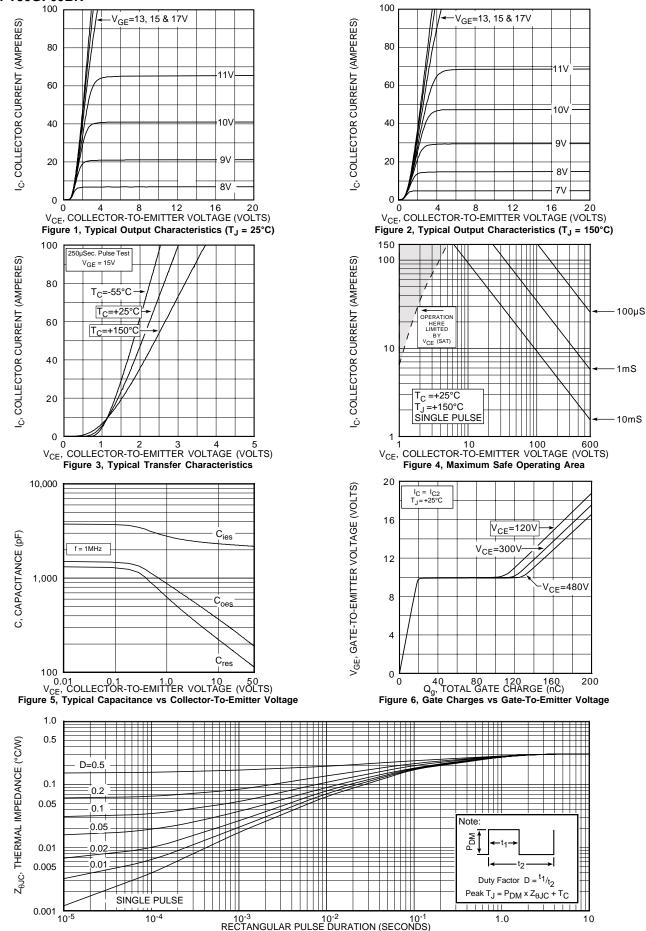
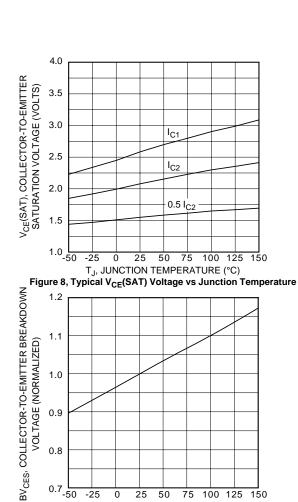



Figure 7, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration

50 T_J, JUNCTION TEMPERATURE (°C) Figure 10, Breakdown Voltage vs Junction Temperature

75 100 125

25

0

0.8

-25

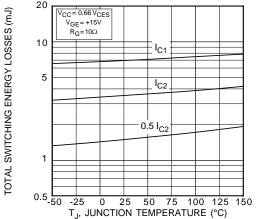


Figure 12, Typical Switching Energy Losses vs. Junction Temperature

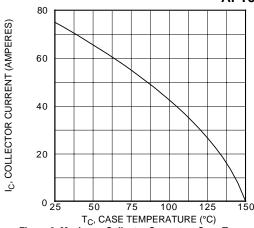
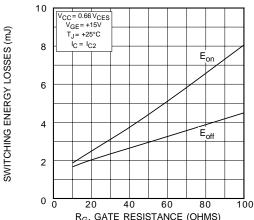
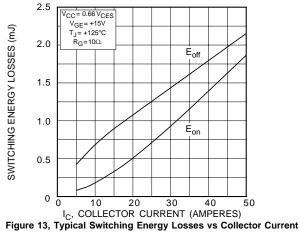
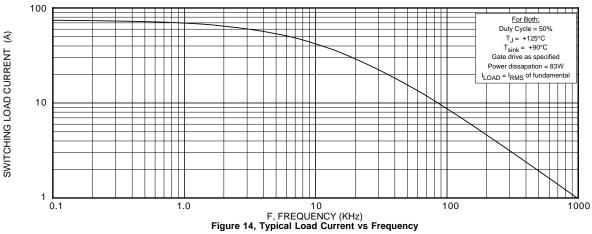





Figure 9, Maximum Collector Current vs Case Temperature

 $$\rm R_{G},\ GATE\ RESISTANCE\ (OHMS)$$ Figure 11, Typical Switching Energy Losses vs Gate Resistance

APT50GF60BR

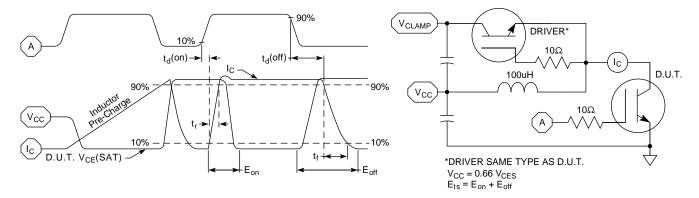


Figure 16, Switching Loss Test Circuit and Waveforms

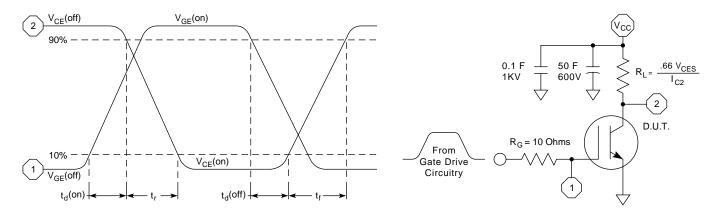
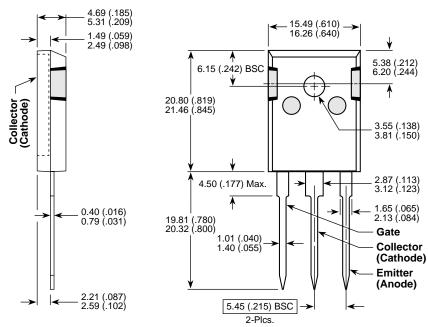



Figure 17, Resistive Switching Time Test Circuit and Waveforms

T0-247 Package Outline

Dimensions in Millimeters and (Inches)